메뉴 건너뛰기




Volumn 97, Issue 9, 2006, Pages 2023-2033

Nonlinear regression modeling via regularized wavelets and smoothing parameter selection

Author keywords

Automatic smoothing parameter selection; Irregular design points; Linear shrinkage; Regression modeling; Wavelets

Indexed keywords


EID: 33748430178     PISSN: 0047259X     EISSN: 10957243     Source Type: Journal    
DOI: 10.1016/j.jmva.2005.12.009     Document Type: Article
Times cited : (10)

References (17)
  • 1
    • 0001166113 scopus 로고    scopus 로고
    • Wavelet approximation of a function from samples affected by noise
    • Amato U., and Vuza D.T. Wavelet approximation of a function from samples affected by noise. Rev. Roumaine Math. Pures Appl. 42 (1997) 481-493
    • (1997) Rev. Roumaine Math. Pures Appl. , vol.42 , pp. 481-493
    • Amato, U.1    Vuza, D.T.2
  • 2
    • 0442312210 scopus 로고    scopus 로고
    • Regularization of wavelet approximations
    • Antoniadis A., and Fan J. Regularization of wavelet approximations. J. Amer. Statist. Assoc. 96 (2001) 939-967
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 939-967
    • Antoniadis, A.1    Fan, J.2
  • 3
    • 0032180685 scopus 로고    scopus 로고
    • Wavelet regression for random or irregular design
    • Antoniadis A., and Pham D.T. Wavelet regression for random or irregular design. Computat. Statist. Data Anal. 28 (1998) 353-369
    • (1998) Computat. Statist. Data Anal. , vol.28 , pp. 353-369
    • Antoniadis, A.1    Pham, D.T.2
  • 6
    • 84950459514 scopus 로고
    • Adapting to unknown smoothness via wavelet shrinkage
    • Donoho D.L., and Johnston I.M. Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 (1995) 1200-1224
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 1200-1224
    • Donoho, D.L.1    Johnston, I.M.2
  • 9
    • 0000761958 scopus 로고    scopus 로고
    • On the choice of smoothing parameter, threshold and truncation in nonparametric regression by nonlinear wavelet methods
    • Hall P., and Patil P. On the choice of smoothing parameter, threshold and truncation in nonparametric regression by nonlinear wavelet methods. J. Roy. Statist. Soc. Ser. B 58 (1996) 361-377
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 361-377
    • Hall, P.1    Patil, P.2
  • 10
    • 0031510620 scopus 로고    scopus 로고
    • Interpolation methods for nonlinear wavelet regression with irregularly spaced design
    • Hall P., and Turlach B.A. Interpolation methods for nonlinear wavelet regression with irregularly spaced design. Ann Statist. 25 (1997) 1912-1925
    • (1997) Ann Statist. , vol.25 , pp. 1912-1925
    • Hall, P.1    Turlach, B.A.2
  • 12
    • 3242882795 scopus 로고    scopus 로고
    • Bayesian information criteria and smoothing parameter selection in radial basis function networks
    • Konishi S., Ando T., and Imoto S. Bayesian information criteria and smoothing parameter selection in radial basis function networks. Biometrika 91 (2004) 27-43
    • (2004) Biometrika , vol.91 , pp. 27-43
    • Konishi, S.1    Ando, T.2    Imoto, S.3
  • 13
    • 0000512689 scopus 로고    scopus 로고
    • Generalised information criteria in model selection
    • Konishi S., and Kitagawa G. Generalised information criteria in model selection. Biometrika 83 (1996) 875-890
    • (1996) Biometrika , vol.83 , pp. 875-890
    • Konishi, S.1    Kitagawa, G.2
  • 15
    • 6644226793 scopus 로고    scopus 로고
    • On non-equally spaced wavelet regression
    • Pensky M., and Vidakovic B. On non-equally spaced wavelet regression. Ann. Inst. Statist. Math. 53 (2001) 681-690
    • (2001) Ann. Inst. Statist. Math. , vol.53 , pp. 681-690
    • Pensky, M.1    Vidakovic, B.2
  • 16
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Statist. 6 (1978) 461-464
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.