메뉴 건너뛰기




Volumn 16, Issue 5, 2005, Pages 465-479

Spatial process modelling for univariate and multivariate dynamic spatial data

Author keywords

Bayesian inference; Coregionalization; Dynamic models; Multivariate spatial processes; Non stationarity; Spatially varying coefficients

Indexed keywords

CLIMATE; MODELING;

EID: 20744444147     PISSN: 11804009     EISSN: None     Source Type: Journal    
DOI: 10.1002/env.715     Document Type: Conference Paper
Times cited : (122)

References (31)
  • 1
    • 0013501834 scopus 로고    scopus 로고
    • Prediction, interpolation and regression for spatially misaligned data
    • Banerjee S, Gelfand AE. 2002. Prediction, interpolation and regression for spatially misaligned data. Sankhya 64: 227-245.
    • (2002) Sankhya , vol.64 , pp. 227-245
    • Banerjee, S.1    Gelfand, A.E.2
  • 4
    • 0000193853 scopus 로고
    • On Gibbs sampling for state space models
    • Carter C, Kohn R. 1994. On Gibbs sampling for state space models. Biometrika 81: 541-553.
    • (1994) Biometrika , vol.81 , pp. 541-553
    • Carter, C.1    Kohn, R.2
  • 9
  • 10
    • 0028590677 scopus 로고
    • A space-time analysis of ground level ozone data
    • Guttorp P, Meiring W, Sampson P. 1994. A space-time analysis of ground level ozone data. Environmetrics 5: 241-254.
    • (1994) Environmetrics , vol.5 , pp. 241-254
    • Guttorp, P.1    Meiring, W.2    Sampson, P.3
  • 11
    • 84950427374 scopus 로고
    • An approach to statistical spatiotemporal modelling of meteorological fields
    • Handcock M, Wallis J. 1994. An approach to statistical spatiotemporal modelling of meteorological fields. Journal of the American Statistical Association 89: 368-390.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 368-390
    • Handcock, M.1    Wallis, J.2
  • 13
    • 0032422974 scopus 로고    scopus 로고
    • A process convolution approach to modelling temperatures in the north Atlantic Ocean
    • Higdon D. 1999. A process convolution approach to modelling temperatures in the north Atlantic Ocean. Environmental and Ecological Statistics 5: 173-190.
    • (1999) Environmental and Ecological Statistics , vol.5 , pp. 173-190
    • Higdon, D.1
  • 14
    • 0030184050 scopus 로고    scopus 로고
    • Spatiotemporal prediction of snow water equivalent using the Kaiman filter
    • Huang HC, Cressie NAC. 1996. Spatiotemporal prediction of snow water equivalent using the Kaiman filter. Computational Statistics and Data Analysis 22: 159-175.
    • (1996) Computational Statistics and Data Analysis , vol.22 , pp. 159-175
    • Huang, H.C.1    Cressie, N.A.C.2
  • 15
    • 2342549244 scopus 로고    scopus 로고
    • A spatiotemporal model for Mexico city ozone levels
    • Huerta G, Sanso B, Stroud JR. 2004. A spatiotemporal model for Mexico city ozone levels. Applied Statistics 53: 1-18.
    • (2004) Applied Statistics , vol.53 , pp. 1-18
    • Huerta, G.1    Sanso, B.2    Stroud, J.R.3
  • 16
    • 38249008770 scopus 로고
    • Interpolation with uncertain spatial covariances: A Bayesian alternative to kriging
    • Le ND, Zidek JV. 1992. Interpolation with uncertain spatial covariances: a Bayesian alternative to kriging. Journal of Multivariate Analysis 47: 351-374.
    • (1992) Journal of Multivariate Analysis , vol.47 , pp. 351-374
    • Le, N.D.1    Zidek, J.V.2
  • 17
    • 0002572881 scopus 로고
    • Spatiotemporal analyses of multivariate environmental monitoring data
    • Paul GP, Rao CR (eds). Elsevier: Amsterdam
    • Mardia KV, Goodall C. 1993. Spatiotemporal analyses of multivariate environmental monitoring data. In Multivariate Environmental Statistics, Paul GP, Rao CR (eds). Elsevier: Amsterdam; 347-386.
    • (1993) Multivariate Environmental Statistics , pp. 347-386
    • Mardia, K.V.1    Goodall, C.2
  • 19
    • 0010937599 scopus 로고    scopus 로고
    • A method for spatiotemporal forecasting with an application to real estate and financial economics
    • Pace RK, Barry R, Gilley OW, Sirmans CF. 2000. A method for spatiotemporal forecasting with an application to real estate and financial economics. International Journal of Forecasting 16: 229-240.
    • (2000) International Journal of Forecasting , vol.16 , pp. 229-240
    • Pace, R.K.1    Barry, R.2    Gilley, O.W.3    Sirmans, C.F.4
  • 20
    • 0007266890 scopus 로고
    • Independence and sphericity tests for the residuals of space-time ARMA models
    • Pfeifer PE, Deutsch SJ. 1980a. Independence and sphericity tests for the residuals of space-time ARMA models. Communications in Statistics, B 9: 533-549.
    • (1980) Communications in Statistics, B , vol.9 , pp. 533-549
    • Pfeifer, P.E.1    Deutsch, S.J.2
  • 21
    • 0000238436 scopus 로고
    • Stationarity and invertibility regions for low order STARMA models
    • Pfeiffer PE, Deutsch SF. 1980b. Stationarity and invertibility regions for low order STARMA models. Communications in Statistics 9: 551-562.
    • (1980) Communications in Statistics , vol.9 , pp. 551-562
    • Pfeiffer, P.E.1    Deutsch, S.F.2
  • 23
    • 0033426717 scopus 로고    scopus 로고
    • Venezuelan rainfall data analysed using a Bayesian space-time model
    • Sansó B, Guenni L. 1999. Venezuelan rainfall data analysed using a Bayesian space-time model. Applied Statistics 48: 345-362.
    • (1999) Applied Statistics , vol.48 , pp. 345-362
    • Sansó, B.1    Guenni, L.2
  • 25
    • 84950903921 scopus 로고
    • Estimation and identification of space-time ARMAX modelsin the presence of missing data
    • Stoffer D. 1986. Estimation and identification of space-time ARMAX modelsin the presence of missing data. Journal of the American Statistical Association 81: 762-772.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 762-772
    • Stoffer, D.1
  • 27
    • 0003751469 scopus 로고    scopus 로고
    • Bayesian dynamic linear models for spatial time series
    • Dipartimento di Statistica - Universita CaFoscari di Venezia, Venice Italy
    • Tonellato S. 1997. Bayesian dynamic linear models for spatial time series. Tech report, Rapporto di riceria 5/1997, Dipartimento di Statistica - Universita CaFoscari di Venezia, Venice Italy.
    • (1997) Tech Report, Rapporto di Riceria 5/1997
    • Tonellato, S.1
  • 31
    • 0000414912 scopus 로고    scopus 로고
    • A dimension reduced approach to space-time Kalman filtering
    • Wikle C, Cressie N. 1999. A dimension reduced approach to space-time Kalman filtering. Biometrika 86: 815-829.
    • (1999) Biometrika , vol.86 , pp. 815-829
    • Wikle, C.1    Cressie, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.