메뉴 건너뛰기




Volumn 9, Issue 3, 2008, Pages 523-539

Penalized loss functions for Bayesian model comparison

Author keywords

Bayesian model comparison; Deviance information criterion; Disease mapping; Markov chain Monte Carlo methods; Mixture models

Indexed keywords

ARYLAMINE ACETYLTRANSFERASE; NAT2 PROTEIN, HUMAN;

EID: 45849088346     PISSN: 14654644     EISSN: 14684357     Source Type: Journal    
DOI: 10.1093/biostatistics/kxm049     Document Type: Article
Times cited : (303)

References (48)
  • 5
    • 0000626524 scopus 로고
    • Expected information as expected utility
    • BERNARDO, J. (1979). Expected information as expected utility. The Annals of Statistics 7, 686-690.
    • (1979) The Annals of Statistics , vol.7 , pp. 686-690
    • BERNARDO, J.1
  • 7
    • 28344449679 scopus 로고    scopus 로고
    • BESAG, J., YORK, J. AND MOLLIÉ , A. (1991). Bayesian image restoration with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics 43, 1-59.
    • BESAG, J., YORK, J. AND MOLLIÉ , A. (1991). Bayesian image restoration with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics 43, 1-59.
  • 11
    • 45849129131 scopus 로고    scopus 로고
    • Rejoinder to discussion of deviance information criteria for missing data models
    • CELEUX, G., FORBES, F., ROBERT, C. AND TITTERINGTON, D. (2006b). Rejoinder to discussion of deviance information criteria for missing data models. Bayesian Analysis 1, 701-706.
    • (2006) Bayesian Analysis , vol.1 , pp. 701-706
    • CELEUX, G.1    FORBES, F.2    ROBERT, C.3    TITTERINGTON, D.4
  • 12
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixture posterior distributions
    • CELEUX, G., HURN, M. AND ROBERT, C. (2000). Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association 95, 957-970.
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 957-970
    • CELEUX, G.1    HURN, M.2    ROBERT, C.3
  • 13
    • 0023522959 scopus 로고
    • Empirical Bayes estimates of age-standardized relative risks for use in disease mapping
    • CLAYTON, D. AND KALDOR, J. (1987). Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics 43, 671-681.
    • (1987) Biometrics , vol.43 , pp. 671-681
    • CLAYTON, D.1    KALDOR, J.2
  • 14
    • 26644461453 scopus 로고    scopus 로고
    • Lung cancer rate predictions using generalized additive models
    • CLEMENTS, M., ARMSTRONG, B. AND MOOLGAVKAR, S. (2005). Lung cancer rate predictions using generalized additive models. Biostatistics 6, 576-589.
    • (2005) Biostatistics , vol.6 , pp. 576-589
    • CLEMENTS, M.1    ARMSTRONG, B.2    MOOLGAVKAR, S.3
  • 15
    • 29344446857 scopus 로고    scopus 로고
    • Longitudinal profiling of health care units based on continuous and discrete patient outcomes
    • DANIELS, M. AND NORMAND, S. (2006). Longitudinal profiling of health care units based on continuous and discrete patient outcomes. Biostatistics 7, 1-15.
    • (2006) Biostatistics , vol.7 , pp. 1-15
    • DANIELS, M.1    NORMAND, S.2
  • 16
    • 84950461478 scopus 로고
    • Estimating the error rate of a prediction rule: Improvements on cross-validation
    • EFRON, B. (1983). Estimating the error rate of a prediction rule: improvements on cross-validation. Journal of the American Statistical Association 78, 316-331.
    • (1983) Journal of the American Statistical Association , vol.78 , pp. 316-331
    • EFRON, B.1
  • 17
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • EFRON, B. (1986). How biased is the apparent error rate of a prediction rule? Journal of the American Statistical Association 81, 461-470.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 461-470
    • EFRON, B.1
  • 18
    • 21644459666 scopus 로고    scopus 로고
    • Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction
    • ELLIOTT, M., GALLO, J., HAVE, T. T., BOGNER, H. AND KATZ, I. (2005). Using a Bayesian latent growth curve model to identify trajectories of positive affect and negative events following myocardial infarction. Biostatistics 6, 119-143.
    • (2005) Biostatistics , vol.6 , pp. 119-143
    • ELLIOTT, M.1    GALLO, J.2    HAVE, T.T.3    BOGNER, H.4    KATZ, I.5
  • 21
    • 0002799511 scopus 로고    scopus 로고
    • Model choice: A minimum posterior predictive loss approach
    • GELFAND, A. AND GHOSH, S. (1998). Model choice: a minimum posterior predictive loss approach. Biometrika 85, 1-11.
    • (1998) Biometrika , vol.85 , pp. 1-11
    • GELFAND, A.1    GHOSH, S.2
  • 25
    • 70349119250 scopus 로고
    • Regression and time series model selection in small samples
    • HURVICH, C. AND TSAI, C.-L. (1989). Regression and time series model selection in small samples. Biometrika 76, 297-307.
    • (1989) Biometrika , vol.76 , pp. 297-307
    • HURVICH, C.1    TSAI, C.-L.2
  • 31
    • 26644457216 scopus 로고    scopus 로고
    • Generalized spatial structural equation models
    • LIU, X., WALL, M. AND HODGES, J. (2005). Generalized spatial structural equation models. Biostatistics 6, 539-557.
    • (2005) Biostatistics , vol.6 , pp. 539-557
    • LIU, X.1    WALL, M.2    HODGES, J.3
  • 32
    • 0037687725 scopus 로고    scopus 로고
    • Approximate cross-validatory predictive checks in disease mapping models
    • MARSHALL, E. AND SPIEGELHALTER, D. (2003). Approximate cross-validatory predictive checks in disease mapping models. Statistics in Medicine 22, 1649-1660.
    • (2003) Statistics in Medicine , vol.22 , pp. 1649-1660
    • MARSHALL, E.1    SPIEGELHALTER, D.2
  • 33
    • 21444452127 scopus 로고    scopus 로고
    • Sampling from multimodal distributions using tempered transitions
    • NEAL, R. (1996). Sampling from multimodal distributions using tempered transitions. Statistics and Computing 4, 353-366.
    • (1996) Statistics and Computing , vol.4 , pp. 353-366
    • NEAL, R.1
  • 34
    • 0001857092 scopus 로고
    • Fractional Bayes factors for model comparison (with discussion)
    • O'HAGAN, A. (1995). Fractional Bayes factors for model comparison (with discussion). Journal of the Royal Statistical Society, Series B 57, 99-138.
    • (1995) Journal of the Royal Statistical Society, Series B , vol.57 , pp. 99-138
    • O'HAGAN, A.1
  • 35
    • 0031500277 scopus 로고    scopus 로고
    • On the variability of case-deletion importance sampling weights in the Bayesian linear model
    • PERUGGIA, M. (1997). On the variability of case-deletion importance sampling weights in the Bayesian linear model. Journal of the American Statistical Association 92, 199-207.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 199-207
    • PERUGGIA, M.1
  • 37
    • 45849131022 scopus 로고    scopus 로고
    • Comment on article by Celeux et al
    • PLUMMER, M. (2006). Comment on article by Celeux et al. Bayesian Analysis 1, 681-686.
    • (2006) Bayesian Analysis , vol.1 , pp. 681-686
    • PLUMMER, M.1
  • 38
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components (with discussion)
    • RICHARDSON, S. AND GREEN, P. (1997). On Bayesian analysis of mixtures with an unknown number of components (with discussion). Journal of the Royal Statistical Society, Series B 59, 731-758.
    • (1997) Journal of the Royal Statistical Society, Series B , vol.59 , pp. 731-758
    • RICHARDSON, S.1    GREEN, P.2
  • 40
    • 0004161172 scopus 로고    scopus 로고
    • Bayesian deviance, the effective number of parameters, and the comparison of arbitrarily complex models
    • Technical Report 98-009. Division of Biostatistics, University of Minnesota. Cambridge, UK: Medical Research Council Biostatistics Unit
    • SPIEGELHALTER, D., BEST, N. AND CARLIN, B. (1998). Bayesian deviance, the effective number of parameters, and the comparison of arbitrarily complex models. Technical Report 98-009. Division of Biostatistics, University of Minnesota. Cambridge, UK: Medical Research Council Biostatistics Unit.
    • (1998)
    • SPIEGELHALTER, D.1    BEST, N.2    CARLIN, B.3
  • 41
    • 0036435040 scopus 로고    scopus 로고
    • SPIEGELHALTER, D., BEST, N., CARLIN, B. AND VAN DER LINDE, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 64, 583-639.
    • SPIEGELHALTER, D., BEST, N., CARLIN, B. AND VAN DER LINDE, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B 64, 583-639.
  • 43
    • 0000859675 scopus 로고
    • An asymptotic equivalence of choice of model cross-validation and Akaike's criterion
    • STONE, M. (1977). An asymptotic equivalence of choice of model cross-validation and Akaike's criterion. Journal of the Royal Statistical Society, Series B 36, 44-47.
    • (1977) Journal of the Royal Statistical Society, Series B , vol.36 , pp. 44-47
    • STONE, M.1
  • 45
    • 11144318013 scopus 로고    scopus 로고
    • On the association between a random parameter and an observation
    • VAN DER LINDE, A. (2004). On the association between a random parameter and an observation. Test 13, 85-111.
    • (2004) Test , vol.13 , pp. 85-111
    • VAN DER LINDE, A.1
  • 48
    • 0036781790 scopus 로고    scopus 로고
    • Bayesian model assessment and comparison using cross-validation predictive densities
    • VEHTARI, A. AND LAMPINEN, J. (2002). Bayesian model assessment and comparison using cross-validation predictive densities. Neural Computation 14, 2439-2468.
    • (2002) Neural Computation , vol.14 , pp. 2439-2468
    • VEHTARI, A.1    LAMPINEN, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.