메뉴 건너뛰기




Volumn 61, Issue 2, 2009, Pages 331-353

Nonlinear logistic discrimination via regularized radial basis functions for classifying high-dimensional data

Author keywords

Bayes approach; Information criteria; Maximum penalized likelihood method; Radial basis functions

Indexed keywords

APPLIED STATISTICS; BASIS FUNCTIONS; BAYES APPROACH; BAYESIAN; CLASS LABELS; COMPLEX STRUCTURES; CONSTRUCTION PROCESS; COVARIATES; EXTENDED VERSIONS; FUTURE OBSERVATIONS; HIGH-DIMENSIONAL DATUM; HYBRID LEARNING; HYPER PARAMETERS; INFORMATION CRITERIA; LINEAR PREDICTORS; MAXIMUM PENALIZED LIKELIHOOD METHOD; MODEL EVALUATIONS; MONTE CARLO EXPERIMENTS; NON-PARAMETRIC METHODS; PARAMETER ESTIMATES; PENALIZED MAXIMUM-LIKELIHOOD ESTIMATIONS; PREDICTION PERFORMANCE; RADIAL BASIS FUNCTIONS; REAL DATA ANALYSIS; SIMULATION RESULTS; VARIABLE SELECTION PROBLEMS;

EID: 67349126855     PISSN: 00203157     EISSN: 15729052     Source Type: Journal    
DOI: 10.1007/s10463-007-0143-3     Document Type: Article
Times cited : (3)

References (46)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Budapest Akademiai Kiado
    • Akaike H. (1973). Information theory and an extension of the maximum likelihood principle. In Petrov B.N., Csaki F (eds). 2nd International Symposium on Information Theory. Budapest, Akademiai Kiado, pp. 267-281
    • (1973) 2nd International Symposium on Information Theory. , pp. 267-281
    • Akaike, H.1    Petrov, B.N.2    Csaki, F.3
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike 1974 A new look at the statistical model identification IEEE Transactions on Automatic Control AC-19 716 723
    • (1974) IEEE Transactions on Automatic Control , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 3
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • A.A. Alizadeh M.B. Eisen R.E. Davis C. Ma I.S. Lossos A. Rosenwald 2000 Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling Nature 403 503 511
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1    Eisen, M.B.2    Davis, R.E.3    Ma, C.4    Lossos, I.S.5    Rosenwald, A.6
  • 4
    • 22444454855 scopus 로고    scopus 로고
    • Cascading classifiers
    • E. Alpaydin C. Kaynak 1998 Cascading classifiers Kybernetika 34 369 374
    • (1998) Kybernetika , vol.34 , pp. 369-374
    • Alpaydin, E.1    Kaynak, C.2
  • 5
    • 67349169085 scopus 로고    scopus 로고
    • Kernel flexible discriminant analysis for classifying high-dimensional data with nonlinear structure and its applications (in Japanese)
    • T. Ando 2003 Kernel flexible discriminant analysis for classifying high-dimensional data with nonlinear structure and its applications (in Japanese) Proceedings of the Institute of Statistical Mathematics 51 389 406
    • (2003) Proceedings of the Institute of Statistical Mathematics , vol.51 , pp. 389-406
    • Ando, T.1
  • 6
    • 24944557730 scopus 로고    scopus 로고
    • Estimating nonlinear regression models based on radial basis function networks (in Japanese)
    • T. Ando S. Imoto S. Konishi 2001 Estimating nonlinear regression models based on radial basis function networks (in Japanese) Japanese Journal of Applied Statistics 30 19 35
    • (2001) Japanese Journal of Applied Statistics , vol.30 , pp. 19-35
    • Ando, T.1    Imoto, S.2    Konishi, S.3
  • 7
    • 67349209903 scopus 로고    scopus 로고
    • Nonlinear pattern recognition using radial basis function networks and its application (in Japanese)
    • T. Ando J. Simauchi S. Konishi 2002 Nonlinear pattern recognition using radial basis function networks and its application (in Japanese) Japanese Journal of Applied Statistics 31 123 139
    • (2002) Japanese Journal of Applied Statistics , vol.31 , pp. 123-139
    • Ando, T.1    Simauchi, J.2    Konishi, S.3
  • 8
    • 67349226727 scopus 로고    scopus 로고
    • Adaptive learning machines for nonlinear classification and Bayesian information criteria
    • T. Ando S. Imoto S. Konishi 2004 Adaptive learning machines for nonlinear classification and Bayesian information criteria Bulletin of Informatics and Cybernetics 36 147 162
    • (2004) Bulletin of Informatics and Cybernetics , vol.36 , pp. 147-162
    • Ando, T.1    Imoto, S.2    Konishi, S.3
  • 11
    • 0003408496 scopus 로고    scopus 로고
    • University of California, Department of Information and Computer Sciences
    • Blake, C. L., Merz, C. J. (1998). UCI repository of machine learning databases. http://www.ics.uci.edu mlearn/MLRepository.html, University of California, Department of Information and Computer Sciences.
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 13
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • D.S. Broomhead D. Lowe 1988 Multivariable functional interpolation and adaptive networks Complex Systems 2 321 335
    • (1988) Complex Systems , vol.2 , pp. 321-335
    • Broomhead, D.S.1    Lowe, D.2
  • 14
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit J. Fridlyand T. Speed 2002 Comparison of discrimination methods for the classification of tumors using gene expression data Journal of the American Statistical Association 97 77 87
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 15
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties (with discussion)
    • P.H.C. Eilers B.D. Marx 1996 Flexible smoothing with B-splines and penalties (with discussion) Statistical Science 11 89 121
    • (1996) Statistical Science , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.D.2
  • 16
    • 33748430178 scopus 로고    scopus 로고
    • Nonlinear regression modeling via regularized wavelets and smoothing parameter selection
    • T. Fujii S. Konishi 2006 Nonlinear regression modeling via regularized wavelets and smoothing parameter selection Journal of Multivariate Analysis 97 2023 2033
    • (2006) Journal of Multivariate Analysis , vol.97 , pp. 2023-2033
    • Fujii, T.1    Konishi, S.2
  • 17
    • 0001219859 scopus 로고
    • Regularization theory and neural architectures
    • F. Girosi M. Jones T. Poggio 1995 Regularization theory and neural architectures Neural Computation 7 219 269
    • (1995) Neural Computation , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 19
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T.R. Golub D.K. Slonim P. Tamayo C. Huard M. Gaasenbeek J.P. Mesirov 1999 Molecular classification of cancer: class discovery and class prediction by gene expression monitoring Science 286 531 537
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6
  • 23
    • 3242876379 scopus 로고    scopus 로고
    • Selection of smoothing parameters in B-spline nonparametric regression models using information criteria
    • S. Imoto S. Konishi 2003 Selection of smoothing parameters in B-spline nonparametric regression models using information criteria Annals of the Institute of Statistical Mathematics 55 671 687
    • (2003) Annals of the Institute of Statistical Mathematics , vol.55 , pp. 671-687
    • Imoto, S.1    Konishi, S.2
  • 24
    • 0031270611 scopus 로고    scopus 로고
    • Growing radial basis neural networks: Merging supervised and unsupervised learning with network growth techniques
    • N.B. Karayiannis G.W. Mi 1997 Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques IEEE Transactions on Neural Networks 8 1492 1506
    • (1997) IEEE Transactions on Neural Networks , vol.8 , pp. 1492-1506
    • Karayiannis, N.B.1    Mi, G.W.2
  • 26
    • 0000512689 scopus 로고    scopus 로고
    • Generalised information criteria in model selection
    • S. Konishi G. Kitagawa 1996 Generalised information criteria in model selection Biometrika 83 875 890
    • (1996) Biometrika , vol.83 , pp. 875-890
    • Konishi, S.1    Kitagawa, G.2
  • 27
    • 3242882795 scopus 로고    scopus 로고
    • Bayesian information criteria and smoothing parameter selection in radial basis function networks
    • S. Konishi T. Ando S. Imoto 2004 Bayesian information criteria and smoothing parameter selection in radial basis function networks Biometrika 91 27 43
    • (2004) Biometrika , vol.91 , pp. 27-43
    • Konishi, S.1    Ando, T.2    Imoto, S.3
  • 30
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. Moody C.J. Darken 1989 Fast learning in networks of locally-tuned processing units Neural Computation 1 281 294
    • (1989) Neural Computation , vol.1 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 33
    • 0031244961 scopus 로고    scopus 로고
    • Face recognition using transform features and neural networks
    • S. Ranganath K. Arun 1997 Face recognition using transform features and neural networks Pattern Recognition 30 1615 1622
    • (1997) Pattern Recognition , vol.30 , pp. 1615-1622
    • Ranganath, S.1    Arun, K.2
  • 37
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz 1978 Estimating the dimension of a model Annals of Statistics 6 461 464
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 41
    • 0001560641 scopus 로고
    • Fully exponential Laplace approximations to expectations and variances of nonpositive functions
    • L. Tierney R.E. Kass J.B. Kadane 1989 Fully exponential Laplace approximations to expectations and variances of nonpositive functions Journal of the American Statistical Association 84 710 716
    • (1989) Journal of the American Statistical Association , vol.84 , pp. 710-716
    • Tierney, L.1    Kass, R.E.2    Kadane, J.B.3
  • 42
    • 0036856209 scopus 로고    scopus 로고
    • Nonparametric methods for identifying differentially expressed genes in microarray data
    • O.G. Troyanskaya M.E. Garber P.O. Brown D. Botstein R.B. Altman 2002 Nonparametric methods for identifying differentially expressed genes in microarray data Bioinformatics 18 1454 1461
    • (2002) Bioinformatics , vol.18 , pp. 1454-1461
    • Troyanskaya, O.G.1    Garber, M.E.2    Brown, P.O.3    Botstein, D.4    Altman, R.B.5
  • 44
    • 0344073962 scopus 로고    scopus 로고
    • RBF nets, mixture experts, and Bayesian ying-yang learning
    • L. Xu 1998 RBF nets, mixture experts, and Bayesian ying-yang learning Neurocomputing 19 223 257
    • (1998) Neurocomputing , vol.19 , pp. 223-257
    • Xu, L.1
  • 46
    • 0035877981 scopus 로고    scopus 로고
    • MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes
    • P. Zhou N.B. Levy H. Xie L. Qian C.Y. Lee R.D. Gascoyne 2001 MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes Blood 97 3902 3909
    • (2001) Blood , vol.97 , pp. 3902-3909
    • Zhou, P.1    Levy, N.B.2    Xie, H.3    Qian, L.4    Lee, C.Y.5    Gascoyne, R.D.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.