메뉴 건너뛰기




Volumn 14, Issue 4, 1999, Pages 382-401

Bayesian model averaging: A tutorial

Author keywords

Bayesian graphical models; Bayesian model averaging; Learning; Markov chain Monte Carlo; Model uncertainty

Indexed keywords


EID: 0001259111     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/ss/1009212519     Document Type: Article
Times cited : (3848)

References (98)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • (B. Petrox and F. Caski, eds.)
    • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory (B. Petrox and F. Caski, eds.) 267.
    • (1973) Second International Symposium on Information Theory , pp. 267
    • Akaike, H.1
  • 4
    • 84972514254 scopus 로고
    • Testing precise hypotheses
    • Berger, J. O. and Delampady, M. (1987). Testing precise hypotheses. Statist. Sci. 2 317-352.
    • (1987) Statist. Sci. , vol.2 , pp. 317-352
    • Berger, J.O.1    Delampady, M.2
  • 5
    • 84950900304 scopus 로고
    • Testing a point null hypothesis (With discussion)
    • Berger, J. O. and Sellke, T. (1987). Testing a point null hypothesis (with discussion). J. Amer. Statist. Assoc. 82 112-122.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , pp. 112-122
    • Berger, J.O.1    Sellke, T.2
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning 26 123-140.
    • (1996) Machine Learning , vol.26 , pp. 123-140
    • Breiman, L.1
  • 9
    • 84950771789 scopus 로고
    • Estimating optimal transformations for multiple regression and correlation (With discussion)
    • Breiman, L. and Friedman, J. H. (1985). Estimating optimal transformations for multiple regression and correlation (with discussion). J. Amer. Statist. Assoc. 80 580-619.
    • (1985) J. Amer. Statist. Assoc. , vol.80 , pp. 580-619
    • Breiman, L.1    Friedman, J.H.2
  • 10
    • 37949056062 scopus 로고
    • Den-sitometric analysis of body composition: Revision of some quantitative assumptions
    • Brozek, J., Grande, F., Anderson, J. and Keys, A. (1963). Den-sitometric analysis of body composition: revision of some quantitative assumptions. Ann. New York Acad. Sci. 110 113-140.
    • (1963) Ann. New York Acad. Sci. , vol.110 , pp. 113-140
    • Brozek, J.1    Grande, F.2    Erson, J.3    Keys, A.4
  • 11
    • 0030613470 scopus 로고    scopus 로고
    • Model selection: An integral part of inference
    • Buckland, S. T., Burnham, K. P. and Augustin, N. H. (1997). Model selection: an integral part of inference. Biometrics 53 275-290.
    • (1997) Biometrics , vol.53 , pp. 275-290
    • Buckland, S.T.1    Burnham, K.P.2    Augustin, N.H.3
  • 12
    • 0002980086 scopus 로고
    • Learning classification trees
    • Buntine, W. (1992). Learning classification trees. Statist. Com-put. 2 63-73.
    • (1992) Statist. Com-Put. , vol.2 , pp. 63-73
    • Buntine, W.1
  • 13
    • 0000506629 scopus 로고
    • Bayesian model choice via Markov chain Monte Carlo
    • Carlin, B. P. and Chib, S. (1993). Bayesian model choice via Markov chain Monte Carlo. J. Roy. Statist. Soc. Ser. B 55 473-484.
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 473-484
    • Carlin, B.P.1    Chib, S.2
  • 14
    • 84988112810 scopus 로고
    • Inference for nonconjugate Bayesian models using the Gibbs sampler
    • Carlin, B. P. and Polson, N. G. (1991). Inference for nonconjugate Bayesian models using the Gibbs sampler. Canad. J. Statist. 19 399-405.
    • (1991) Canad. J. Statist. , vol.19 , pp. 399-405
    • Carlin, B.P.1    Polson, N.G.2
  • 16
    • 1942422934 scopus 로고
    • Model uncertainty, data mining, and statistical inference (With discussion)
    • Chatfield, C. (1995). Model uncertainty, data mining, and statistical inference (with discussion). J. Roy. Statist. Soc. Ser. A 158 419-466.
    • (1995) J. Roy. Statist. Soc. Ser. A , vol.158 , pp. 419-466
    • Chatfield, C.1
  • 17
    • 32344446687 scopus 로고
    • Understanding the Metropolis-Hastings algorithm
    • Chib, S. and Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. Amer. Statist. 40 327-335.
    • (1995) Amer. Statist. , vol.40 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 18
    • 45249128876 scopus 로고
    • Combining forecasts: A review and annotated bibliography
    • Clemen, R. T. (1989). Combining forecasts: a review and annotated bibliography. Internat. J. Forecasting 5 559-583.
    • (1989) Internat. J. Forecasting , vol.5 , pp. 559-583
    • Clemen, R.T.1
  • 20
    • 0000336139 scopus 로고
    • Regression models and life tables (With discussion)
    • Cox, D. R. (1972). Regression models and life tables (with discussion). J. Roy. Statist. Soc. Ser. B 34 187-220.
    • (1972) J. Roy. Statist. Soc. Ser. B , vol.34 , pp. 187-220
    • Cox, D.R.1
  • 21
    • 0000582742 scopus 로고
    • Statistical theory: The prequential approach
    • Dawid, A. P. (1984). Statistical theory: the prequential approach. J Roy. Statist. Soc. Ser. A 147 278-292.
    • (1984) J Roy. Statist. Soc. Ser. A , vol.147 , pp. 278-292
    • Dawid, A.P.1
  • 22
    • 0015634118 scopus 로고
    • Some statistical results on the combination of forecasts
    • Dickinson, J. P. (1973). Some statistical results on the combination of forecasts. Operational Research Quarterly 24 253-260.
    • (1973) Operational Research Quarterly , vol.24 , pp. 253-260
    • Dickinson, J.P.1
  • 24
    • 0002276308 scopus 로고
    • Assessment and propagation of model uncertainty
    • Draper, D. (1995). Assessment and propagation of model uncertainty. J. Roy. Statist. Soc. Ser. B 57 45-97.
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 45-97
    • Draper, D.1
  • 27
    • 26444433586 scopus 로고
    • Bayesian statistical inference for psychological research
    • Edwards, W., Lindman, H. and Savage, L. J. (1963). Bayesian statistical inference for psychological research. Psychological Review 70 193-242.
    • (1963) Psychological Review , vol.70 , pp. 193-242
    • Edwards, W.1    Lindman, H.2    Savage, L.J.3
  • 28
    • 0010971276 scopus 로고    scopus 로고
    • Statistical modeling of fishing activities in the North Atlantic
    • Dept. Econometrics, Tilburg Univ., The Netherlands
    • Fernandez, C., Ley, E. and Steel, M. F. (1997). Statistical modeling of fishing activities in the North Atlantic. Technical report, Dept. Econometrics, Tilburg Univ., The Netherlands.
    • (1997) Technical Report
    • Fernandez, C.1    Ley, E.2    Steel, M.F.3
  • 31
    • 0001839664 scopus 로고
    • On the impact of variable selection in fitting regression equations
    • T. K. Dijkstra, ed.), Springer, Berlin
    • Freedman, D. a., Navidi, W. and Peters, S. C. (1988). On the impact of variable selection in fitting regression equations. In On Model Uncertainty and Its Statistical Implications (T. K. Dijkstra, ed.) 1-16. Springer, Berlin.
    • (1988) On Model Uncertainty and Its Statistical Implications , pp. 1-16
    • Freedman, D.A.1    Navidi, W.2    Peters, S.C.3
  • 32
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • FREUND, Y. (1995). Boosting a weak learning algorithm by majority. Inform. and Comput. 121 256-285.
    • (1995) Inform. And Comput. , vol.121 , pp. 256-285
    • Freund, Y.1
  • 34
    • 0016128505 scopus 로고
    • Regression by leaps and bounds
    • Furnival, G. M. and Wilson, R. W. (1974). Regression by leaps and bounds. Technometrics 16 499-511.
    • (1974) Technometrics , vol.16 , pp. 499-511
    • Furnival, G.M.1    Wilson, R.W.2
  • 35
    • 0001135784 scopus 로고
    • Discussion on sampling and Bayes’ inference in scientific modeling and robustness (By GEPB)
    • Geisser, S. (1980). Discussion on sampling and Bayes’ inference in scientific modeling and robustness (by GEPB). J. Roy. Statist. Soc. Ser. A 143 416-417.
    • (1980) J. Roy. Statist. Soc. Ser. A , vol.143 , pp. 416-417
    • Geisser, S.1
  • 36
    • 84893179575 scopus 로고
    • Variable selection via Gibbs sampling
    • George, E. and McCulloch, R. (1993). Variable selection via Gibbs sampling. J. Amer. Statist. Assoc. 88 881-889.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 881-889
    • George, E.1    McCulloch, R.2
  • 37
    • 84950917142 scopus 로고
    • Combining minimax shrinkage estimators
    • George, E. I. (1986a). Combining minimax shrinkage estimators. J. Amer. Statist. Assoc. 81 437-445.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 437-445
    • George, E.I.1
  • 39
    • 0000497169 scopus 로고
    • Minimax multiple shrinkage estimation
    • George, E. I. (1986c). Minimax multiple shrinkage estimation. Ann. Statist. 14 188-205.
    • (1986) Ann. Statist. , vol.14 , pp. 188-205
    • George, E.I.1
  • 43
    • 0024433049 scopus 로고
    • Extramural crossvalidation of the Mayo primary biliary cirrhosis survival model establishes its generalizability
    • Grambsch, P. M., Dickson, E. R., Kaplan, M., LeSage, G., Fleming, T. R. and Langworthy, A. L. (1989). Extramural crossvalidation of the Mayo primary biliary cirrhosis survival model establishes its generalizability. Hepatology 10 846-850.
    • (1989) Hepatology , vol.10 , pp. 846-850
    • Grambsch, P.M.1    Dickson, E.R.2    Kaplan, M.3    Lesage, G.4    Fleming, T.R.5    Langworthy, A.L.6
  • 44
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.
    • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711-732.
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 45
    • 0003846045 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • B. L. de Mantaras and D. Poole, eds.), Morgan Kaufman, San Francisco
    • Heckerman, D., Geiger, D. and Chickering, D. M. (1994). Learning Bayesian networks: the combination of knowledge and statistical data. In Uncertainty in Artificial Intelligence, Proceedings of the Tenth Conference (B. L. de Mantaras and D. Poole, eds.) 293-301. Morgan Kaufman, San Francisco.
    • (1994) Uncertainty in Artificial Intelligence, Proceedings of the Tenth Conference , pp. 293-301
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 46
    • 84972494642 scopus 로고
    • Uncertainty, policy analysis, and statistics
    • Hodges, J. S. (1987). Uncertainty, policy analysis, and statistics. Statist. Sci. 2 259-291.
    • (1987) Statist. Sci. , vol.2 , pp. 259-291
    • Hodges, J.S.1
  • 48
    • 0030194062 scopus 로고    scopus 로고
    • A method for simultaneous variable selection and outlier identification in linear regression
    • Hoeting, J. A., Raftery, A. E. and Madigan, D. (1996). A method for simultaneous variable selection and outlier identification in linear regression. J. Comput. Statist. 22 251-271.
    • (1996) J. Comput. Statist. , vol.22 , pp. 251-271
    • Hoeting, J.A.1    Raftery, A.E.2    Madigan, D.3
  • 49
    • 0042121349 scopus 로고    scopus 로고
    • Bayesian simultaneous variable and transformation selection in linear regression
    • Dept. Statistics, Colorado State Univ
    • Hoeting, J. A., Raftery, A. E. and Madigan, D. (1999). Bayesian simultaneous variable and transformation selection in linear regression. Technical Report 9905, Dept. Statistics, Colorado State Univ. Available at www.stat.colostate.edu.
    • (1999) Technical Report 9905
    • Hoeting, J.A.1    Raftery, A.E.2    Madigan, D.3
  • 50
    • 21344488427 scopus 로고
    • A predictive approach to the analysis of designed experiments
    • Ibrahim, J. G. and Laud, P. W. (1994). A predictive approach to the analysis of designed experiments. J. Amer. Statist. Assoc. 89 309-319.
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 309-319
    • Ibrahim, J.G.1    Laud, P.W.2
  • 51
    • 0043123251 scopus 로고    scopus 로고
    • Fitting percentage of body fat to simple body measurements
    • Johnson, R. W. (1996). Fitting percentage of body fat to simple body measurements. J. Statistics Education 4.
    • (1996) J. Statistics Education , pp. 4
    • Johnson, R.W.1
  • 53
    • 27944462549 scopus 로고
    • A reference Bayesian test for nested hypotheses with large samples
    • Kass, R. E. and Wasserman, L. (1995). A reference Bayesian test for nested hypotheses with large samples. J. Amer. Statist. Assoc. 90 928-934.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 928-934
    • Kass, R.E.1    Wasserman, L.2
  • 57
    • 0007566637 scopus 로고
    • All subsets regression in a proportional hazards model
    • Kuk, A. Y. C. (1984). All subsets regression in a proportional hazards model. Biometrika 71 587-592.
    • (1984) Biometrika , vol.71 , pp. 587-592
    • Kuk, A.Y.C.1
  • 58
    • 0000367335 scopus 로고
    • Multiple decision trees
    • R. Shachter, T. Levitt, L. Kanal and J. Lemmer, eds.), North-Holland, Amsterdam
    • Kwok, S. and Carter, C. (1990). Multiple decision trees. In Uncertainty in Artificial Intelligence (R. Shachter, T. Levitt, L. Kanal and J. Lemmer, eds.) 4 323-349. North-Holland, Amsterdam.
    • (1990) Uncertainty in Artificial Intelligence , vol.4 , pp. 323-349
    • Kwok, S.1    Carter, C.2
  • 60
    • 0042121346 scopus 로고
    • Diagnostic systems created by model selection methods: A case study
    • (P. Cheeseman and W. Oldford, eds.), Springer Berlin
    • LAURITZEN, S. L., Thiesson, B. and SPIEGELHALTER, D. J. (1994). Diagnostic systems created by model selection methods: a case study. In Uncertainty in Artificial Intelligence (P. Cheeseman and W. Oldford, eds.) 4 143-152. Springer Berlin.
    • (1994) Uncertainty in Artificial Intelligence , vol.4 , pp. 143-152
    • Lauritzen, S.L.1    Thiesson, B.2    Spiegelhalter, D.J.3
  • 61
    • 0018195038 scopus 로고
    • Efficient screening of nonnormal regression models
    • LAWLESS, J. and Singhal, K. (1978). Efficient screening of nonnormal regression models. Biometrics 34 318-327.
    • (1978) Biometrics , vol.34 , pp. 318-327
    • Lawless, J.1    Singhal, K.2
  • 64
    • 0000220791 scopus 로고    scopus 로고
    • Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs
    • Madigan, D., Andersson, S. A., Perlman, M. and Volinsky, C. T. (1996a). Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs. Comm. Statist. Theory Methods 25 2493-2520.
    • (1996) Comm. Statist. Theory Methods , vol.25 , pp. 2493-2520
    • Madigan, D.1    Ersson, S.A.2    Perlman, M.3    Volinsky, C.T.4
  • 65
    • 0000220791 scopus 로고    scopus 로고
    • Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs
    • Madigan, D., Andersson, S. A., Perlman, M. D. and Volinsky, C. T. (1996b). Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs. Comm. Statist. Theory Methods 25 2493-2519.
    • (1996) Comm. Statist. Theory Methods , vol.25 , pp. 2493-2519
    • Madigan, D.1    Ersson, S.A.2    Perlman, M.D.3    Volinsky, C.T.4
  • 66
    • 84950179515 scopus 로고
    • Elicting prior information to enhance the predictive performance of Bayesian graphical models
    • Madigan, D., Gavrin, J. and Raftery, A. E. (1995). Elicting prior information to enhance the predictive performance of Bayesian graphical models. Comm. Statist. Theory Methods 24 2271-2292.
    • (1995) Comm. Statist. Theory Methods , vol.24 , pp. 2271-2292
    • Madigan, D.1    Gavrin, J.2    Raftery, A.E.3
  • 67
    • 0009127128 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam’s window
    • Univ. Washington, Seattle
    • Madigan, D. and Raftery, A. E. (1991). Model selection and accounting for model uncertainty in graphical models using Occam’s window. Technical Report 213, Univ. Washington, Seattle.
    • (1991) Technical Report 213
    • Madigan, D.1    Raftery, A.E.2
  • 68
    • 84950945692 scopus 로고
    • Model selection and accounting for model uncertainty in graphical models using Occam’s window
    • MADIGAN, D. and Raftery, A. E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam’s window. J. Amer. Statist. Assoc. 89 1535-1546.
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 1535-1546
    • Madigan, D.1    Raftery, A.E.2
  • 70
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • MADIGAN, D. and York, J. (1995). Bayesian graphical models for discrete data. Internat. Statist. Rev. 63 215-232.
    • (1995) Internat. Statist. Rev. , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2
  • 72
    • 0016961866 scopus 로고
    • Scoring rules for continuous probability distributions
    • MATHEsoN, J. E. and WINKLER, R. L. (1976). Scoring rules for continuous probability distributions. Management Science 22 1087-1096.
    • (1976) Management Science , vol.22 , pp. 1087-1096
    • Matheson, J.E.1    Winkler, R.L.2
  • 75
    • 0042622454 scopus 로고
    • Generalized body composition prediction equation for men using simple measurement techniques (Abstract)
    • Penrose, K., Nelson, A. and Fisher, A. (1985). Generalized body composition prediction equation for men using simple measurement techniques (abstract). Medicine and Science in Sports and Exercise 17 189.
    • (1985) Medicine and Science in Sports and Exercise , vol.17 , pp. 189
    • Penrose, K.1    Nelson, A.2    Fisher, A.3
  • 76
    • 0042121344 scopus 로고
    • Bayesian model comparison via jump diffusions
    • Imperial College, London
    • Philips, D. B. and Smith, A. F. M. (1994). Bayesian model comparison via jump diffusions. Technical Report 94-20, Imperial College, London.
    • (1994) Technical Report 94-20
    • Philips, D.B.1    Smith, A.F.M.2
  • 77
    • 0002884680 scopus 로고
    • Bayesian model selection in structural equation models
    • K. Bollen and J. Long, eds.), Sage, Newbury Park, CA
    • Raftery, A. E. (1993). Bayesian model selection in structural equation models. In Testing Structural Equation Models (K. Bollen and J. Long, eds.) 163-180. Sage, Newbury Park, CA.
    • (1993) Testing Structural Equation Models , pp. 163-180
    • Raftery, A.E.1
  • 78
    • 0001201909 scopus 로고
    • Bayesian model selection in social research (With discussion)
    • P. V. Marsden, ed.), Blackwell, Cambridge, MA
    • Raftery, A. E. (1995). Bayesian model selection in social research (with discussion). In Sociological Methodology 1995 (P. V. Marsden, ed.) 111-195. Blackwell, Cambridge, MA.
    • (1995) Sociological Methodology 1995 , pp. 111-195
    • Raftery, A.E.1
  • 79
    • 0000297493 scopus 로고    scopus 로고
    • Approximate Bayes factors and accounting for model uncertainty in generalised linear models
    • Raftery, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika 83 251-266.
    • (1996) Biometrika , vol.83 , pp. 251-266
    • Raftery, A.E.1
  • 80
    • 0031506560 scopus 로고    scopus 로고
    • Bayesian model averaging for linear regression models
    • Raftery, A. E., Madigan, D. and Hoeting, J. (1997). Bayesian model averaging for linear regression models. J. Amer. Statist. Assoc. 92 179-191.
    • (1997) J. Amer. Statist. Assoc , vol.92 , pp. 179-191
    • Raftery, A.E.1    Madigan, D.2    Hoeting, J.3
  • 81
    • 0001348541 scopus 로고    scopus 로고
    • Accounting for model uncertainty in survival analysis improves predictive performance (With discussion)
    • J. Bernardo, J. Berger, A. Dawid and A. Smith, eds.), xford Univ. Press
    • Raftery, A. E., Madigan, D. and Volinsky, C. T. (1996). Accounting for model uncertainty in survival analysis improves predictive performance (with discussion). In Bayesian Statistics 5 (J. Bernardo, J. Berger, A. Dawid and A. Smith, eds.) 323-349. Oxford Univ. Press.
    • (1996) Bayesian Statistics , vol.5 , pp. 323-349
    • Raftery, A.E.1    Madigan, D.2    Volinsky, C.T.3
  • 82
    • 0001738242 scopus 로고    scopus 로고
    • The out-of-bootstrap method for model averaging and selection
    • Univ. Toronto
    • Rao, J. S. and Tibshirani, R. (1997). The out-of-bootstrap method for model averaging and selection. Technical report, Dept. Statistics, Univ. Toronto.
    • (1997) Technical Report, Dept. Statistics
    • Rao, J.S.1    Tibshirani, R.2
  • 83
    • 0025831223 scopus 로고
    • The effects of model selection on confidence intervals for the size of a closed population
    • Regal, R. and Hook, E. B. (1991). The effects of model selection on confidence intervals for the size of a closed population. Statistics in Medicine 10 717-721.
    • (1991) Statistics in Medicine , vol.10 , pp. 717-721
    • Regal, R.1    Hook, E.B.2
  • 84
    • 0002732459 scopus 로고
    • Probabilistic prediction
    • Roberts, H. V. (1965). Probabilistic prediction. J. Amer. Statist. Assoc. 60 50-62.
    • (1965) J. Amer. Statis , vol.60 , pp. 50-62
    • Roberts, H.V.1
  • 85
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-46.
    • (1978) Ann. Statist. , vol.6 , pp. 461-546
    • Schwarz, G.1
  • 86
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (With discussion)
    • Smith, A. F. M. and Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). J. Roy. Statist. Soc. Ser. B 55 3-23.
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 3-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 87
    • 0022786756 scopus 로고
    • Probabilistic prediction in patient management and clinical trials
    • Spiegelhalter, D. J. (1986). Probabilistic prediction in patient management and clinical trials. Statistics in Medicine 5 421-433.
    • (1986) Statistics in Medicine , vol.5 , pp. 421-433
    • Spiegelhalter, D.J.1
  • 89
    • 84986980101 scopus 로고
    • Sequential updating of conditional probabilities on directed graphical structures
    • Spiegelhalter, D. J. and Lauritzen, S. (1990). Sequential updating of conditional probabilities on directed graphical structures. Networks 20 579-605.
    • (1990) Networks , vol.20 , pp. 579-605
    • Spiegelhalter, D.J.1    Lauritzen, S.2
  • 90
    • 0041115938 scopus 로고
    • Hierarchical Bayesian analysis using Monte Carlo integration: Computing posterior distributions when there are many possible models
    • Stewart, L. (1987). Hierarchical Bayesian analysis using Monte Carlo integration: computing posterior distributions when there are many possible models. The Statistician 36 211-219.
    • (1987) The Statistician , vol.36 , pp. 211-219
    • Stewart, L.1
  • 91
    • 0001485109 scopus 로고
    • Robust likelihood calculation for time series
    • Taplin, R. H. (1993). Robust likelihood calculation for time series. J. Roy. Statist. Soc. Ser. B 55 829-836.
    • (1993) J. Roy. Statist. Soc. Ser. B , vol.55 , pp. 829-836
    • Taplin, R.H.1
  • 92
    • 2542539742 scopus 로고
    • Monte Carlo methods for the genetic analysis of complex traits
    • Dept. Statistics, Univ. Washington, Seattle
    • Thompson, E. A. and Wijsman, E. M. (1990). Monte Carlo methods for the genetic analysis of complex traits. Technical Report 193, Dept. Statistics, Univ. Washington, Seattle.
    • (1990) Technical Report 193
    • Thompson, E.A.1    Wijsman, E.M.2
  • 93
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • Tierney, L. and Kadane, J. B. (1986). Accurate approximations for posterior moments and marginal densities. J. Amer. Statist. Assoc. 81 82-86.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2
  • 95
    • 0040007375 scopus 로고    scopus 로고
    • Bayesian model averaging in proportional hazard models: Assessing the risk of a stroke
    • Volinsky, C. T., Madigan, D., Raftery, A. E. and Kronmal, R. A. (1997). Bayesian model averaging in proportional hazard models: assessing the risk of a stroke. J. Roy. Statist. Soc. Ser. C 46 433-448.
    • (1997) J. Roy. Statist. Soc. Ser. C , vol.46 , pp. 433-448
    • Volinsky, C.T.1    Madigan, D.2    Raftery, A.E.3    Kronmal, R.A.4
  • 97
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D. H. (1992). Stacked generalization. Neural Networks 5 241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 98
    • 21844520816 scopus 로고
    • Estimating a proportion of birth defects by double sampling: A Bayesian approach incorporating covariates and model uncertainty
    • York, j., Madigan, D., Heuch, I. and Lie, R. T. (1995). Estimating a proportion of birth defects by double sampling: a Bayesian approach incorporating covariates and model uncertainty. J. Roy. Statist. Soc. Ser. C 44 227-242.
    • (1995) J. Roy. Statist. Soc. Ser. C , vol.44 , pp. 227-242
    • York, J.1    Madigan, D.2    Heuch, I.3    Lie, R.T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.