메뉴 건너뛰기




Volumn 7, Issue 3, 2018, Pages 223-225

Artificial intelligence, machine learning and the evolution of healthcare: A bright future or cause for concern?

Author keywords

Artificial Intelligence; Deep Learning; Machine Learning

Indexed keywords

ARTHROPLASTY; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; BIOINFORMATICS; BONE RESECTION; CLINICAL DECISION MAKING; CLINICAL PRACTICE; DECISION SUPPORT SYSTEM; DIAGNOSTIC ACCURACY; ELECTRONIC HEALTH RECORD; FACIAL RECOGNITION; HEALTH CARE; HEALTH CARE UTILIZATION; HUMAN; MACHINE LEARNING; MEDICAL RECORD; MEDICAL TECHNOLOGY; REVIEW; SUPERVISED MACHINE LEARNING;

EID: 85045140990     PISSN: None     EISSN: 20463758     Source Type: Journal    
DOI: 10.1302/2046-3758.73.BJR-2017-0147.R1     Document Type: Review
Times cited : (101)

References (23)
  • 1
    • 33846109130 scopus 로고    scopus 로고
    • The dartmouth college artificial intelligence conference: The next fifty years
    • Moor J. The Dartmouth College Artificial Intelligence Conference: The Next Fifty Years. AI Mag 2006;27:87-91.
    • (2006) AI Mag , vol.27 , pp. 87-91
    • Moor, J.1
  • 2
    • 84861986826 scopus 로고    scopus 로고
    • Machine learning and radiology
    • Wang S, Summers RM. Machine learning and radiology. Med Image Anal 2012;16:933-951.
    • (2012) Med Image Anal , vol.16 , pp. 933-951
    • Wang, S.1    Summers, R.M.2
  • 3
    • 84944705350 scopus 로고    scopus 로고
    • Surgical robotics beyond enhanced dexterity instrumentation: A survey of machine learning techniques and their role in intelligent and autonomous surgical actions
    • Kassahun Y, Yu B, Tibebu AT, et al. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J CARS 2016;11:553-568.
    • (2016) Int J CARS , vol.11 , pp. 553-568
    • Kassahun, Y.1    Yu, B.2    Tibebu, A.T.3
  • 4
    • 84904227975 scopus 로고    scopus 로고
    • Developing and using expert systems and neural networks in medicine: A review on benefits and challenges
    • Sheikhtaheri A, Sadoughi F, Hashemi Dehaghi Z. Developing and using expert systems and neural networks in medicine: a review on benefits and challenges. J Med Syst 2014;38:110.
    • (2014) J Med Syst , vol.38 , pp. 110
    • Sheikhtaheri, A.1    Sadoughi, F.2    Hashemi Dehaghi, Z.3
  • 5
    • 85045152211 scopus 로고    scopus 로고
    • Googles alpha go beats Chinese go master in win for AI
    • (date last accessed 20 December 2017)
    • Mozur P. Googles AlphaGo Beats Chinese Go Master in Win for AI. New York Times. https://www.nytimes.com/2017/05/23/business/google (date last accessed 20 December 2017).
    • New York Times
    • Mozur, P.1
  • 7
    • 84856021032 scopus 로고    scopus 로고
    • Extracting diagnoses and investigation results from unstructured text in electronic health records by semi-supervised machine learning
    • Wang Z, Shah AD, Tate AR, et al. Extracting diagnoses and investigation results from unstructured text in electronic health records by semi-supervised machine learning. PLoS One 2012;7:e30412.
    • (2012) PLoS One , vol.7 , pp. e30412
    • Wang, Z.1    Shah, A.D.2    Tate, A.R.3
  • 8
    • 77951625974 scopus 로고    scopus 로고
    • Optimisation of orthopaedic implant design using statistical shape space analysis based on level sets
    • Kozic N, Weber S, Büchler P, et al. Optimisation of orthopaedic implant design using statistical shape space analysis based on level sets. Med Image Anal 2010;14:265-275.
    • (2010) Med Image Anal , vol.14 , pp. 265-275
    • Kozic, N.1    Weber, S.2    Büchler, P.3
  • 9
    • 85018669253 scopus 로고    scopus 로고
    • Augmented reality in bone tumour resection: An experimental study
    • Cho HS, Park YK, Gupta S, et al. Augmented reality in bone tumour resection: an experimental study. Bone Joint Res 2017;6:137-143.
    • (2017) Bone Joint Res , vol.6 , pp. 137-143
    • Cho, H.S.1    Park, Y.K.2    Gupta, S.3
  • 10
    • 84983504632 scopus 로고    scopus 로고
    • Three dimensional measurement of minimum joint space width in the knee from stereo radiographs using statistical shape models
    • van IJsseldijk EA, Valstar ER, Stoel BC, et al. Three dimensional measurement of minimum joint space width in the knee from stereo radiographs using statistical shape models. Bone Joint Res 2016;5:320-327.
    • (2016) Bone Joint Res , vol.5 , pp. 320-327
    • Van Ijsseldijk, E.A.1    Valstar, E.R.2    Stoel, B.C.3
  • 11
    • 84946742495 scopus 로고    scopus 로고
    • Validation of statistical shape modelling to predict hip osteoarthritis in females: Data from two prospective cohort studies (Cohort Hip and Cohort Knee and Chingford)
    • Agricola R, Leyland KM, Bierma-Zeinstra SMA, et al. Validation of statistical shape modelling to predict hip osteoarthritis in females: data from two prospective cohort studies (Cohort Hip and Cohort Knee and Chingford). Rheumatology (Oxford) 2015;54:2033-2041.
    • (2015) Rheumatology (Oxford) , vol.54 , pp. 2033-2041
    • Agricola, R.1    Leyland, K.M.2    Bierma-Zeinstra, S.M.A.3
  • 13
    • 84946919617 scopus 로고    scopus 로고
    • Gait analysis using a support vector machine for lumbar spinal stenosis
    • Hayaahi H, Toribatake Y, Murakami H, et al. Gait Analysis Using a Support Vector Machine for Lumbar Spinal Stenosis. Orthopaedics 2015;38:959-964.
    • (2015) Orthopaedics , vol.38 , pp. 959-964
    • Hayaahi, H.1    Toribatake, Y.2    Murakami, H.3
  • 14
    • 85013674713 scopus 로고    scopus 로고
    • Detecting knee osteoarthritis and its discriminating parameters using random forests
    • Kotti M, Duffell LD, Faisal AA, McGregor AH. Detecting knee osteoarthritis and its discriminating parameters using random forests. Med Eng Phys 2017;43:19-29.
    • (2017) Med Eng Phys , vol.43 , pp. 19-29
    • Kotti, M.1    Duffell, L.D.2    Faisal, A.A.3    McGregor, A.H.4
  • 15
    • 84940448871 scopus 로고    scopus 로고
    • Surrogate modeling of deformable joint contact using artificial neural networks
    • Eskinazi I, Fregly BJ. Surrogate modeling of deformable joint contact using artificial neural networks. Med Eng Phys 2015;37:885-891.
    • (2015) Med Eng Phys , vol.37 , pp. 885-891
    • Eskinazi, I.1    Fregly, B.J.2
  • 16
    • 84961223792 scopus 로고    scopus 로고
    • Regression forest-based automatic estimation of the articular margin plane for shoulder prosthesis planning
    • Tschannen M, Vlachopoulos L, Gerber C, Székely G, Fürnstahl P. Regression forest-based automatic estimation of the articular margin plane for shoulder prosthesis planning. Med Image Anal 2016;31:88-97.
    • (2016) Med Image Anal , vol.31 , pp. 88-97
    • Tschannen, M.1    Vlachopoulos, L.2    Gerber, C.3    Székely, G.4    Fürnstahl, P.5
  • 17
    • 84963701150 scopus 로고    scopus 로고
    • Segmentation of joint and musculoskeletal tissue in the study of arthritis
    • Pedoia V, Majumdar S, Link TM. Segmentation of joint and musculoskeletal tissue in the study of arthritis. MAGMA 2016;29:207-221.
    • (2016) MAGMA , vol.29 , pp. 207-221
    • Pedoia, V.1    Majumdar, S.2    Link, T.M.3
  • 19
    • 84994887449 scopus 로고    scopus 로고
    • No authors listed. (date last accessed 20 December 2017)
    • No authors listed. Magnetic resonance imaging (MRI) exams https://data.oecd.org/healthcare/magnetic-resonance-imaging-mri-exams.htm (date last accessed 20 December 2017).
    • Magnetic Resonance Imaging (MRI) Exams
  • 20
    • 84983543682 scopus 로고    scopus 로고
    • Screening and surveillance CT abdomen/pelvis for metastases in patients with soft-tissue sarcoma of the extremity
    • Thompson MJ, Ross J, Domson G, Foster W. Screening and surveillance CT abdomen/pelvis for metastases in patients with soft-tissue sarcoma of the extremity. Bone Joint Res 2015;4:45-49.
    • (2015) Bone Joint Res , vol.4 , pp. 45-49
    • Thompson, M.J.1    Ross, J.2    Domson, G.3    Foster, W.4
  • 21
    • 84964292829 scopus 로고    scopus 로고
    • Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans
    • Cheng J-Z, Ni D, Chou Y-H, et al. Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Sci Rep 2016;6:24454.
    • (2016) Sci Rep , vol.6 , pp. 24454
    • Cheng, J.-Z.1    Ni, D.2    Chou, Y.-H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.