-
2
-
-
85032221780
-
A reflection on the 150 anniversary of the birth of Marie Curie
-
Coursey, B.M., A reflection on the 150 anniversary of the birth of Marie Curie. Appl. Radiat. Isot. 130 (2017), 280–284, 10.1016/j.apradiso.2017.10.028.
-
(2017)
Appl. Radiat. Isot.
, vol.130
, pp. 280-284
-
-
Coursey, B.M.1
-
3
-
-
85044140855
-
-
GE and Siemens: power pioneers flying too far from the sun, (n.d.). (Accessed December 16).
-
E. Crooks, P. McGee, GE and Siemens: power pioneers flying too far from the sun, (n.d.). https://www.ft.com/content/fc1467b8-c601-11e7-b2bb-322b2cb39656 (Accessed December 16, 2017).
-
(2017)
-
-
Crooks, E.1
McGee, P.2
-
4
-
-
0027760444
-
The O-ring theory of economic development
-
Kremer, M., The O-ring theory of economic development. Q. J. Econ. 108 (1993), 551–575, 10.2307/2118400.
-
(1993)
Q. J. Econ.
, vol.108
, pp. 551-575
-
-
Kremer, M.1
-
5
-
-
84938406885
-
Why are there still so many jobs? The history and future of workplace automation
-
2015-3
-
Autor, D.H., Why are there still so many jobs? The history and future of workplace automation. J. Econ. Perspect., 29, 2015, 10.1257/jep.29.3.3 2015-3.
-
(2015)
J. Econ. Perspect.
, vol.29
-
-
Autor, D.H.1
-
6
-
-
0001672981
-
How competitive forces shape strategy
-
Porter, M., How competitive forces shape strategy. Strateg. Plan. Read.(March–April), 1979, 102–117 http://faculty.bcitbusiness.ca/KevinW/4800/porter79.pdf.
-
(1979)
Strateg. Plan. Read.
, Issue.March–April
, pp. 102-117
-
-
Porter, M.1
-
7
-
-
84923762812
-
A new initiative on precision medicine
-
Collins, F.S., Varmus, H., A new initiative on precision medicine. N. Engl. J. Med. 372 (2015), 793–795, 10.1056/NEJMp1500523.
-
(2015)
N. Engl. J. Med.
, vol.372
, pp. 793-795
-
-
Collins, F.S.1
Varmus, H.2
-
8
-
-
84955604605
-
Radiomics images are more than pictures, they are data
-
Gillies, R.J., Kinahan, P.E., Hricak, H., Radiomics images are more than pictures, they are data. Radiology 278 (2016), 563–577, 10.1148/radiol.2015151169.
-
(2016)
Radiology
, vol.278
, pp. 563-577
-
-
Gillies, R.J.1
Kinahan, P.E.2
Hricak, H.3
-
9
-
-
85035099696
-
Augmenting diagnostic vision with AI
-
Quer, G., Muse, E.D., Nikzad, N., Topol, E.J., Steinhubl, S.R., Augmenting diagnostic vision with AI. Lancet, 390, 2017, 221, 10.1016/S0140-6736(17)31764-6.
-
(2017)
Lancet
, vol.390
, pp. 221
-
-
Quer, G.1
Muse, E.D.2
Nikzad, N.3
Topol, E.J.4
Steinhubl, S.R.5
-
10
-
-
0037214136
-
The future of image perception in radiology: synergy between humans and computers
-
Krupinski, E.A., The future of image perception in radiology: synergy between humans and computers. Acad. Radiol. 10 (2003), 1–3, 10.1016/S1076-6332(03)80781-X.
-
(2003)
Acad. Radiol.
, vol.10
, pp. 1-3
-
-
Krupinski, E.A.1
-
11
-
-
85054395929
-
A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation
-
Wang, H., Zhao, T., Li, L.C., Pan, H., Liu, W., Gao, H., Han, F., Wang, Y., Qi, Y., Liang, Z., A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation. J. X-Ray. Sci. Technol., 2017, 1–17, 10.3233/XST-17302.
-
(2017)
J. X-Ray. Sci. Technol.
, pp. 1-17
-
-
Wang, H.1
Zhao, T.2
Li, L.C.3
Pan, H.4
Liu, W.5
Gao, H.6
Han, F.7
Wang, Y.8
Qi, Y.9
Liang, Z.10
-
12
-
-
85013092765
-
Deep learning in mammography
-
Becker, A.S., Marcon, M., Ghafoor, S., Wurnig, M.C., Frauenfelder, T., Boss, A., Deep learning in mammography. Invest. Radiol. 52 (2017), 434–440, 10.1097/RLI.0000000000000358.
-
(2017)
Invest. Radiol.
, vol.52
, pp. 434-440
-
-
Becker, A.S.1
Marcon, M.2
Ghafoor, S.3
Wurnig, M.C.4
Frauenfelder, T.5
Boss, A.6
-
13
-
-
85007524689
-
Adapting to artificial intelligence
-
Jha, S., Topol, E.J., Adapting to artificial intelligence. JAMA, 316, 2016, 2353, 10.1001/jama.2016.17438.
-
(2016)
JAMA
, vol.316
, pp. 2353
-
-
Jha, S.1
Topol, E.J.2
-
14
-
-
85029713684
-
Integrated diagnostics the computational revolution catalyzing cross-disciplinary practices in radiology, pathology, and genomics
-
Lundström, C.F., Gilmore, H.L., Ros, P.R., Integrated diagnostics the computational revolution catalyzing cross-disciplinary practices in radiology, pathology, and genomics. Radiology 285 (2017), 12–15, 10.1148/radiol.2017170062.
-
(2017)
Radiology
, vol.285
, pp. 12-15
-
-
Lundström, C.F.1
Gilmore, H.L.2
Ros, P.R.3
-
15
-
-
84988905798
-
Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data
-
p. 978532
-
Anirudh, R., Thiagarajan, J.J., Bremer, T., Kim, H., Lung nodule detection using 3D convolutional neural networks trained on weakly labeled data. SPIE Med. Imaging, 2016, 10.1117/12.2214876 p. 978532.
-
(2016)
SPIE Med. Imaging
-
-
Anirudh, R.1
Thiagarajan, J.J.2
Bremer, T.3
Kim, H.4
-
16
-
-
85044142233
-
-
http://arxiv.org/abs/1711.05225 CheXNet. Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning,. (Accessed November 10).
-
P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. Langlotz, K. Shpanskaya, M.P. Lungren, A.Y. Ng, CheXNet. Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning, https://stanfordmlgroup.github.io/projects/chexnet/, 2017. http://arxiv.org/abs/1711.05225 (Accessed November 10, 2017).
-
(2017)
-
-
Rajpurkar, P.1
Irvin, J.2
Zhu, K.3
Yang, B.4
Mehta, H.5
Duan, T.6
Ding, D.7
Bagul, A.8
Langlotz, C.9
Shpanskaya, K.10
Lungren, M.P.11
Ng, A.Y.12
-
17
-
-
85044118607
-
-
The real revolution could be IA. (Accessed November 18).
-
M. Doraiswamy, Forget AI. The real revolution could be IA, 2017. https://www.weforum.org/agenda/authors/murali-doraiswamy (Accessed November 18, 2017).
-
(2017)
-
-
Doraiswamy, M.1
Forget, A.I.2
-
18
-
-
84856180577
-
Combining human and machine intelligence for making predictions
-
Nagar, Y., Malone, T.W., Combining human and machine intelligence for making predictions. MIT Cent. Collect. Intell. Work. Pap. 2 (2011), 1–6 http://cci.mit.edu.
-
(2011)
MIT Cent. Collect. Intell. Work. Pap.
, vol.2
, pp. 1-6
-
-
Nagar, Y.1
Malone, T.W.2
-
19
-
-
84994049988
-
The computer will assess you now
-
Armstrong, S., The computer will assess you now. BMJ, 2016, i5680, 10.1136/bmj.i5680.
-
(2016)
BMJ
, pp. i5680
-
-
Armstrong, S.1
-
20
-
-
85044100314
-
-
Deep Learning for identifying radiogenomic associations in breast cancer, arXiv Prepr. arXiv1711.11097.
-
Z. Zhu, E. Albadawy, A. Saha, J. Zhang, M.R. Harowicz, M.A. Mazurowski, Deep Learning for identifying radiogenomic associations in breast cancer, arXiv Prepr. arXiv1711.11097, 2017. https://arxiv.org/abs/1711.11097.
-
(2017)
-
-
Zhu, Z.1
Albadawy, E.2
Saha, A.3
Zhang, J.4
Harowicz, M.R.5
Mazurowski, M.A.6
-
21
-
-
85020253376
-
Identifying key radiogenomic associations between DCE-MRI and micro-RNA expressions for breast cancer
-
S.G. Armato N.A. Petrick International Society for Optics and Photonics p. 101340T
-
Samala, R.K., Chan, H.-P., Hadjiiski, L., Helvie, M.A., Kim, R., Identifying key radiogenomic associations between DCE-MRI and micro-RNA expressions for breast cancer. Armato, S.G., Petrick, N.A., (eds.) SPIE Proc. Vol. 10134, Med. Imaging 2017 Comput. Diagnosis, International Society for Optics and Photonics, 2017, 10.1117/12.2255512 p. 101340T.
-
(2017)
SPIE Proc. Vol. 10134, Med. Imaging 2017 Comput. Diagnosis
-
-
Samala, R.K.1
Chan, H.-P.2
Hadjiiski, L.3
Helvie, M.A.4
Kim, R.5
-
22
-
-
84888187735
-
National trends in advanced outpatient diagnostic imaging utilization: an analysis of the medical expenditure panel survey, 2000–2009
-
Lang, K., Huang, H., Lee, D.W., Federico, V., Menzin, J., National trends in advanced outpatient diagnostic imaging utilization: an analysis of the medical expenditure panel survey, 2000–2009. BMC Med. Imaging, 13, 2013, 40, 10.1186/1471-2342-13-40.
-
(2013)
BMC Med. Imaging
, vol.13
, pp. 40
-
-
Lang, K.1
Huang, H.2
Lee, D.W.3
Federico, V.4
Menzin, J.5
-
23
-
-
56649111139
-
Rising Use Of Diagnostic Medical Imaging In A Large Integrated Health System: the use of imaging has skyrocketed in the past decade, but no one patient population or medical condition is responsible
-
Smith-bindman, R., Miglioretti, D.L., Larson, E.B., Rising Use Of Diagnostic Medical Imaging In A Large Integrated Health System: the use of imaging has skyrocketed in the past decade, but no one patient population or medical condition is responsible. Health Aff. (Millwood) 27 (2009), 1491–1502, 10.1377/hlthaff.27.6.1491.
-
(2009)
Health Aff. (Millwood)
, vol.27
, pp. 1491-1502
-
-
Smith-bindman, R.1
Miglioretti, D.L.2
Larson, E.B.3
-
24
-
-
84938742066
-
The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload
-
McDonald, R.J., Schwartz, K.M., Eckel, L.J., Diehn, F.E., Hunt, C.H., Bartholmai, B.J., Erickson, B.J., Kallmes, D.F., The effects of changes in utilization and technological advancements of cross-sectional imaging on radiologist workload. Acad. Radiol. 22 (2015), 1191–1198, 10.1016/j.acra.2015.05.007.
-
(2015)
Acad. Radiol.
, vol.22
, pp. 1191-1198
-
-
McDonald, R.J.1
Schwartz, K.M.2
Eckel, L.J.3
Diehn, F.E.4
Hunt, C.H.5
Bartholmai, B.J.6
Erickson, B.J.7
Kallmes, D.F.8
-
25
-
-
85050483912
-
Artificial intelligence in healthcare: past, present and future
-
svn-2017
-
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y.Y., Dong, Q., Shen, H., Wang, Y.Y., Artificial intelligence in healthcare: past, present and future. Stroke Vasc. Neurol., 2, 2017, 10.1136/svn-2017-000101 svn-2017.
-
(2017)
Stroke Vasc. Neurol.
, vol.2
-
-
Jiang, F.1
Jiang, Y.2
Zhi, H.3
Dong, Y.4
Li, H.5
Ma, S.6
Wang, Y.Y.7
Dong, Q.8
Shen, H.9
Wang, Y.Y.10
-
26
-
-
85034811319
-
Automated critical test findings identification and online notification system using artificial intelligence in imaging
-
Prevedello, L.M., Erdal, B.S., Ryu, J.L., Little, K.J., Demirer, M., Qian, S., White, R.D., Automated critical test findings identification and online notification system using artificial intelligence in imaging. Radiology 285 (2017), 923–931, 10.1148/radiol.2017162664.
-
(2017)
Radiology
, vol.285
, pp. 923-931
-
-
Prevedello, L.M.1
Erdal, B.S.2
Ryu, J.L.3
Little, K.J.4
Demirer, M.5
Qian, S.6
White, R.D.7
-
27
-
-
85044127837
-
-
Frost & Sullivan, Cognitive Computing and Artificial Intelligence Systems in Healthcare, Cogn. Comput. Artif. Intell. Syst. Healthc., 2015. (Accessed November 18).
-
Frost & Sullivan, Cognitive Computing and Artificial Intelligence Systems in Healthcare, Cogn. Comput. Artif. Intell. Syst. Healthc., 2015. http://www.frost.com/sublib/display-report.do?id=NFFE-01-00-00-00&bdata=aHR0cDovL2NvcnBjb20uZnJvc3QuY29tL2UvZjI%2FZWxxRm9ybU5hbWU9QnV5bm93X0JsaW5kRm9ybSZlbHFTaXRlSUQ9MTU0NCZDX0VtYWlsQWRkcmVzcz0mQ2FtcGFpZ25JRD1OQV9QUl9LQmVsY2hlcl9ORkZFXzE4RGVjMTUmZWxxPTAwM (Accessed November 18, 2017).
-
(2017)
-
-
-
28
-
-
85044106432
-
-
If you look at X-Rays or Moles for a Living, AI is coming for your job, Wired. (Accessed November 18).
-
M. Molteni, If you look at X-Rays or Moles for a Living, AI is coming for your job, Wired., 2017. https://www.wired.com/2017/01/look-x-rays-moles-living-ai-coming-job/ (Accessed November 18, 2017).
-
(2017)
-
-
Molteni, M.1
-
29
-
-
85044160622
-
-
A Cubic Framework for the Chief Data Officer: Succeeding in a World of Big Data ESD-WP-2014-34, MIT ESD Work. Pap. Ser., 2014. (Accessed November 12).
-
Y. Lee, A Cubic Framework for the Chief Data Officer: Succeeding in a World of Big Data ESD-WP-2014-34, MIT ESD Work. Pap. Ser., 2014. https://dspace.mit.edu/handle/1721.1/103027 (Accessed November 12, 2017).
-
(2017)
-
-
Lee, Y.1
-
30
-
-
0037341762
-
Combining standard and throat microphones for robust speech recognition
-
Graciarena, M., Franco, H., Sonmez, K., Bratt, H., Combining standard and throat microphones for robust speech recognition. IEEE Signal Process. Lett. 10 (2003), 72–74.
-
(2003)
IEEE Signal Process. Lett.
, vol.10
, pp. 72-74
-
-
Graciarena, M.1
Franco, H.2
Sonmez, K.3
Bratt, H.4
-
31
-
-
84905269643
-
Using neural network front-ends on far field multiple microphones based speech recognition
-
Liu, Y., Zhang, P., Hain, T., Using neural network front-ends on far field multiple microphones based speech recognition. Acoust. Speech Signal Process. (ICASSP), 2014 IEEE Int. Conf., IEEE, 2014, 5542–5546.
-
(2014)
Acoust. Speech Signal Process. (ICASSP), 2014 IEEE Int. Conf., IEEE
, pp. 5542-5546
-
-
Liu, Y.1
Zhang, P.2
Hain, T.3
-
33
-
-
84951986596
-
Syntactic and semantic errors in radiology reports associated with speech recognition software
-
Ringler, M.D., Goss, B.C., Bartholmai, B.J., Syntactic and semantic errors in radiology reports associated with speech recognition software. Stud. Health Technol. Inform., 216, 2015, 922, 10.3233/978-1-61499-564-7-922.
-
(2015)
Stud. Health Technol. Inform.
, vol.216
, pp. 922
-
-
Ringler, M.D.1
Goss, B.C.2
Bartholmai, B.J.3
-
34
-
-
85014952213
-
Deep learning for health informatics
-
Ravi, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., Yang, G.Z., Deep learning for health informatics. IEEE J. Biomed. Heal. Inform. 21 (2017), 4–21, 10.1109/JBHI.2016.2636665.
-
(2017)
IEEE J. Biomed. Heal. Inform.
, vol.21
, pp. 4-21
-
-
Ravi, D.1
Wong, C.2
Deligianni, F.3
Berthelot, M.4
Andreu-Perez, J.5
Lo, B.6
Yang, G.Z.7
-
35
-
-
85044149565
-
-
Enlitic and Capitol Health Announce Global Partnership Leveraging Deep Learning to Enhance Physician Care for Millions of Patients, (n.d.). (Accessed December 9).
-
R. Sappington, Enlitic and Capitol Health Announce Global Partnership Leveraging Deep Learning to Enhance Physician Care for Millions of Patients, (n.d.). https://www.enlitic.com/press-release-10272015.html (Accessed December 9, 2017).
-
(2017)
-
-
Sappington, R.1
-
36
-
-
85044155216
-
-
First FDA Approval For Clinical Cloud-Based Deep Learning In Healthcare, Forbes Tech. (n.d.). (Accessed December 10).
-
B. Marr, First FDA Approval For Clinical Cloud-Based Deep Learning In Healthcare, Forbes Tech. (n.d.). https://www.forbes.com/sites/bernardmarr/2017/01/20/first-fda-approval-for-clinical-cloud-based-deep-learning-in-healthcare/#4afd519a161c (Accessed December 10, 2017).
-
(2017)
-
-
Marr, B.1
-
37
-
-
85044104435
-
-
AI Principles – Future of Life Institute, (n.d.). (Accessed December 10).
-
AI Principles – Future of Life Institute, (n.d.). https://futureoflife.org/ai-principles/ (Accessed December 10, 2017).
-
(2017)
-
-
|