메뉴 건너뛰기




Volumn 23, Issue 3, 2016, Pages 553-561

Real-time prediction of mortality, readmission, and length of stay using electronic health record data

Author keywords

Length of stay; Mortality; Patient outcome; Prediction; Readmission

Indexed keywords

ACCURACY; ADULT; AREA UNDER THE CURVE; ARTICLE; BAYES THEOREM; DEATH; ELECTRONIC HEALTH RECORD; EMERGENCY WARD; FEMALE; FORECASTING; HOSPITAL ADMISSION; HOSPITAL DISCHARGE; HOSPITAL PATIENT; HOSPITAL READMISSION; HOSPITALIZATION; HUMAN; LENGTH OF STAY; MAJOR CLINICAL STUDY; MALE; MIDDLE AGED; MORTALITY; OUTCOME ASSESSMENT; POINT OF CARE SYSTEM; PREDICTIVE VALUE; PROBABILITY; RECEIVER OPERATING CHARACTERISTIC; HOSPITAL MORTALITY; PROGNOSIS; STATISTICAL MODEL;

EID: 84979055388     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocv110     Document Type: Article
Times cited : (100)

References (21)
  • 1
    • 2542442561 scopus 로고    scopus 로고
    • Evaluation of a medical emergency team one year after implementation
    • Kenward G, Castle N, Hodgetts T, et al. Evaluation of a medical emergency team one year after implementation. Resuscitation 2004;61(3): 257-263.
    • (2004) Resuscitation , vol.61 , Issue.3 , pp. 257-263
    • Kenward, G.1    Castle, N.2    Hodgetts, T.3
  • 2
    • 84940363581 scopus 로고    scopus 로고
    • A literature review on care at the end-of-life in the emergency department.
    • Forero R, McDonnell G, Gallego B, et al. A literature review on care at the end-of-life in the emergency department. Emerg Med Int 2012;2012. doi:10.1155/2012/486516.
    • (2012) Emerg Med Int, 2012
    • Forero, R.1    McDonnell, G.2    Gallego, B.3
  • 3
    • 84891540392 scopus 로고    scopus 로고
    • Including post-discharge mortality in calculation of hospital standardised mortality ratios: retrospective analysis of hospital episode statistics
    • Pouw ME, Peelen L, Moons K, et al. Including post-discharge mortality in calculation of hospital standardised mortality ratios: retrospective analysis of hospital episode statistics. BMJ 2013;347:f5913.
    • (2013) BMJ , vol.347
    • Pouw, M.E.1    Peelen, L.2    Moons, K.3
  • 4
    • 68849132776 scopus 로고    scopus 로고
    • Hospital discharge planning for frail older people and their family Are we delivering best practice? A review of the evidence.
    • Bauer M, Fitzgerald L, Haesler E, et al. Hospital discharge planning for frail older people and their family. Are we delivering best practice? A review of the evidence. J Clin Nurs 2009;18(18):2539-2546.
    • (2009) J Clin Nurs , vol.18 , Issue.18 , pp. 2539-2546
    • Bauer, M.1    Fitzgerald, L.2    Haesler, E.3
  • 5
    • 84901819329 scopus 로고    scopus 로고
    • Using electronic health record data to develop inpatient mortality predictive model: acute laboratory risk of mortality score (ALaRMS)
    • Tabak YP, Sun X, Nunez CM, et al. Using electronic health record data to develop inpatient mortality predictive model: acute laboratory risk of mortality score (ALaRMS). J Am Med Inform Assoc 2014;21(3):455-463.
    • (2014) J Am Med Inform Assoc , vol.21 , Issue.3 , pp. 455-463
    • Tabak, Y.P.1    Sun, X.2    Nunez, C.M.3
  • 6
    • 84883746095 scopus 로고    scopus 로고
    • Development and validation of a continuous measure of patient condition using the electronic medical record
    • Rothman MJ, Rothman SI, Beals J. Development and validation of a continuous measure of patient condition using the electronic medical record. J Biomed Inform 2013;46(5):837-848.
    • (2013) J Biomed Inform , vol.46 , Issue.5 , pp. 837-848
    • Rothman, M.J.1    Rothman, S.I.2    Beals, J.3
  • 7
    • 79961031001 scopus 로고    scopus 로고
    • Derivation and validation of a model to predict daily risk of death in hospital
    • Wong J,Taljaard M, Forster AJ, et al. Derivation and validation of a model to predict daily risk of death in hospital. Med Care 2011;49(8):734-743.
    • (2011) Med Care , vol.49 , Issue.8 , pp. 734-743
    • Wong, J.1    Taljaard, M.2    Forster, A.J.3
  • 8
    • 77952421241 scopus 로고    scopus 로고
    • The Kaiser Permanente inpatient risk adjustment methodology was valid in an external patient population
    • van Walraven C, Escobar GJ, Greene JD, et al. The Kaiser Permanente inpatient risk adjustment methodology was valid in an external patient population. J Clin Epidemiol 2010;63(7):798-803.
    • (2010) J Clin Epidemiol , vol.63 , Issue.7 , pp. 798-803
    • van Walraven, C.1    Escobar, G.J.2    Greene, J.D.3
  • 9
    • 84902554009 scopus 로고    scopus 로고
    • Predicting the cumulative risk of death during hospitalization by modeling weekend, weekday and diurnal mortality risks
    • Coiera E, Wang Y, Magrabi F, et al. Predicting the cumulative risk of death during hospitalization by modeling weekend, weekday and diurnal mortality risks. BMC Health Serv Res 2014;14(1):226.
    • (2014) BMC Health Serv Res , vol.14 , Issue.1 , pp. 226
    • Coiera, E.1    Wang, Y.2    Magrabi, F.3
  • 10
    • 84905124533 scopus 로고    scopus 로고
    • The Hospital-patient One-year Mortality Risk score accurately predicted long-term death risk in hospitalized patients
    • van Walraven C. The Hospital-patient One-year Mortality Risk score accurately predicted long-term death risk in hospitalized patients. J Clin Epidemiol 2014;67(9):1025-1034.
    • (2014) J Clin Epidemiol , vol.67 , Issue.9 , pp. 1025-1034
    • van Walraven, C.1
  • 11
    • 77954954080 scopus 로고    scopus 로고
    • Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables
    • Liu V, Kipnis P, Gould MK, et al. Length of stay predictions: improvements through the use of automated laboratory and comorbidity variables. Med Care 2010;48(8):739-744.
    • (2010) Med Care , vol.48 , Issue.8 , pp. 739-744
    • Liu, V.1    Kipnis, P.2    Gould, M.K.3
  • 12
    • 80054764509 scopus 로고    scopus 로고
    • Risk prediction models for hospital readmission: a systematic review
    • Kansagara D, Englander H, Salanitro A, et al. Risk prediction models for hospital readmission: a systematic review. JAMA 2011;306(15):1688-98.
    • (2011) JAMA , vol.306 , Issue.15 , pp. 1688-1698
    • Kansagara, D.1    Englander, H.2    Salanitro, A.3
  • 13
    • 84876074990 scopus 로고    scopus 로고
    • Predicting 30-day all-cause hospital readmissions
    • Shulan M, Gao K, Moore CD. Predicting 30-day all-cause hospital readmissions. Health Care Manag Sci 2013;16(2):167-175.
    • (2013) Health Care Manag Sci , vol.16 , Issue.2 , pp. 167-175
    • Shulan, M.1    Gao, K.2    Moore, C.D.3
  • 14
    • 46649107110 scopus 로고    scopus 로고
    • The Centre for Health Record Linkage: a new resource for health services research and evaluation
    • Lawrence G, Dinh I, Taylor L. The Centre for Health Record Linkage: a new resource for health services research and evaluation. Health Inform Manage J 2008;37(2):60-62.
    • (2008) Health Inform Manage J , vol.37 , Issue.2 , pp. 60-62
    • Lawrence, G.1    Dinh, I.2    Taylor, L.3
  • 15
    • 3042534442 scopus 로고    scopus 로고
    • A review of methods for missing data
    • Pigott TD. A review of methods for missing data. Educ Res Eval 2001;7(4):353-83.
    • (2001) Educ Res Eval , vol.7 , Issue.4 , pp. 353-383
    • Pigott, T.D.1
  • 16
    • 0004060921 scopus 로고    scopus 로고
    • Correlation-based Feature Selection for Machine Learning [PhD dissertation].
    • The University of Waikato, Hamilton, NewZealand
    • Hall MA. Correlation-based Feature Selection for Machine Learning [PhD dissertation]. The University of Waikato, Hamilton, NewZealand, 1999.
    • (1999)
    • Hall, M.A.1
  • 17
    • 1942429034 scopus 로고
    • Notes on regression and inheritance in the case of two parents.
    • Pearson K. Notes on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London 1895: 240-242.
    • (1895) Proceedings of the Royal Society of London , pp. 240-242
    • Pearson, K.1
  • 18
    • 0003391330 scopus 로고
    • Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
    • San Francisco, CA: Morgan Kaufmann Publishers Inc
    • Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Francisco, CA: Morgan Kaufmann Publishers Inc; 1988.
    • (1988)
    • Pearl, J.1
  • 19
    • 0032596380 scopus 로고    scopus 로고
    • SMILE: Structural Modeling, Inference, and Learning Engine and GeNIe: A development environment for graphical decision-theoretic models (Intelligent Systems Demonstration)
    • Menlo Park, CA: American Association for Artifical Intelligence
    • Druzdzel MJ. SMILE: Structural Modeling, Inference, and Learning Engine and GeNIe: A development environment for graphical decision-theoretic models (Intelligent Systems Demonstration). In: AAAI '99/IAAI '99 Proceedings of the Sixteenth National Conference on Artificial Intelligence. Menlo Park, CA: American Association for Artifical Intelligence; 1999: 902-3.
    • (1999) AAAI '99/IAAI '99 Proceedings of the Sixteenth National Conference on Artificial Intelligence , pp. 902-903
    • Druzdzel, M.J.1
  • 20
    • 0034728356 scopus 로고    scopus 로고
    • What do we mean by validating a prognostic model?
    • Altman DG, Royston P. What do we mean by validating a prognostic model? Stat Med 2000;19(4):453-73.
    • (2000) Stat Med , vol.19 , Issue.4 , pp. 453-473
    • Altman, D.G.1    Royston, P.2
  • 21
    • 84894026081 scopus 로고    scopus 로고
    • A review of approaches to identifying patient phenotype cohorts using electronic health records
    • Shivade C, Raghavan P, Fosler-Lussier E, et al. A review of approaches to identifying patient phenotype cohorts using electronic health records. J Am Med Inform Assoc 2014;21(2):221-30. doi: 10.1136/amiajnl- 2013-001935.
    • (2014) J Am Med Inform Assoc , vol.21 , Issue.2 , pp. 221-230
    • Shivade, C.1    Raghavan, P.2    Fosler-Lussier, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.