메뉴 건너뛰기




Volumn 37, Issue 2, 2019, Pages 152-166

Modular Metabolic Engineering for Biobased Chemical Production

Author keywords

biobased chemicals; coculture; genome scale metabolic model; modular engineering

Indexed keywords

GENES; INDUSTRIAL CHEMICALS; METABOLISM; SELF ASSEMBLY; STRAIN;

EID: 85050517943     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2018.07.003     Document Type: Review
Times cited : (96)

References (71)
  • 1
    • 84887618970 scopus 로고    scopus 로고
    • Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks
    • Chen, Y., Nielsen, J., Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks. Curr. Opin. Biotechnol. 24 (2013), 965–972.
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 965-972
    • Chen, Y.1    Nielsen, J.2
  • 2
    • 79955726134 scopus 로고    scopus 로고
    • The Future of Industrial Biorefineries
    • World Economic Forum
    • King, D., et al. The Future of Industrial Biorefineries. 2010, World Economic Forum.
    • (2010)
    • King, D.1
  • 3
    • 84961223765 scopus 로고    scopus 로고
    • Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications
    • Wu, G., et al. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 34 (2017), 652–664.
    • (2017) Trends Biotechnol. , vol.34 , pp. 652-664
    • Wu, G.1
  • 4
    • 77957329119 scopus 로고    scopus 로고
    • Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli
    • Ajikumar, P.K., et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science 330 (2010), 70–74.
    • (2010) Science , vol.330 , pp. 70-74
    • Ajikumar, P.K.1
  • 5
    • 79959844663 scopus 로고    scopus 로고
    • The emergence of modularity in biological systems
    • Lorenz, D.M., et al. The emergence of modularity in biological systems. Phys. Life Rev. 8 (2011), 129–160.
    • (2011) Phys. Life Rev. , vol.8 , pp. 129-160
    • Lorenz, D.M.1
  • 6
    • 85059656972 scopus 로고    scopus 로고
    • Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli
    • Wu, J., et al. Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli. PLoS One 231 (2014), 183–192.
    • (2014) PLoS One , vol.231 , pp. 183-192
    • Wu, J.1
  • 7
    • 84926646130 scopus 로고    scopus 로고
    • Distributing a metabolic pathway among a microbial consortium enhances production of natural products
    • Zhou, K., et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat. Biotechnol. 33 (2015), 377–383.
    • (2015) Nat. Biotechnol. , vol.33 , pp. 377-383
    • Zhou, K.1
  • 8
    • 70349281876 scopus 로고    scopus 로고
    • Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?
    • Alper, H., Stephanopoulos, G., Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential?. Nat. Rev. Microbiol., 7, 2009, 715.
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 715
    • Alper, H.1    Stephanopoulos, G.2
  • 9
    • 84997170406 scopus 로고    scopus 로고
    • Enhancing fatty acid production in Escherichia coli by Vitreoscilla hemoglobin overexpression
    • Liu, D., et al. Enhancing fatty acid production in Escherichia coli by Vitreoscilla hemoglobin overexpression. Biotechnol. Bioeng. 114 (2016), 463–467.
    • (2016) Biotechnol. Bioeng. , vol.114 , pp. 463-467
    • Liu, D.1
  • 10
    • 84855694523 scopus 로고    scopus 로고
    • Modular engineering of L-tyrosine production in Escherichia coli
    • Juminaga, D., et al. Modular engineering of L-tyrosine production in Escherichia coli. Appl. Environ. Microbiol. 78 (2012), 89–98.
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 89-98
    • Juminaga, D.1
  • 11
    • 84939453766 scopus 로고    scopus 로고
    • Precision metabolic engineering: the design of responsive, selective, and controllable metabolic systems
    • McNerney, M.P., et al. Precision metabolic engineering: the design of responsive, selective, and controllable metabolic systems. Metab. Eng. 31 (2015), 123–131.
    • (2015) Metab. Eng. , vol.31 , pp. 123-131
    • McNerney, M.P.1
  • 12
    • 84943574477 scopus 로고    scopus 로고
    • Screening and modular design for metabolic pathway optimization
    • Boock, J.T., et al. Screening and modular design for metabolic pathway optimization. Curr. Opin. Biotechnol. 36 (2015), 189–198.
    • (2015) Curr. Opin. Biotechnol. , vol.36 , pp. 189-198
    • Boock, J.T.1
  • 13
    • 84902154110 scopus 로고    scopus 로고
    • Multivariate modular metabolic engineering for pathway and strain optimization
    • Biggs, B.W., et al. Multivariate modular metabolic engineering for pathway and strain optimization. Curr. Opin. Biotechnol. 29 (2014), 156–162.
    • (2014) Curr. Opin. Biotechnol. , vol.29 , pp. 156-162
    • Biggs, B.W.1
  • 14
    • 84877804801 scopus 로고    scopus 로고
    • Modular optimization of multi-gene pathways for fatty acids production in E. coli
    • Xu, P., et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat. Commun., 4, 2013, 1409.
    • (2013) Nat. Commun. , vol.4 , pp. 1409
    • Xu, P.1
  • 15
    • 84896871113 scopus 로고    scopus 로고
    • Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production
    • Liu, Y., et al. Modular pathway engineering of Bacillus subtilis for improved N-acetylglucosamine production. Metab. Eng. 23 (2014), 42–52.
    • (2014) Metab. Eng. , vol.23 , pp. 42-52
    • Liu, Y.1
  • 16
    • 84883232076 scopus 로고    scopus 로고
    • Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine
    • Wu, J., et al. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine. J. Biotechnol. 167 (2013), 404–411.
    • (2013) J. Biotechnol. , vol.167 , pp. 404-411
    • Wu, J.1
  • 17
    • 84973519852 scopus 로고    scopus 로고
    • Modular co-culture engineering, a new approach for metabolic engineering
    • Zhang, H., Wang, X., Modular co-culture engineering, a new approach for metabolic engineering. Metab. Eng. 37 (2016), 114–121.
    • (2016) Metab. Eng. , vol.37 , pp. 114-121
    • Zhang, H.1    Wang, X.2
  • 18
    • 85008156860 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for microbial synthesis of monolignols
    • Chen, Z., et al. Metabolic engineering of Escherichia coli for microbial synthesis of monolignols. Metab. Eng. 39 (2017), 102–109.
    • (2017) Metab. Eng. , vol.39 , pp. 102-109
    • Chen, Z.1
  • 19
    • 49049105130 scopus 로고    scopus 로고
    • Engineering microbial consortia: a new frontier in synthetic biology
    • Brenner, K., et al. Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol. 26 (2008), 483–489.
    • (2008) Trends Biotechnol. , vol.26 , pp. 483-489
    • Brenner, K.1
  • 20
    • 84936803078 scopus 로고    scopus 로고
    • Engineering Escherichia coli coculture systems for the production of biochemical products
    • Zhang, H., et al. Engineering Escherichia coli coculture systems for the production of biochemical products. Proc. Natl. Acad. Sci. U. S. A. 112 (2015), 8266–8271.
    • (2015) Proc. Natl. Acad. Sci. U. S. A. , vol.112 , pp. 8266-8271
    • Zhang, H.1
  • 21
    • 85017308782 scopus 로고    scopus 로고
    • Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production
    • Wang, G., et al. Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production. Curr. Opin. Biotechnol. 48 (2017), 77–84.
    • (2017) Curr. Opin. Biotechnol. , vol.48 , pp. 77-84
    • Wang, G.1
  • 22
    • 84958250665 scopus 로고    scopus 로고
    • Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids
    • Jones, J.A., et al. Experimental and computational optimization of an Escherichia coli co-culture for the efficient production of flavonoids. Metab. Eng. 35 (2016), 55–63.
    • (2016) Metab. Eng. , vol.35 , pp. 55-63
    • Jones, J.A.1
  • 23
    • 84913558396 scopus 로고    scopus 로고
    • Potential production platform of n-butanol in Escherichia coli
    • Saini, M., et al. Potential production platform of n-butanol in Escherichia coli. Metab. Eng. 27 (2015), 76–82.
    • (2015) Metab. Eng. , vol.27 , pp. 76-82
    • Saini, M.1
  • 24
    • 85006141763 scopus 로고    scopus 로고
    • Enhanced solvent production by metabolic engineering of a twin-clostridial consortium
    • Wen, Z., et al. Enhanced solvent production by metabolic engineering of a twin-clostridial consortium. Metab. Eng. 39 (2017), 38–48.
    • (2017) Metab. Eng. , vol.39 , pp. 38-48
    • Wen, Z.1
  • 25
    • 85021929291 scopus 로고    scopus 로고
    • Complete biosynthesis of anthocyanins using E. coli polycultures
    • e00621-17
    • Jones, J.A., et al. Complete biosynthesis of anthocyanins using E. coli polycultures. mBio, 8, 2017 e00621-17.
    • (2017) mBio , vol.8
    • Jones, J.A.1
  • 26
    • 84969749533 scopus 로고    scopus 로고
    • Transporter and its engineering for secondary metabolites
    • Lv, H., et al. Transporter and its engineering for secondary metabolites. Appl. Microbiol. Biotechnol. 100 (2016), 6119–6130.
    • (2016) Appl. Microbiol. Biotechnol. , vol.100 , pp. 6119-6130
    • Lv, H.1
  • 27
    • 84863920287 scopus 로고    scopus 로고
    • Microbial interactions: from networks to models
    • Faust, K., Raes, J., Microbial interactions: from networks to models. Nat. Rev. Microbiol., 10, 2012, 538.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 538
    • Faust, K.1    Raes, J.2
  • 28
    • 84960104242 scopus 로고    scopus 로고
    • Production of biobutanol from cellulose hydrolysate by the Escherichia coli co-culture system
    • Saini, M., et al. Production of biobutanol from cellulose hydrolysate by the Escherichia coli co-culture system. FEMS Microbiol. Lett., 363, 2016, fnw008.
    • (2016) FEMS Microbiol. Lett. , vol.363 , pp. fnw008
    • Saini, M.1
  • 29
    • 84977538578 scopus 로고    scopus 로고
    • Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli
    • Zhang, H., Stephanopoulos, G., Co-culture engineering for microbial biosynthesis of 3-amino-benzoic acid in Escherichia coli. Biotechnol. J. 11 (2016), 981–987.
    • (2016) Biotechnol. J. , vol.11 , pp. 981-987
    • Zhang, H.1    Stephanopoulos, G.2
  • 30
    • 84959086912 scopus 로고    scopus 로고
    • Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation
    • Wang, E.X., et al. Reorganization of a synthetic microbial consortium for one-step vitamin C fermentation. Microb. Cell Fact., 15, 2016, 21.
    • (2016) Microb. Cell Fact. , vol.15 , pp. 21
    • Wang, E.X.1
  • 31
    • 85017449220 scopus 로고    scopus 로고
    • A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli
    • Wu, J., et al. A systematic optimization of medium chain fatty acid biosynthesis via the reverse beta-oxidation cycle in Escherichia coli. Metab. Eng. 41 (2017), 115–124.
    • (2017) Metab. Eng. , vol.41 , pp. 115-124
    • Wu, J.1
  • 32
    • 84988955364 scopus 로고    scopus 로고
    • Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol
    • Camacho-Zaragoza, J.M., et al. Engineering of a microbial coculture of Escherichia coli strains for the biosynthesis of resveratrol. Microb. Cell Fact., 15, 2016, 163.
    • (2016) Microb. Cell Fact. , vol.15 , pp. 163
    • Camacho-Zaragoza, J.M.1
  • 33
    • 84998577619 scopus 로고    scopus 로고
    • Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants
    • Fujiwara, R., et al. Styrene production from a biomass-derived carbon source using a coculture system of phenylalanine ammonia lyase and phenylacrylic acid decarboxylase-expressing Streptomyces lividans transformants. J. Biosci. Bioeng. 122 (2016), 730–735.
    • (2016) J. Biosci. Bioeng. , vol.122 , pp. 730-735
    • Fujiwara, R.1
  • 34
    • 84957553896 scopus 로고    scopus 로고
    • Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli
    • Nakagawa, A., et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat. Commun., 7, 2016, 10390.
    • (2016) Nat. Commun. , vol.7 , pp. 10390
    • Nakagawa, A.1
  • 35
    • 84866744325 scopus 로고    scopus 로고
    • Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae
    • Dai, Z., et al. Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 109 (2012), 2845–2853.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 2845-2853
    • Dai, Z.1
  • 36
    • 84992451563 scopus 로고    scopus 로고
    • Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering
    • Lv, X., et al. Combinatorial pathway optimization in Escherichia coli by directed co-evolution of rate-limiting enzymes and modular pathway engineering. Biotechnol. Bioeng. 113 (2016), 2661–2669.
    • (2016) Biotechnol. Bioeng. , vol.113 , pp. 2661-2669
    • Lv, X.1
  • 37
    • 84872221971 scopus 로고    scopus 로고
    • Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy
    • Wu, J., et al. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab. Eng. 16 (2013), 48–55.
    • (2013) Metab. Eng. , vol.16 , pp. 48-55
    • Wu, J.1
  • 38
    • 84975813322 scopus 로고    scopus 로고
    • Stepwise modular pathway engineering of Escherichia coli for efficient one-step production of (2S)-pinocembrin
    • Wu, J., et al. Stepwise modular pathway engineering of Escherichia coli for efficient one-step production of (2S)-pinocembrin. J. Biotechnol. 231 (2016), 183–192.
    • (2016) J. Biotechnol. , vol.231 , pp. 183-192
    • Wu, J.1
  • 39
    • 85018330314 scopus 로고    scopus 로고
    • Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin
    • Wu, J., et al. Rational modular design of metabolic network for efficient production of plant polyphenol pinosylvin. Sci. Rep., 7, 2017, 1459.
    • (2017) Sci. Rep. , vol.7 , pp. 1459
    • Wu, J.1
  • 40
    • 84920110270 scopus 로고    scopus 로고
    • Succinate production from xylose-glucose mixtures using a consortium of engineered Escherichia coli
    • Xia, T., et al. Succinate production from xylose-glucose mixtures using a consortium of engineered Escherichia coli. Eng. Life Sci. 15 (2015), 65–72.
    • (2015) Eng. Life Sci. , vol.15 , pp. 65-72
    • Xia, T.1
  • 41
    • 84941558348 scopus 로고    scopus 로고
    • Engineering E. coli–E. coli cocultures for production of muconic acid from glycerol
    • Zhang, H., et al. Engineering E. coli–E. coli cocultures for production of muconic acid from glycerol. Microb. Cell Fact., 14, 2015, 134.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 134
    • Zhang, H.1
  • 42
    • 84994806228 scopus 로고    scopus 로고
    • E. coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent
    • Ahmadi, M.K., et al. E. coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent. Metab. Eng. 38 (2016), 382–388.
    • (2016) Metab. Eng. , vol.38 , pp. 382-388
    • Ahmadi, M.K.1
  • 43
    • 85024877940 scopus 로고    scopus 로고
    • A three-species microbial consortium for power generation
    • Liu, Y., et al. A three-species microbial consortium for power generation. Energy Environ. Sci. 10 (2017), 1600–1609.
    • (2017) Energy Environ. Sci. , vol.10 , pp. 1600-1609
    • Liu, Y.1
  • 44
    • 84928315635 scopus 로고    scopus 로고
    • An ancient Chinese wisdom for metabolic engineering: Yin-Yang
    • Wu, S.G., et al. An ancient Chinese wisdom for metabolic engineering: Yin-Yang. Microb. Cell Fact., 14, 2015, 39.
    • (2015) Microb. Cell Fact. , vol.14 , pp. 39
    • Wu, S.G.1
  • 45
    • 68449103617 scopus 로고    scopus 로고
    • Stabilized gene duplication enables long-term selection-free heterologous pathway expression
    • Tyo, K.E.J., et al. Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nat. Biotechnol., 27, 2009, 760.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 760
    • Tyo, K.E.J.1
  • 46
    • 84930227327 scopus 로고    scopus 로고
    • Using genome-scale models to predict biological capabilities
    • O'Brien, E.J., et al. Using genome-scale models to predict biological capabilities. Cell 161 (2015), 971–987.
    • (2015) Cell , vol.161 , pp. 971-987
    • O'Brien, E.J.1
  • 47
    • 85052975355 scopus 로고    scopus 로고
    • Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis
    • Published online June 5, 2018
    • Tian, M., Reed, J.L., Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis. Bioinformatics, 2018, 10.1093/bioinformatics/bty445 Published online June 5, 2018.
    • (2018) Bioinformatics
    • Tian, M.1    Reed, J.L.2
  • 48
    • 85013046059 scopus 로고    scopus 로고
    • Making life difficult for Clostridium difficile: augmenting the pathogen's metabolic model with transcriptomic and codon usage data for better therapeutic target characterization
    • Kashaf, S.S., et al. Making life difficult for Clostridium difficile: augmenting the pathogen's metabolic model with transcriptomic and codon usage data for better therapeutic target characterization. BMC Syst. Biol., 11, 2017, 25.
    • (2017) BMC Syst. Biol. , vol.11 , pp. 25
    • Kashaf, S.S.1
  • 49
    • 85028309923 scopus 로고    scopus 로고
    • Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints
    • Sánchez, B.J., et al. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints. Mol. Syst. Biol., 13, 2017, 935.
    • (2017) Mol. Syst. Biol. , vol.13 , pp. 935
    • Sánchez, B.J.1
  • 50
    • 85020223218 scopus 로고    scopus 로고
    • Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations
    • Dash, S., et al. Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations. Biotechnol. Biofuels, 10, 2017, 108.
    • (2017) Biotechnol. Biofuels , vol.10 , pp. 108
    • Dash, S.1
  • 51
    • 84948129387 scopus 로고    scopus 로고
    • Rational design of efficient modular cells
    • Trinh, C.T., et al. Rational design of efficient modular cells. Metab. Eng. 32 (2015), 220–231.
    • (2015) Metab. Eng. , vol.32 , pp. 220-231
    • Trinh, C.T.1
  • 52
    • 85050988747 scopus 로고    scopus 로고
    • COBRAme: a computational framework for genome-scale models of metabolism and gene expression
    • Lloyd, J.C., et al. COBRAme: a computational framework for genome-scale models of metabolism and gene expression. PLoS Comput. Biol., 14, 2018, e1006302.
    • (2018) PLoS Comput. Biol. , vol.14 , pp. e1006302
    • Lloyd, J.C.1
  • 53
    • 85027982402 scopus 로고    scopus 로고
    • UP Finder: a COBRA toolbox extension for identifying gene overexpression strategies for targeted overproduction
    • Wang, X., et al. UP Finder: a COBRA toolbox extension for identifying gene overexpression strategies for targeted overproduction. Metab. Eng. Commun. 5 (2017), 54–59.
    • (2017) Metab. Eng. Commun. , vol.5 , pp. 54-59
    • Wang, X.1
  • 54
    • 85021308127 scopus 로고    scopus 로고
    • Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors
    • Suástegui, M., et al. Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metab. Eng. 42 (2017), 134–144.
    • (2017) Metab. Eng. , vol.42 , pp. 134-144
    • Suástegui, M.1
  • 55
    • 85020003398 scopus 로고    scopus 로고
    • Redesigning metabolism based on orthogonality principles
    • Pandit, A.V., et al. Redesigning metabolism based on orthogonality principles. Nat. Commun., 8, 2017, 15188.
    • (2017) Nat. Commun. , vol.8 , pp. 15188
    • Pandit, A.V.1
  • 56
    • 85042201864 scopus 로고    scopus 로고
    • MinGenome: an in silico top-down approach for the synthesis of minimized genomes
    • Wang, L., Costas, M., MinGenome: an in silico top-down approach for the synthesis of minimized genomes. ACS Synth. Biol. 7 (2018), 462–473.
    • (2018) ACS Synth. Biol. , vol.7 , pp. 462-473
    • Wang, L.1    Costas, M.2
  • 57
    • 85040868340 scopus 로고    scopus 로고
    • A prototype for modular cell engineering
    • Wilbanks, B., et al. A prototype for modular cell engineering. ACS Synth. Biol. 7 (2018), 187–199.
    • (2018) ACS Synth. Biol. , vol.7 , pp. 187-199
    • Wilbanks, B.1
  • 58
    • 84979085378 scopus 로고    scopus 로고
    • Yeast metabolic chassis designs for diverse biotechnological products
    • Jouhten, P., et al. Yeast metabolic chassis designs for diverse biotechnological products. Sci. Rep., 6, 2016, 29694.
    • (2016) Sci. Rep. , vol.6 , pp. 29694
    • Jouhten, P.1
  • 59
    • 84961286195 scopus 로고    scopus 로고
    • Predicting compositions of microbial communities from stoichiometric models with applications for the biogas process
    • Koch, S., et al. Predicting compositions of microbial communities from stoichiometric models with applications for the biogas process. Biotechnol. Biofuels, 9, 2016, 17.
    • (2016) Biotechnol. Biofuels , vol.9 , pp. 17
    • Koch, S.1
  • 60
    • 84901273253 scopus 로고    scopus 로고
    • Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics
    • Harcombe, W.R., et al. Metabolic resource allocation in individual microbes determines ecosystem interactions and spatial dynamics. Cell Rep. 7 (2014), 1104–1115.
    • (2014) Cell Rep. , vol.7 , pp. 1104-1115
    • Harcombe, W.R.1
  • 61
    • 85020127804 scopus 로고    scopus 로고
    • BacArena: individual-based metabolic modeling of heterogeneous microbes in complex communities
    • Bauer, E., et al. BacArena: individual-based metabolic modeling of heterogeneous microbes in complex communities. PLoS Comput. Biol., 13, 2017, e1005544.
    • (2017) PLoS Comput. Biol. , vol.13
    • Bauer, E.1
  • 62
    • 84955444919 scopus 로고    scopus 로고
    • From sugars to biodiesel using microalgae and yeast
    • Gomez, J.A., et al. From sugars to biodiesel using microalgae and yeast. Green Chem. 18 (2015), 461–475.
    • (2015) Green Chem. , vol.18 , pp. 461-475
    • Gomez, J.A.1
  • 63
    • 84977163097 scopus 로고    scopus 로고
    • An algorithm for designing minimal microbial communities with desired metabolic capacities
    • Eng, A., Borenstein, E., An algorithm for designing minimal microbial communities with desired metabolic capacities. Bioinformatics 32 (2016), 2008–2016.
    • (2016) Bioinformatics , vol.32 , pp. 2008-2016
    • Eng, A.1    Borenstein, E.2
  • 64
    • 84977138224 scopus 로고    scopus 로고
    • A combinatorial algorithm for microbial consortia synthetic design
    • Julien-Laferrière, A., et al. A combinatorial algorithm for microbial consortia synthetic design. Sci. Rep., 6, 2016, 29182.
    • (2016) Sci. Rep. , vol.6 , pp. 29182
    • Julien-Laferrière, A.1
  • 65
    • 84978648882 scopus 로고    scopus 로고
    • Spatiotemporal modeling of microbial metabolism
    • Chen, J., et al. Spatiotemporal modeling of microbial metabolism. BMC Syst. Biol., 10, 2016, 21.
    • (2016) BMC Syst. Biol. , vol.10 , pp. 21
    • Chen, J.1
  • 66
    • 84982729715 scopus 로고    scopus 로고
    • Dynamic flux balance modeling to increase the production of high-value compounds in green microalgae
    • Flassig, R.J., et al. Dynamic flux balance modeling to increase the production of high-value compounds in green microalgae. Biotechnol. Biofuels, 9, 2016, 165.
    • (2016) Biotechnol. Biofuels , vol.9 , pp. 165
    • Flassig, R.J.1
  • 67
    • 85007015976 scopus 로고    scopus 로고
    • A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains
    • Khodayari, A., Costas, D.M., A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat. Commun., 7, 2016, 13806.
    • (2016) Nat. Commun. , vol.7 , pp. 13806
    • Khodayari, A.1    Costas, D.M.2
  • 68
    • 85042407052 scopus 로고    scopus 로고
    • Metabolic models of protein allocation call for the kinetome
    • Nilsson, A., et al. Metabolic models of protein allocation call for the kinetome. Cell Syst. 5 (2017), 538–541.
    • (2017) Cell Syst. , vol.5 , pp. 538-541
    • Nilsson, A.1
  • 69
    • 84875670791 scopus 로고    scopus 로고
    • Engineering central metabolic modules of Escherichia coli for improving Β-carotene production
    • Zhao, J., et al. Engineering central metabolic modules of Escherichia coli for improving Β-carotene production. Metab. Eng. 17 (2013), 42–50.
    • (2013) Metab. Eng. , vol.17 , pp. 42-50
    • Zhao, J.1
  • 70
    • 84941346066 scopus 로고    scopus 로고
    • Complete biosynthesis of opioids in yeast
    • Galanie, S., et al. Complete biosynthesis of opioids in yeast. Science 349 (2015), 1095–1100.
    • (2015) Science , vol.349 , pp. 1095-1100
    • Galanie, S.1
  • 71
    • 84925955420 scopus 로고    scopus 로고
    • Coupling limonene formation and oxyfunctionalization by mixed-culture resting cell fermentation
    • Willrodt, C., et al. Coupling limonene formation and oxyfunctionalization by mixed-culture resting cell fermentation. Biotechnol. Bioeng. 112 (2015), 1738–1750.
    • (2015) Biotechnol. Bioeng. , vol.112 , pp. 1738-1750
    • Willrodt, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.