메뉴 건너뛰기




Volumn 34, Issue 22, 2018, Pages 3882-3888

Integrating proteomic or transcriptomic data into metabolic models using linear bound flux balance analysis

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOINFORMATICS; ERROR; ESCHERICHIA COLI; NONHUMAN; PREDICTION; QUANTITATIVE ANALYSIS; SACCHAROMYCES CEREVISIAE; ALGORITHM; BIOLOGICAL MODEL; METABOLIC FLUX ANALYSIS; METABOLISM; PROTEOMICS;

EID: 85052975355     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/bty445     Document Type: Article
Times cited : (55)

References (34)
  • 1
    • 6044265058 scopus 로고    scopus 로고
    • Integration of gene expression data into genome-scale metabolic models
    • A kesson,M. et al. (2004) Integration of gene expression data into genome-scale metabolic models. Metab. Eng., 6, 285-293.
    • (2004) Metab. Eng , vol.6 , pp. 285-293
    • Kesson, M.A.1
  • 2
    • 44949225040 scopus 로고    scopus 로고
    • Context-specific metabolic networks are consistent with experiments
    • Becker,S.A. and Palsson,B.O. (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput. Biol., 4, e1000082.
    • (2008) PLoS Comput. Biol , vol.4 , pp. e1000082
    • Becker, S.A.1    Palsson, B.O.2
  • 3
    • 78449291015 scopus 로고    scopus 로고
    • Predicting metabolic fluxes using gene expression differences as constraints
    • van Berlo,R.J.P. et al. (2011) Predicting metabolic fluxes using gene expression differences as constraints. IEEE/ACM Trans. Comput. Biol. Bioinform., 8, 206-216.
    • (2011) IEEE/ACM Trans. Comput. Biol. Bioinform , vol.8 , pp. 206-216
    • Van Berlo, R.J.P.1
  • 4
    • 84976481496 scopus 로고    scopus 로고
    • Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity
    • Bosi,E. et al. (2016) Comparative genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic capabilities linked to pathogenicity. Proc. Natl. Acad. Sci. USA, 113, E3801-E3809.
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , pp. E3801-E3809
    • Bosi, E.1
  • 5
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard,A.P. et al. (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng., 84, 647-657.
    • (2003) Biotechnol. Bioeng , vol.84 , pp. 647-657
    • Burgard, A.P.1
  • 6
    • 78049255973 scopus 로고    scopus 로고
    • Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis
    • Chandrasekaran,S. and Price,N.D. (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 107, 17845-17850.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 17845-17850
    • Chandrasekaran, S.1    Price, N.D.2
  • 7
    • 84857999389 scopus 로고    scopus 로고
    • A metabolic network approach for the identification and prioritization of antimicrobial drug targets
    • Chavali,A.K. et al. (2012) A metabolic network approach for the identification and prioritization of antimicrobial drug targets. Trends Microbiol., 20, 113-123.
    • (2012) Trends Microbiol , vol.20 , pp. 113-123
    • Chavali, A.K.1
  • 8
    • 70049110173 scopus 로고    scopus 로고
    • Interpreting expression data with metabolic flux models: Predicting Mycobacterium tuberculosis mycolic acid production
    • Colijn,C. et al. (2009) Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput. Biol., 5, e1000489.
    • (2009) PLoS Comput. Biol , vol.5 , pp. e1000489
    • Colijn, C.1
  • 9
    • 84877118199 scopus 로고    scopus 로고
    • Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering
    • Cotten,C. and Reed,J.L. (2013) Constraint-based strain design using continuous modifications (CosMos) of flux bounds finds new strategies for metabolic engineering. Biotechnol. J., 8, 595-604.
    • (2013) Biotechnol. J , vol.8 , pp. 595-604
    • Cotten, C.1    Reed, J.L.2
  • 10
    • 84951061481 scopus 로고    scopus 로고
    • Pseudo-transition analysis identifies the key regulators of dynamic metabolic adaptations from steady-state data
    • Gerosa,L. et al. (2015) Pseudo-transition analysis identifies the key regulators of dynamic metabolic adaptations from steady-state data. Cell Syst., 1, 270-282.
    • (2015) Cell Syst , vol.1 , pp. 270-282
    • Gerosa, L.1
  • 13
    • 84992709113 scopus 로고    scopus 로고
    • Systems-level analysis of mechanisms regulating yeast metabolic flux
    • Hackett,S.R. et al. (2016) Systems-level analysis of mechanisms regulating yeast metabolic flux. Science, 354, aaf2786.
    • (2016) Science , vol.354 , pp. aaf2786
    • Hackett, S.R.1
  • 14
    • 84859828896 scopus 로고    scopus 로고
    • Identification of functional differences in metabolic networks using comparative genomics and constraint-based models
    • Hamilton,J.J. and Reed,J.L. (2012) Identification of functional differences in metabolic networks using comparative genomics and constraint-based models. PLoS One, 7, e34670.
    • (2012) PLoS One , vol.7 , pp. e34670
    • Hamilton, J.J.1    Reed, J.L.2
  • 15
    • 84895963679 scopus 로고    scopus 로고
    • What mRNA abundances can tell us about metabolism
    • Hoppe,A. (2012) What mRNA abundances can tell us about metabolism. Metabolites, 2, 614-631.
    • (2012) Metabolites , vol.2 , pp. 614-631
    • Hoppe, A.1
  • 16
    • 34247612307 scopus 로고    scopus 로고
    • Multiple high-throughput analyses monitor the response of e
    • Ishii,N. et al. (2007) Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science, 316, 593-597.
    • (2007) Coli to Perturbations. Science , vol.316 , pp. 593-597
    • Ishii, N.1
  • 17
    • 79951536020 scopus 로고    scopus 로고
    • Functional integration of a metabolic network model and expression data without arbitrary thresholding
    • Jensen,P.A. and Papin,J.A. (2011) Functional integration of a metabolic network model and expression data without arbitrary thresholding. Bioinformatics, 27, 541-547.
    • (2011) Bioinformatics , vol.27 , pp. 541-547
    • Jensen, P.A.1    Papin, J.A.2
  • 18
    • 49549104162 scopus 로고    scopus 로고
    • Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN
    • Jouhten,P. et al. (2008) Oxygen dependence of metabolic fluxes and energy generation of Saccharomyces cerevisiae CEN.PK113-1A. BMC Syst. Biol., 2, 60.
    • (2008) PK113-1A. BMC Syst. Biol , vol.2 , pp. 60
    • Jouhten, P.1
  • 19
    • 84883808938 scopus 로고    scopus 로고
    • Flux-coupled genes and their use in metabolic flux analysis
    • Kim,H.U. et al. (2013) Flux-coupled genes and their use in metabolic flux analysis. Biotechnol. J., 8, 1035-1042.
    • (2013) Biotechnol. J , vol.8 , pp. 1035-1042
    • Kim, H.U.1
  • 20
    • 75749144228 scopus 로고    scopus 로고
    • Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE
    • Kim,H.U. et al. (2010) Genome-scale metabolic network analysis and drug targeting of multi-drug resistant pathogen Acinetobacter baumannii AYE. Mol. Biosyst., 6, 339-348.
    • (2010) Mol. Biosyst , vol.6 , pp. 339-348
    • Kim, H.U.1
  • 21
    • 80052573483 scopus 로고    scopus 로고
    • Large-scale bi-level strain design approaches and mixed-integer programming solution techniques
    • Kim,J. et al. (2011) Large-scale bi-level strain design approaches and mixed-integer programming solution techniques. PLoS One, 6, e24162.
    • (2011) PLoS One , vol.6 , pp. e24162
    • Kim, J.1
  • 22
    • 67549123519 scopus 로고    scopus 로고
    • Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple Staphylococcus aureus genomes identify novel antimicrobial drug targets
    • Lee,D.-S. et al. (2009) Comparative genome-scale metabolic reconstruction and flux balance analysis of multiple Staphylococcus aureus genomes identify novel antimicrobial drug targets. J. Bacteriol., 191, 4015-4024.
    • (2009) J. Bacteriol , vol.191 , pp. 4015-4024
    • Lee, D.-S.1
  • 24
    • 77955141026 scopus 로고    scopus 로고
    • Omic data from evolved e coli are consistent with computed optimal growth from genome-scale models
    • Lewis,N.E. et al. (2010) Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst. Biol., 6, 390.
    • (2010) Mol. Syst. Biol , vol.6 , pp. 390
    • Lewis, N.E.1
  • 25
    • 85018313020 scopus 로고    scopus 로고
    • Improving flux predictions by integrating data from multiple strains
    • Long,M.R. and Reed,J.L. (2017) Improving flux predictions by integrating data from multiple strains. Bioinformatics, 33, 893-900.
    • (2017) Bioinformatics , vol.33 , pp. 893-900
    • Long, M.R.1    Reed, J.L.2
  • 26
    • 84901306814 scopus 로고    scopus 로고
    • Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism
    • Machado,D. and Herrgard,M. (2014) Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput. Biol., 10, e1003580.
    • (2014) PLoS Comput. Biol , vol.10 , pp. e1003580
    • Machado, D.1    Herrgard, M.2
  • 27
    • 85011094697 scopus 로고    scopus 로고
    • Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota
    • Magnu sdo ttir,S. et al. (2017) Generation of genome-scale metabolic reconstructions for 773 members of the human gut microbiota. Nat. Biotechnol., 35, 81-89.
    • (2017) Nat. Biotechnol , vol.35 , pp. 81-89
    • Magnu sdottir, S.1
  • 28
    • 65649126379 scopus 로고    scopus 로고
    • Connecting extracellular metabolomic measurements to intracellular flux states in yeast
    • Mo,M.L. et al. (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol, 3, 37.
    • (2009) BMC Syst. Biol , vol.3 , pp. 37
    • Mo, M.L.1
  • 29
    • 84899761194 scopus 로고    scopus 로고
    • Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut
    • Nuccio,S.-P. and Bäumler,A.J. (2014) Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut. MBio, 5, e00929-14.
    • (2014) MBio , vol.5 , pp. e00929-e001014
    • Nuccio, S.-P.1    Bäumler, A.J.2
  • 30
    • 80054069179 scopus 로고    scopus 로고
    • A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011
    • Orth,J.D. et al. (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol. Syst. Biol., 7, 535.
    • (2011) Mol. Syst. Biol , vol.7 , pp. 535
    • Orth, J.D.1
  • 31
    • 70449646314 scopus 로고    scopus 로고
    • Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae
    • Rintala,E. et al. (2009) Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae. BMC Genomics, 10, 461.
    • (2009) BMC Genomics , vol.10 , pp. 461
    • Rintala, E.1
  • 32
    • 51349092391 scopus 로고    scopus 로고
    • Network-based prediction of human tissue-specific metabolism
    • Shlomi,T. et al. (2008) Network-based prediction of human tissue-specific metabolism. Nat. Biotechnol., 26, 1003-1010.
    • (2008) Nat. Biotechnol , vol.26 , pp. 1003-1010
    • Shlomi, T.1
  • 33
    • 84870941105 scopus 로고    scopus 로고
    • FOCAL: An experimental design tool for systematizing metabolic discoveries and model development
    • Tervo,C.J. and Reed,J.L. (2012) FOCAL: an experimental design tool for systematizing metabolic discoveries and model development. Genome Biol., 13, R116.
    • (2012) Genome Biol , vol.13 , pp. R116
    • Tervo, C.J.1    Reed, J.L.2
  • 34
    • 38349121328 scopus 로고    scopus 로고
    • Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions
    • Wiebe,M.G. et al. (2008) Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Res., 8, 140-154.
    • (2008) FEMS Yeast Res , vol.8 , pp. 140-154
    • Wiebe, M.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.