-
2
-
-
84941740491
-
The need for biofuels as part of a low carbon energy future
-
1:CAS:528:DC%2BC2MXhtVensbnI
-
Fulton LM, Lynd LR, Korner A, Greene N, Tonachel LR. The need for biofuels as part of a low carbon energy future. Biofuel Bioprod Bior. 2015;9:476-83.
-
(2015)
Biofuel Bioprod Bior
, vol.9
, pp. 476-483
-
-
Fulton, L.M.1
Lynd, L.R.2
Korner, A.3
Greene, N.4
Tonachel, L.R.5
-
3
-
-
26844573080
-
Likely features and costs of mature biomass ethanol technology
-
Lynd LR, Elander RT, Wyman CE. Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotech. 1996;57-8:741-61.
-
(1996)
Appl Biochem Biotech
, vol.57-58
, pp. 741-761
-
-
Lynd, L.R.1
Elander, R.T.2
Wyman, C.E.3
-
4
-
-
25844505728
-
Consolidated bioprocessing of cellulosic biomass: An update
-
1:CAS:528:DC%2BD2MXhtVKjsLnE
-
Lynd LR, van Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol. 2005;16:577-83.
-
(2005)
Curr Opin Biotechnol
, vol.16
, pp. 577-583
-
-
Lynd, L.R.1
Van Zyl, W.H.2
McBride, J.E.3
Laser, M.4
-
5
-
-
14944356813
-
Cellulase, clostridia, and ethanol
-
1:CAS:528:DC%2BD2MXjtVOhtLg%3D
-
Demain AL, Newcomb M, Wu JHD. Cellulase, clostridia, and ethanol. Microbiol Mol Biol R. 2005;69:124-54.
-
(2005)
Microbiol Mol Biol R
, vol.69
, pp. 124-154
-
-
Demain, A.L.1
Newcomb, M.2
Wu, J.H.D.3
-
6
-
-
0034840478
-
The cellulosome and cellulose degradation by anaerobic bacteria
-
1:CAS:528:DC%2BD3MXnslGgs7s%3D
-
Schwarz WH. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol. 2001;56:634-49.
-
(2001)
Appl Microbiol Biotechnol
, vol.56
, pp. 634-649
-
-
Schwarz, W.H.1
-
7
-
-
82955187557
-
Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405)
-
1:CAS:528:DC%2BC3MXhsFSqtrfO
-
Ellis LD, Holwerda EK, Hogsett D, Rogers S, Shao XJ, Tschaplinski T, Thorne P, Lynd LR. Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405). Bioresour Technol. 2012;103:293-9.
-
(2012)
Bioresour Technol
, vol.103
, pp. 293-299
-
-
Ellis, L.D.1
Holwerda, E.K.2
Hogsett, D.3
Rogers, S.4
Shao, X.J.5
Tschaplinski, T.6
Thorne, P.7
Lynd, L.R.8
-
8
-
-
84940048571
-
Improving prediction fidelity of cellular metabolism with kinetic descriptions
-
1:CAS:528:DC%2BC2MXhtlymurzF
-
Chowdhury A, Khodayari A, Maranas CD. Improving prediction fidelity of cellular metabolism with kinetic descriptions. Curr Opin Biotechnol. 2015;36:57-64.
-
(2015)
Curr Opin Biotechnol
, vol.36
, pp. 57-64
-
-
Chowdhury, A.1
Khodayari, A.2
Maranas, C.D.3
-
9
-
-
84883764668
-
Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum
-
1:CAS:528:DC%2BC3sXhsFWmt73P
-
Linville JL, Rodriguez M Jr, Mielenz JR, Cox CD. Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum. Bioresour Technol. 2013;147:605-13.
-
(2013)
Bioresour Technol
, vol.147
, pp. 605-613
-
-
Linville, J.L.1
Rodriguez, M.2
Mielenz, J.R.3
Cox, C.D.4
-
10
-
-
1642273858
-
Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum
-
1:CAS:528:DC%2BD2cXisVKisro%3D
-
Zhang YH, Lynd LR. Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum. Appl Environ Microbiol. 2004;70:1563-9.
-
(2004)
Appl Environ Microbiol
, vol.70
, pp. 1563-1569
-
-
Zhang, Y.H.1
Lynd, L.R.2
-
11
-
-
84928321983
-
A kinetics modeling study on the inhibition of glucose on cellulosome of Clostridium thermocellum
-
1:CAS:528:DC%2BC2MXnt1Sku74%3D
-
Zhang P, Wang B, Xiao Q, Wu S. A kinetics modeling study on the inhibition of glucose on cellulosome of Clostridium thermocellum. Bioresour Technol. 2015;190:36-43.
-
(2015)
Bioresour Technol
, vol.190
, pp. 36-43
-
-
Zhang, P.1
Wang, B.2
Xiao, Q.3
Wu, S.4
-
12
-
-
84964318216
-
Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose
-
1:CAS:528:DC%2BC28XhsV2ntrk%3D
-
Olsen JP, Alasepp K, Kari J, Cruys-Bagger N, Borch K, Westh P. Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose. Biotechnol Bioeng. 2016;113:1178-86.
-
(2016)
Biotechnol Bioeng
, vol.113
, pp. 1178-1186
-
-
Olsen, J.P.1
Alasepp, K.2
Kari, J.3
Cruys-Bagger, N.4
Borch, K.5
Westh, P.6
-
13
-
-
77954736119
-
Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production
-
Roberts SB, Gowen CM, Brooks JP, Fong SS. Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst. Biol. 2010;4(1):31.
-
(2010)
BMC Syst. Biol.
, vol.4
, Issue.1
, pp. 31
-
-
Roberts, S.B.1
Gowen, C.M.2
Brooks, J.P.3
Fong, S.S.4
-
14
-
-
84898548508
-
A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains
-
1:CAS:528:DC%2BC3sXhtFOns73O
-
Choon YW, Mohamad MS, Deris S, Illias RM, Chong CK, Chai LE. A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains. Bioproc Biosyst Eng. 2014;37:521-32.
-
(2014)
Bioproc Biosyst Eng
, vol.37
, pp. 521-532
-
-
Choon, Y.W.1
Mohamad, M.S.2
Deris, S.3
Illias, R.M.4
Chong, C.K.5
Chai, L.E.6
-
15
-
-
80053293747
-
Applications of systems biology towards microbial fuel production
-
1:CAS:528:DC%2BC3MXht1GrurrL
-
Gowen CM, Fong SS. Applications of systems biology towards microbial fuel production. Trends Microbiol. 2011;19:516-24.
-
(2011)
Trends Microbiol
, vol.19
, pp. 516-524
-
-
Gowen, C.M.1
Fong, S.S.2
-
16
-
-
84876299239
-
Atypical glycolysis in Clostridium thermocellum
-
1:CAS:528:DC%2BC3sXmsFegtrk%3D
-
Zhou J, Olson DG, Argyros DA, Deng Y, van Gulik WM, van Dijken JP, Lynd LR. Atypical glycolysis in Clostridium thermocellum. Appl Environ Microbiol. 2013;79:3000-8.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 3000-3008
-
-
Zhou, J.1
Olson, D.G.2
Argyros, D.A.3
Deng, Y.4
Van Gulik, W.M.5
Van Dijken, J.P.6
Lynd, L.R.7
-
17
-
-
84960194045
-
Metabolic modeling of clostridia: Current developments and applications
-
Dash S, Ng CY, Maranas CD. Metabolic modeling of clostridia: current developments and applications. FEMS Microbiol Lett. 2016. doi: 10.1093/femsle/fnw004.
-
(2016)
FEMS Microbiol Lett
-
-
Dash, S.1
Ng, C.Y.2
Maranas, C.D.3
-
18
-
-
84948147201
-
Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum
-
1:CAS:528:DC%2BC2MXhslWhtLbL
-
Thompson RA, Layton DS, Guss AM, Olson DG, Lynd LR, Trinh CT. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum. Metab Eng. 2015;32:207-19.
-
(2015)
Metab Eng
, vol.32
, pp. 207-219
-
-
Thompson, R.A.1
Layton, D.S.2
Guss, A.M.3
Olson, D.G.4
Lynd, L.R.5
Trinh, C.T.6
-
19
-
-
84986268031
-
Exploring complex cellular phenotypes and model-guided strain design with a novel genome-scale metabolic model of Clostridium thermocellum DSM 1313 implementing an adjustable cellulosome
-
Thompson RA, Dahal S, Garcia S, Nookaew I, Trinh CT. Exploring complex cellular phenotypes and model-guided strain design with a novel genome-scale metabolic model of Clostridium thermocellum DSM 1313 implementing an adjustable cellulosome. Biotechnol Biofuels. 2016;9:194.
-
(2016)
Biotechnol Biofuels
, vol.9
, pp. 194
-
-
Thompson, R.A.1
Dahal, S.2
Garcia, S.3
Nookaew, I.4
Trinh, C.T.5
-
20
-
-
84988815635
-
Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model
-
Dash S, Mueller TJ, Venkataramanan KP, Papoutsakis ET, Maranas CD. Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model. Biotechnol Biofuels. 2014;7:144.
-
(2014)
Biotechnol Biofuels
, vol.7
, pp. 144
-
-
Dash, S.1
Mueller, T.J.2
Venkataramanan, K.P.3
Papoutsakis, E.T.4
Maranas, C.D.5
-
21
-
-
82355185823
-
Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum
-
1:CAS:528:DC%2BC3MXht1yhur3F
-
Shao X, Raman B, Zhu M, Mielenz JR, Brown SD, Guss AM, Lynd LR. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Appl Microbiol Biotechnol. 2011;92:641-52.
-
(2011)
Appl Microbiol Biotechnol
, vol.92
, pp. 641-652
-
-
Shao, X.1
Raman, B.2
Zhu, M.3
Mielenz, J.R.4
Brown, S.D.5
Guss, A.M.6
Lynd, L.R.7
-
22
-
-
84925357278
-
Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase
-
1:CAS:528:DC%2BC2MXkvFShu7c%3D
-
Taillefer M, Rydzak T, Levin DB, Oresnik IJ, Sparling R. Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase. Appl Environ Microbiol. 2015;81:2423-32.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 2423-2432
-
-
Taillefer, M.1
Rydzak, T.2
Levin, D.B.3
Oresnik, I.J.4
Sparling, R.5
-
23
-
-
84924023248
-
Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum
-
Biswas R, Zheng T, Olson DG, Lynd LR, Guss AM. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol Biofuels. 2015;8:20.
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 20
-
-
Biswas, R.1
Zheng, T.2
Olson, D.G.3
Lynd, L.R.4
Guss, A.M.5
-
24
-
-
0016680372
-
Enzymological aspects of the pathways for trimethylamine oxidation and C1 assimilation of obligate methylotrophs and restricted facultative methylotrophs
-
1:CAS:528:DyaE2MXlt1yntbc%3D
-
Colby J, Zatman LJ. Enzymological aspects of the pathways for trimethylamine oxidation and C1 assimilation of obligate methylotrophs and restricted facultative methylotrophs. Biochem J. 1975;148:513-20.
-
(1975)
Biochem J
, vol.148
, pp. 513-520
-
-
Colby, J.1
Zatman, L.J.2
-
25
-
-
0038919017
-
Transcarboxylase. II. Purification and properties of methylmalonyl-oxaloacetic transcarboxylase
-
1:CAS:528:DyaF3MXotFyquw%3D%3D
-
Wood HG, Stjernholm R. Transcarboxylase. II. Purification and properties of methylmalonyl-oxaloacetic transcarboxylase. Proc Natl Acad Sci USA. 1961;47:289-303.
-
(1961)
Proc Natl Acad Sci USA
, vol.47
, pp. 289-303
-
-
Wood, H.G.1
Stjernholm, R.2
-
26
-
-
84994884866
-
CO2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum
-
1:CAS:528:DC%2BC28XhslGgtLrM
-
Xiong W, Lin PP, Magnusson L, Warner L, Liao JC, Maness PC, Chou KJ. CO2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum. Proc Natl Acad Sci USA. 2016;113:13180-5.
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. 13180-13185
-
-
Xiong, W.1
Lin, P.P.2
Magnusson, L.3
Warner, L.4
Liao, J.C.5
Maness, P.C.6
Chou, K.J.7
-
27
-
-
0042431934
-
Ketopantoate reductase activity is only encoded by ilvC in Corynebacterium glutamicum
-
1:CAS:528:DC%2BD3sXmslensLs%3D
-
Merkamm M, Chassagnole C, Lindley ND, Guyonvarch A. Ketopantoate reductase activity is only encoded by ilvC in Corynebacterium glutamicum. J Biotechnol. 2003;104:253-60.
-
(2003)
J Biotechnol
, vol.104
, pp. 253-260
-
-
Merkamm, M.1
Chassagnole, C.2
Lindley, N.D.3
Guyonvarch, A.4
-
28
-
-
0029151050
-
Nutritional interdependence between Thermoanaerobacter-thermohydrosulfuricus and Clostridium thermocellum
-
1:CAS:528:DyaK2MXnvVWksro%3D
-
Mori Y. Nutritional interdependence between Thermoanaerobacter-thermohydrosulfuricus and Clostridium thermocellum. Arch Microbiol. 1995;164:152-4.
-
(1995)
Arch Microbiol
, vol.164
, pp. 152-154
-
-
Mori, Y.1
-
29
-
-
0031894325
-
When an ATPase is not an ATPase: At low temperatures the C-terminal domain of the ABC transporter CvaB is a GTPase
-
1:CAS:528:DyaK1cXhslCnsrk%3D
-
Zhong XT, Tai PC. When an ATPase is not an ATPase: at low temperatures the C-terminal domain of the ABC transporter CvaB is a GTPase. J Bacteriol. 1998;180:1347-53.
-
(1998)
J Bacteriol
, vol.180
, pp. 1347-1353
-
-
Zhong, X.T.1
Tai, P.C.2
-
30
-
-
38749142232
-
Characterization of nucleotide pools as a function of physiological state in Escherichia coli
-
1:CAS:528:DC%2BD1cXnsVKgsA%3D%3D
-
Buckstein MH, He J, Rubin H. Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J Bacteriol. 2008;190:718-26.
-
(2008)
J Bacteriol
, vol.190
, pp. 718-726
-
-
Buckstein, M.H.1
He, J.2
Rubin, H.3
-
31
-
-
77954724818
-
Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing
-
1:CAS:528:DC%2BC3cXptV2ht70%3D
-
Salimi F, Zhuang K, Mahadevan R. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol J. 2010;5:726-38.
-
(2010)
Biotechnol J
, vol.5
, pp. 726-738
-
-
Salimi, F.1
Zhuang, K.2
Mahadevan, R.3
-
32
-
-
51849157931
-
Genome-scale model for Clostridium acetobutylicum: Part II. Development of specific proton flux states and numerically determined sub-systems
-
1:CAS:528:DC%2BD1cXhsVWktLbO
-
Senger RS, Papoutsakis ET. Genome-scale model for Clostridium acetobutylicum: Part II. Development of specific proton flux states and numerically determined sub-systems. Biotechnol Bioeng. 2008;101:1053-71.
-
(2008)
Biotechnol Bioeng
, vol.101
, pp. 1053-1071
-
-
Senger, R.S.1
Papoutsakis, E.T.2
-
33
-
-
84988878111
-
The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading
-
Holwerda EK, Thorne PG, Olson DG, Amador-Noguez D, Engle NL, Tschaplinski TJ, van Dijken JP, Lynd LR. The exometabolome of Clostridium thermocellum reveals overflow metabolism at high cellulose loading. Biotechnol Biofuels. 2014;7(1):155.
-
(2014)
Biotechnol Biofuels
, vol.7
, Issue.1
, pp. 155
-
-
Holwerda, E.K.1
Thorne, P.G.2
Olson, D.G.3
Amador-Noguez, D.4
Engle, N.L.5
Tschaplinski, T.J.6
Van Dijken, J.P.7
Lynd, L.R.8
-
34
-
-
84871712835
-
Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation
-
1:CAS:528:DC%2BC38XhtFahs77I
-
Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim Biophys Acta. 2013;1827:94-113.
-
(2013)
Biochim Biophys Acta
, vol.1827
, pp. 94-113
-
-
Buckel, W.1
Thauer, R.K.2
-
35
-
-
4043143078
-
Metabolic selectivity and growth of Clostridium thermocellum in continuous culture under elevated hydrostatic pressure
-
1:CAS:528:DC%2BD2cXmt1Kltbo%3D
-
Bothun GD, Knutson BL, Berberich JA, Strobel HJ, Nokes SE. Metabolic selectivity and growth of Clostridium thermocellum in continuous culture under elevated hydrostatic pressure. Appl Microbiol Biot. 2004;65:149-57.
-
(2004)
Appl Microbiol Biot
, vol.65
, pp. 149-157
-
-
Bothun, G.D.1
Knutson, B.L.2
Berberich, J.A.3
Strobel, H.J.4
Nokes, S.E.5
-
36
-
-
85009967911
-
Glycolysis without pyruvate kinase in Clostridium thermocellum
-
1:CAS:528:DC%2BC28XitFGitbjM
-
Olson DG, Hörl M, Fuhrer T, Cui J, Zhou J, Maloney MI, Amador-Noguez D, Tian L, Sauer U, Lynd LR. Glycolysis without pyruvate kinase in Clostridium thermocellum. Metab Eng. 2017;39:169-80.
-
(2017)
Metab Eng
, vol.39
, pp. 169-180
-
-
Olson, D.G.1
Hörl, M.2
Fuhrer, T.3
Cui, J.4
Zhou, J.5
Maloney, M.I.6
Amador-Noguez, D.7
Tian, L.8
Sauer, U.9
Lynd, L.R.10
-
37
-
-
77954590959
-
OptForce: An optimization procedure for identifying all genetic manipulations leading to targeted overproductions
-
Ranganathan S, Suthers PF, Maranas CD. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol. 2010;6:e1000744.
-
(2010)
PLoS Comput Biol
, vol.6
, pp. e1000744
-
-
Ranganathan, S.1
Suthers, P.F.2
Maranas, C.D.3
-
38
-
-
84879230274
-
Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways
-
1:CAS:528:DC%2BC3sXptlKks7g%3D
-
van der Veen D, Lo J, Brown SD, Johnson CM, Tschaplinski TJ, Martin M, Engle NL, van den Berg RA, Argyros AD, Caiazza NC, et al. Characterization of Clostridium thermocellum strains with disrupted fermentation end-product pathways. J Ind Microbiol Biotechnol. 2013;40:725-34.
-
(2013)
J Ind Microbiol Biotechnol
, vol.40
, pp. 725-734
-
-
Van Der Veen, D.1
Lo, J.2
Brown, S.D.3
Johnson, C.M.4
Tschaplinski, T.J.5
Martin, M.6
Engle, N.L.7
Van Den Berg, R.A.8
Argyros, A.D.9
Caiazza, N.C.10
-
39
-
-
80051641411
-
Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052
-
1:CAS:528:DC%2BC3MXhtFKms7jL
-
Milne CB, Eddy JA, Raju R, Ardekani S, Kim PJ, Senger RS, Jin YS, Blaschek HP, Price ND. Metabolic network reconstruction and genome-scale model of butanol-producing strain Clostridium beijerinckii NCIMB 8052. BMC Syst Biol. 2011;5:130.
-
(2011)
BMC Syst Biol
, vol.5
, pp. 130
-
-
Milne, C.B.1
Eddy, J.A.2
Raju, R.3
Ardekani, S.4
Kim, P.J.5
Senger, R.S.6
Jin, Y.S.7
Blaschek, H.P.8
Price, N.D.9
-
40
-
-
0023958641
-
Amino acid transport by membrane vesicles of an obligate anaerobic bacterium, Clostridium acetobutylicum
-
1:CAS:528:DyaL1cXht1yht7o%3D
-
Driessen AJ, Ubbink-Kok T, Konings WN. Amino acid transport by membrane vesicles of an obligate anaerobic bacterium, Clostridium acetobutylicum. J Bacteriol. 1988;170:817-20.
-
(1988)
J Bacteriol
, vol.170
, pp. 817-820
-
-
Driessen, A.J.1
Ubbink-Kok, T.2
Konings, W.N.3
-
41
-
-
84871402263
-
Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum
-
1:CAS:528:DC%2BC3sXnvFKktg%3D%3D
-
Deng Y, Olson DG, Zhou JL, Herring CD, Shaw AJ, Lynd LR. Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum. Metab Eng. 2013;15:151-8.
-
(2013)
Metab Eng
, vol.15
, pp. 151-158
-
-
Deng, Y.1
Olson, D.G.2
Zhou, J.L.3
Herring, C.D.4
Shaw, A.J.5
Lynd, L.R.6
-
42
-
-
84941103395
-
BRENDA in 2015: Exciting developments in its 25th year of existence
-
Chang A, Schomburg I, Placzek S, Jeske L, Ulbrich M, Xiao M, Sensen CW, Schomburg D. BRENDA in 2015: exciting developments in its 25th year of existence. Nucleic Acids Res. 2015;43:D439-46.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. D439-D446
-
-
Chang, A.1
Schomburg, I.2
Placzek, S.3
Jeske, L.4
Ulbrich, M.5
Xiao, M.6
Sensen, C.W.7
Schomburg, D.8
-
43
-
-
84904317199
-
A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data
-
1:CAS:528:DC%2BC2cXht1Orur3J
-
Khodayari A, Zomorrodi AR, Liao JC, Maranas CD. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab Eng. 2014;25:50-62.
-
(2014)
Metab Eng
, vol.25
, pp. 50-62
-
-
Khodayari, A.1
Zomorrodi, A.R.2
Liao, J.C.3
Maranas, C.D.4
-
44
-
-
84866481432
-
Proteomic analysis of Clostridium thermocellum core metabolism: Relative protein expression profiles and growth phase-dependent changes in protein expression
-
1:CAS:528:DC%2BC3sXjsFWjsQ%3D%3D
-
Rydzak T, McQueen PD, Krokhin OV, Spicer V, Ezzati P, Dwivedi RC, Shamshurin D, Levin DB, Wilkins JA, Sparling R. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression. BMC Microbiol. 2012;12:214.
-
(2012)
BMC Microbiol
, vol.12
, pp. 214
-
-
Rydzak, T.1
McQueen, P.D.2
Krokhin, O.V.3
Spicer, V.4
Ezzati, P.5
Dwivedi, R.C.6
Shamshurin, D.7
Levin, D.B.8
Wilkins, J.A.9
Sparling, R.10
-
45
-
-
0019125267
-
Purification, properties, and kinetic mechanism of coenzyme a-linked aldehyde dehydrogenase from Clostridium kluyver
-
1:CAS:528:DyaL3cXlvVWltLw%3D
-
Smith LT, Kaplan NO. Purification, properties, and kinetic mechanism of coenzyme a-linked aldehyde dehydrogenase from Clostridium kluyver. Arch Biochem Biophys. 1980;203:663-75.
-
(1980)
Arch Biochem Biophys
, vol.203
, pp. 663-675
-
-
Smith, L.T.1
Kaplan, N.O.2
-
46
-
-
0021682728
-
Alternative pathways for biosynthesis of leucine and other amino acids in Bacteroides ruminicola and Bacteroides fragilis
-
1:CAS:528:DyaL2MXkt1Kksw%3D%3D
-
Allison MJ, Baetz AL, Wiegel J. Alternative pathways for biosynthesis of leucine and other amino acids in Bacteroides ruminicola and Bacteroides fragilis. Appl Environ Microbiol. 1984;48:1111-7.
-
(1984)
Appl Environ Microbiol
, vol.48
, pp. 1111-1117
-
-
Allison, M.J.1
Baetz, A.L.2
Wiegel, J.3
-
47
-
-
78649786133
-
Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism
-
1:CAS:528:DC%2BC3cXhsF2jsbbJ
-
Miller R, Wu G, Deshpande RR, Vieler A, Gartner K, Li X, Moellering ER, Zauner S, Cornish AJ, Liu B, et al. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol. 2010;154:1737-52.
-
(2010)
Plant Physiol
, vol.154
, pp. 1737-1752
-
-
Miller, R.1
Wu, G.2
Deshpande, R.R.3
Vieler, A.4
Gartner, K.5
Li, X.6
Moellering, E.R.7
Zauner, S.8
Cornish, A.J.9
Liu, B.10
-
48
-
-
79551571018
-
Metabolomics in systems microbiology
-
1:CAS:528:DC%2BC3MXhs1egtrw%3D
-
Reaves ML, Rabinowitz JD. Metabolomics in systems microbiology. Curr Opin Biotechnol. 2011;22:17-25.
-
(2011)
Curr Opin Biotechnol
, vol.22
, pp. 17-25
-
-
Reaves, M.L.1
Rabinowitz, J.D.2
-
49
-
-
85019597176
-
Advances in consolidated bioprocessing using Clostridium thermocellum and Thermoanaerobacterium saccharolyticum
-
Lynd LR, Guss AM, Himmel ME, Beri D, Herring CD, Holwerda EK, Murphy SJ, Olson DG, Paye J, Rydzak T, Shao X. Advances in consolidated bioprocessing using Clostridium thermocellum and Thermoanaerobacterium saccharolyticum. Industrial Biotechnology: Microorganisms. 2017:365-94. doi: 10.1002/9783527807796.ch10
-
(2017)
Industrial Biotechnology: Microorganisms
, pp. 365-394
-
-
Lynd, L.R.1
Guss, A.M.2
Himmel, M.E.3
Beri, D.4
Herring, C.D.5
Holwerda, E.K.6
Murphy, S.J.7
Olson, D.G.8
Paye, J.9
Rydzak, T.10
Shao, X.11
-
50
-
-
84867729815
-
Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress
-
1:CAS:528:DC%2BC38Xhslaju7zE
-
Yang S, Giannone RJ, Dice L, Yang ZK, Engle NL, Tschaplinski TJ, Hettich RL, Brown SD. Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress. Bmc Genomics. 2012;13:336.
-
(2012)
Bmc Genomics
, vol.13
, pp. 336
-
-
Yang, S.1
Giannone, R.J.2
Dice, L.3
Yang, Z.K.4
Engle, N.L.5
Tschaplinski, T.J.6
Hettich, R.L.7
Brown, S.D.8
-
51
-
-
84904296838
-
Ensemble modeling for robustness analysis in engineering non-native metabolic pathways
-
1:CAS:528:DC%2BC2cXht1OrurzF
-
Lee Y, Lafontaine Rivera JG, Liao JC. Ensemble modeling for robustness analysis in engineering non-native metabolic pathways. Metab Eng. 2014;25:63-71.
-
(2014)
Metab Eng
, vol.25
, pp. 63-71
-
-
Lee, Y.1
Lafontaine Rivera, J.G.2
Liao, J.C.3
-
52
-
-
84962052932
-
Stability of ensemble models predicts productivity of enzymatic systems
-
Theisen MK, Lafontaine Rivera JG, Liao JC. Stability of ensemble models predicts productivity of enzymatic systems. PLoS Comput Biol. 2016;12:e1004800.
-
(2016)
PLoS Comput Biol
, vol.12
, pp. e1004800
-
-
Theisen, M.K.1
Lafontaine Rivera, J.G.2
Liao, J.C.3
-
53
-
-
0042932693
-
Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum
-
1:CAS:528:DC%2BD3sXmslensLo%3D
-
Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol. 2003;104:241-52.
-
(2003)
J Biotechnol
, vol.104
, pp. 241-252
-
-
Leyval, D.1
Uy, D.2
Delaunay, S.3
Goergen, J.L.4
Engasser, J.M.5
-
54
-
-
85007015976
-
A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains
-
1:CAS:528:DC%2BC28XitFGjtbbM
-
Khodayari A, Maranas CD. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat Commun. 2016;7:13806.
-
(2016)
Nat Commun
, vol.7
, pp. 13806
-
-
Khodayari, A.1
Maranas, C.D.2
-
55
-
-
84876560030
-
MetaboLights-an open-access general-purpose repository for metabolomics studies and associated meta-data
-
1:CAS:528:DC%2BC38XhvV2ktrnO
-
Haug K, Salek RM, Conesa P, Hastings J, de Matos P, Rijnbeek M, Mahendraker T, Williams M, Neumann S, Rocca-Serra P, et al. MetaboLights-an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 2013;41:D781-6.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. D781-D786
-
-
Haug, K.1
Salek, R.M.2
Conesa, P.3
Hastings, J.4
De Matos, P.5
Rijnbeek, M.6
Mahendraker, T.7
Williams, M.8
Neumann, S.9
Rocca-Serra, P.10
-
56
-
-
84924023248
-
Elimination of hydrogenase active site assembly blocks H-2 production and increases ethanol yield in Clostridium thermocellum
-
Biswas R, Zheng TY, Olson DG, Lynd LR, Guss AM. Elimination of hydrogenase active site assembly blocks H-2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol Biofuels. 2015;8:20.
-
(2015)
Biotechnol Biofuels
, vol.8
, pp. 20
-
-
Biswas, R.1
Zheng, T.Y.2
Olson, D.G.3
Lynd, L.R.4
Guss, A.M.5
-
57
-
-
84876991459
-
Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production
-
1:CAS:528:DC%2BC3sXntF2js7Y%3D
-
Schuster BG, Chinn MS. Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production. Bioenerg Res. 2013;6(2):416-35.
-
(2013)
Bioenerg Res
, vol.6
, Issue.2
, pp. 416-435
-
-
Schuster, B.G.1
Chinn, M.S.2
-
58
-
-
85006046049
-
Engineering electron metabolism to increase ethanol production in Clostridium thermocellum
-
1:CAS:528:DC%2BC28Xhsl2iu73E
-
Lo J, Olson DG, Murphy SJ, Tian L, Hon S, Lanahan A, Guss AM, Lynd LR. Engineering electron metabolism to increase ethanol production in Clostridium thermocellum. Metab Eng. 2017;39:71-9.
-
(2017)
Metab Eng
, vol.39
, pp. 71-79
-
-
Lo, J.1
Olson, D.G.2
Murphy, S.J.3
Tian, L.4
Hon, S.5
Lanahan, A.6
Guss, A.M.7
Lynd, L.R.8
-
59
-
-
84895756673
-
K-OptForce: Integrating kinetics with flux balance analysis for strain design
-
Chowdhury A, Zomorrodi AR, Maranas CD. k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput Biol. 2014;10:e1003487.
-
(2014)
PLoS Comput Biol
, vol.10
, pp. e1003487
-
-
Chowdhury, A.1
Zomorrodi, A.R.2
Maranas, C.D.3
-
60
-
-
84877149255
-
SMET: Systematic multiple enzyme targeting - A method to rationally design optimal strains for target chemical overproduction
-
1:CAS:528:DC%2BC3sXmsVeitrw%3D
-
Flowers D, Thompson RA, Birdwell D, Wang T, Trinh CT. SMET: systematic multiple enzyme targeting - a method to rationally design optimal strains for target chemical overproduction. Biotechnol J. 2013;8:605-18.
-
(2013)
Biotechnol J
, vol.8
, pp. 605-618
-
-
Flowers, D.1
Thompson, R.A.2
Birdwell, D.3
Wang, T.4
Trinh, C.T.5
-
61
-
-
84880528485
-
Automated genome annotation and metabolic model reconstruction in the SEED and model SEED
-
1:CAS:528:DC%2BC3sXhvVaisrvP
-
Devoid S, Overbeek R, DeJongh M, Vonstein V, Best AA, Henry C. Automated genome annotation and metabolic model reconstruction in the SEED and model SEED. Methods Mol Biol. 2013;985:17-45.
-
(2013)
Methods Mol Biol
, vol.985
, pp. 17-45
-
-
Devoid, S.1
Overbeek, R.2
Dejongh, M.3
Vonstein, V.4
Best, A.A.5
Henry, C.6
-
62
-
-
79551676901
-
Elimination of thermodynamically infeasible loops in steady-state metabolic models
-
1:CAS:528:DC%2BC3MXhtlGgtbg%3D
-
Schellenberger J, Lewis NE, Palsson BO. Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys J. 2011;100:544-53.
-
(2011)
Biophys J
, vol.100
, pp. 544-553
-
-
Schellenberger, J.1
Lewis, N.E.2
Palsson, B.O.3
-
63
-
-
77749320898
-
What is flux balance analysis?
-
1:CAS:528:DC%2BC3cXivV2rtL4%3D
-
Orth JD, Thiele I, Palsson BO. What is flux balance analysis? Nat Biotechnol. 2010;28:245-8.
-
(2010)
Nat Biotechnol
, vol.28
, pp. 245-248
-
-
Orth, J.D.1
Thiele, I.2
Palsson, B.O.3
-
65
-
-
84863469563
-
A defined growth medium with very low background carbon for culturing Clostridium thermocellum
-
1:CAS:528:DC%2BC38XntlOntLs%3D
-
Holwerda EK, Hirst KD, Lynd LR. A defined growth medium with very low background carbon for culturing Clostridium thermocellum. J Ind Microbiol Biotechnol. 2012;39:943-7.
-
(2012)
J Ind Microbiol Biotechnol
, vol.39
, pp. 943-947
-
-
Holwerda, E.K.1
Hirst, K.D.2
Lynd, L.R.3
|