메뉴 건너뛰기




Volumn 10, Issue 1, 2017, Pages

Development of a core Clostridium thermocellum kinetic metabolic model consistent with multiple genetic perturbations

Author keywords

Clostridium thermocellum; Ensemble modeling; Ethanol stress; Genome scale metabolic model; Kinetic model; Nitrogen limitation

Indexed keywords

AMINO ACIDS; BIOFUELS; CLOSTRIDIUM; ETHANOL; FORECASTING; GENES; HYDROGEN PRODUCTION; KINETIC PARAMETERS; KINETIC THEORY; KINETICS; METABOLISM; METABOLITES; NITROGEN; PHYSIOLOGY; SUGARS;

EID: 85020223218     PISSN: 17546834     EISSN: None     Source Type: Journal    
DOI: 10.1186/s13068-017-0792-2     Document Type: Article
Times cited : (29)

References (65)
  • 1
    • 0036714783 scopus 로고    scopus 로고
    • Microbial cellulose utilization: Fundamentals and biotechnology
    • 1:CAS:528:DC%2BD38XnsFOitrk%3D
    • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66:506-77.
    • (2002) Microbiol Mol Biol Rev , vol.66 , pp. 506-577
    • Lynd, L.R.1    Weimer, P.J.2    Van Zyl, W.H.3    Pretorius, I.S.4
  • 3
    • 26844573080 scopus 로고    scopus 로고
    • Likely features and costs of mature biomass ethanol technology
    • Lynd LR, Elander RT, Wyman CE. Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotech. 1996;57-8:741-61.
    • (1996) Appl Biochem Biotech , vol.57-58 , pp. 741-761
    • Lynd, L.R.1    Elander, R.T.2    Wyman, C.E.3
  • 4
    • 25844505728 scopus 로고    scopus 로고
    • Consolidated bioprocessing of cellulosic biomass: An update
    • 1:CAS:528:DC%2BD2MXhtVKjsLnE
    • Lynd LR, van Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol. 2005;16:577-83.
    • (2005) Curr Opin Biotechnol , vol.16 , pp. 577-583
    • Lynd, L.R.1    Van Zyl, W.H.2    McBride, J.E.3    Laser, M.4
  • 5
  • 6
    • 0034840478 scopus 로고    scopus 로고
    • The cellulosome and cellulose degradation by anaerobic bacteria
    • 1:CAS:528:DC%2BD3MXnslGgs7s%3D
    • Schwarz WH. The cellulosome and cellulose degradation by anaerobic bacteria. Appl Microbiol Biotechnol. 2001;56:634-49.
    • (2001) Appl Microbiol Biotechnol , vol.56 , pp. 634-649
    • Schwarz, W.H.1
  • 8
    • 84940048571 scopus 로고    scopus 로고
    • Improving prediction fidelity of cellular metabolism with kinetic descriptions
    • 1:CAS:528:DC%2BC2MXhtlymurzF
    • Chowdhury A, Khodayari A, Maranas CD. Improving prediction fidelity of cellular metabolism with kinetic descriptions. Curr Opin Biotechnol. 2015;36:57-64.
    • (2015) Curr Opin Biotechnol , vol.36 , pp. 57-64
    • Chowdhury, A.1    Khodayari, A.2    Maranas, C.D.3
  • 9
    • 84883764668 scopus 로고    scopus 로고
    • Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum
    • 1:CAS:528:DC%2BC3sXhsFWmt73P
    • Linville JL, Rodriguez M Jr, Mielenz JR, Cox CD. Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum. Bioresour Technol. 2013;147:605-13.
    • (2013) Bioresour Technol , vol.147 , pp. 605-613
    • Linville, J.L.1    Rodriguez, M.2    Mielenz, J.R.3    Cox, C.D.4
  • 10
    • 1642273858 scopus 로고    scopus 로고
    • Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum
    • 1:CAS:528:DC%2BD2cXisVKisro%3D
    • Zhang YH, Lynd LR. Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum. Appl Environ Microbiol. 2004;70:1563-9.
    • (2004) Appl Environ Microbiol , vol.70 , pp. 1563-1569
    • Zhang, Y.H.1    Lynd, L.R.2
  • 11
    • 84928321983 scopus 로고    scopus 로고
    • A kinetics modeling study on the inhibition of glucose on cellulosome of Clostridium thermocellum
    • 1:CAS:528:DC%2BC2MXnt1Sku74%3D
    • Zhang P, Wang B, Xiao Q, Wu S. A kinetics modeling study on the inhibition of glucose on cellulosome of Clostridium thermocellum. Bioresour Technol. 2015;190:36-43.
    • (2015) Bioresour Technol , vol.190 , pp. 36-43
    • Zhang, P.1    Wang, B.2    Xiao, Q.3    Wu, S.4
  • 12
    • 84964318216 scopus 로고    scopus 로고
    • Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose
    • 1:CAS:528:DC%2BC28XhsV2ntrk%3D
    • Olsen JP, Alasepp K, Kari J, Cruys-Bagger N, Borch K, Westh P. Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose. Biotechnol Bioeng. 2016;113:1178-86.
    • (2016) Biotechnol Bioeng , vol.113 , pp. 1178-1186
    • Olsen, J.P.1    Alasepp, K.2    Kari, J.3    Cruys-Bagger, N.4    Borch, K.5    Westh, P.6
  • 13
    • 77954736119 scopus 로고    scopus 로고
    • Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production
    • Roberts SB, Gowen CM, Brooks JP, Fong SS. Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst. Biol. 2010;4(1):31.
    • (2010) BMC Syst. Biol. , vol.4 , Issue.1 , pp. 31
    • Roberts, S.B.1    Gowen, C.M.2    Brooks, J.P.3    Fong, S.S.4
  • 14
    • 84898548508 scopus 로고    scopus 로고
    • A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains
    • 1:CAS:528:DC%2BC3sXhtFOns73O
    • Choon YW, Mohamad MS, Deris S, Illias RM, Chong CK, Chai LE. A hybrid of bees algorithm and flux balance analysis with OptKnock as a platform for in silico optimization of microbial strains. Bioproc Biosyst Eng. 2014;37:521-32.
    • (2014) Bioproc Biosyst Eng , vol.37 , pp. 521-532
    • Choon, Y.W.1    Mohamad, M.S.2    Deris, S.3    Illias, R.M.4    Chong, C.K.5    Chai, L.E.6
  • 15
    • 80053293747 scopus 로고    scopus 로고
    • Applications of systems biology towards microbial fuel production
    • 1:CAS:528:DC%2BC3MXht1GrurrL
    • Gowen CM, Fong SS. Applications of systems biology towards microbial fuel production. Trends Microbiol. 2011;19:516-24.
    • (2011) Trends Microbiol , vol.19 , pp. 516-524
    • Gowen, C.M.1    Fong, S.S.2
  • 17
    • 84960194045 scopus 로고    scopus 로고
    • Metabolic modeling of clostridia: Current developments and applications
    • Dash S, Ng CY, Maranas CD. Metabolic modeling of clostridia: current developments and applications. FEMS Microbiol Lett. 2016. doi: 10.1093/femsle/fnw004.
    • (2016) FEMS Microbiol Lett
    • Dash, S.1    Ng, C.Y.2    Maranas, C.D.3
  • 18
    • 84948147201 scopus 로고    scopus 로고
    • Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum
    • 1:CAS:528:DC%2BC2MXhslWhtLbL
    • Thompson RA, Layton DS, Guss AM, Olson DG, Lynd LR, Trinh CT. Elucidating central metabolic redox obstacles hindering ethanol production in Clostridium thermocellum. Metab Eng. 2015;32:207-19.
    • (2015) Metab Eng , vol.32 , pp. 207-219
    • Thompson, R.A.1    Layton, D.S.2    Guss, A.M.3    Olson, D.G.4    Lynd, L.R.5    Trinh, C.T.6
  • 19
    • 84986268031 scopus 로고    scopus 로고
    • Exploring complex cellular phenotypes and model-guided strain design with a novel genome-scale metabolic model of Clostridium thermocellum DSM 1313 implementing an adjustable cellulosome
    • Thompson RA, Dahal S, Garcia S, Nookaew I, Trinh CT. Exploring complex cellular phenotypes and model-guided strain design with a novel genome-scale metabolic model of Clostridium thermocellum DSM 1313 implementing an adjustable cellulosome. Biotechnol Biofuels. 2016;9:194.
    • (2016) Biotechnol Biofuels , vol.9 , pp. 194
    • Thompson, R.A.1    Dahal, S.2    Garcia, S.3    Nookaew, I.4    Trinh, C.T.5
  • 20
    • 84988815635 scopus 로고    scopus 로고
    • Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model
    • Dash S, Mueller TJ, Venkataramanan KP, Papoutsakis ET, Maranas CD. Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model. Biotechnol Biofuels. 2014;7:144.
    • (2014) Biotechnol Biofuels , vol.7 , pp. 144
    • Dash, S.1    Mueller, T.J.2    Venkataramanan, K.P.3    Papoutsakis, E.T.4    Maranas, C.D.5
  • 21
    • 82355185823 scopus 로고    scopus 로고
    • Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum
    • 1:CAS:528:DC%2BC3MXht1yhur3F
    • Shao X, Raman B, Zhu M, Mielenz JR, Brown SD, Guss AM, Lynd LR. Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum. Appl Microbiol Biotechnol. 2011;92:641-52.
    • (2011) Appl Microbiol Biotechnol , vol.92 , pp. 641-652
    • Shao, X.1    Raman, B.2    Zhu, M.3    Mielenz, J.R.4    Brown, S.D.5    Guss, A.M.6    Lynd, L.R.7
  • 22
    • 84925357278 scopus 로고    scopus 로고
    • Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase
    • 1:CAS:528:DC%2BC2MXkvFShu7c%3D
    • Taillefer M, Rydzak T, Levin DB, Oresnik IJ, Sparling R. Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase. Appl Environ Microbiol. 2015;81:2423-32.
    • (2015) Appl Environ Microbiol , vol.81 , pp. 2423-2432
    • Taillefer, M.1    Rydzak, T.2    Levin, D.B.3    Oresnik, I.J.4    Sparling, R.5
  • 23
    • 84924023248 scopus 로고    scopus 로고
    • Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum
    • Biswas R, Zheng T, Olson DG, Lynd LR, Guss AM. Elimination of hydrogenase active site assembly blocks H2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol Biofuels. 2015;8:20.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 20
    • Biswas, R.1    Zheng, T.2    Olson, D.G.3    Lynd, L.R.4    Guss, A.M.5
  • 24
    • 0016680372 scopus 로고
    • Enzymological aspects of the pathways for trimethylamine oxidation and C1 assimilation of obligate methylotrophs and restricted facultative methylotrophs
    • 1:CAS:528:DyaE2MXlt1yntbc%3D
    • Colby J, Zatman LJ. Enzymological aspects of the pathways for trimethylamine oxidation and C1 assimilation of obligate methylotrophs and restricted facultative methylotrophs. Biochem J. 1975;148:513-20.
    • (1975) Biochem J , vol.148 , pp. 513-520
    • Colby, J.1    Zatman, L.J.2
  • 25
    • 0038919017 scopus 로고
    • Transcarboxylase. II. Purification and properties of methylmalonyl-oxaloacetic transcarboxylase
    • 1:CAS:528:DyaF3MXotFyquw%3D%3D
    • Wood HG, Stjernholm R. Transcarboxylase. II. Purification and properties of methylmalonyl-oxaloacetic transcarboxylase. Proc Natl Acad Sci USA. 1961;47:289-303.
    • (1961) Proc Natl Acad Sci USA , vol.47 , pp. 289-303
    • Wood, H.G.1    Stjernholm, R.2
  • 26
    • 84994884866 scopus 로고    scopus 로고
    • CO2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum
    • 1:CAS:528:DC%2BC28XhslGgtLrM
    • Xiong W, Lin PP, Magnusson L, Warner L, Liao JC, Maness PC, Chou KJ. CO2-fixing one-carbon metabolism in a cellulose-degrading bacterium Clostridium thermocellum. Proc Natl Acad Sci USA. 2016;113:13180-5.
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. 13180-13185
    • Xiong, W.1    Lin, P.P.2    Magnusson, L.3    Warner, L.4    Liao, J.C.5    Maness, P.C.6    Chou, K.J.7
  • 27
    • 0042431934 scopus 로고    scopus 로고
    • Ketopantoate reductase activity is only encoded by ilvC in Corynebacterium glutamicum
    • 1:CAS:528:DC%2BD3sXmslensLs%3D
    • Merkamm M, Chassagnole C, Lindley ND, Guyonvarch A. Ketopantoate reductase activity is only encoded by ilvC in Corynebacterium glutamicum. J Biotechnol. 2003;104:253-60.
    • (2003) J Biotechnol , vol.104 , pp. 253-260
    • Merkamm, M.1    Chassagnole, C.2    Lindley, N.D.3    Guyonvarch, A.4
  • 28
    • 0029151050 scopus 로고
    • Nutritional interdependence between Thermoanaerobacter-thermohydrosulfuricus and Clostridium thermocellum
    • 1:CAS:528:DyaK2MXnvVWksro%3D
    • Mori Y. Nutritional interdependence between Thermoanaerobacter-thermohydrosulfuricus and Clostridium thermocellum. Arch Microbiol. 1995;164:152-4.
    • (1995) Arch Microbiol , vol.164 , pp. 152-154
    • Mori, Y.1
  • 29
    • 0031894325 scopus 로고    scopus 로고
    • When an ATPase is not an ATPase: At low temperatures the C-terminal domain of the ABC transporter CvaB is a GTPase
    • 1:CAS:528:DyaK1cXhslCnsrk%3D
    • Zhong XT, Tai PC. When an ATPase is not an ATPase: at low temperatures the C-terminal domain of the ABC transporter CvaB is a GTPase. J Bacteriol. 1998;180:1347-53.
    • (1998) J Bacteriol , vol.180 , pp. 1347-1353
    • Zhong, X.T.1    Tai, P.C.2
  • 30
    • 38749142232 scopus 로고    scopus 로고
    • Characterization of nucleotide pools as a function of physiological state in Escherichia coli
    • 1:CAS:528:DC%2BD1cXnsVKgsA%3D%3D
    • Buckstein MH, He J, Rubin H. Characterization of nucleotide pools as a function of physiological state in Escherichia coli. J Bacteriol. 2008;190:718-26.
    • (2008) J Bacteriol , vol.190 , pp. 718-726
    • Buckstein, M.H.1    He, J.2    Rubin, H.3
  • 31
    • 77954724818 scopus 로고    scopus 로고
    • Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing
    • 1:CAS:528:DC%2BC3cXptV2ht70%3D
    • Salimi F, Zhuang K, Mahadevan R. Genome-scale metabolic modeling of a clostridial co-culture for consolidated bioprocessing. Biotechnol J. 2010;5:726-38.
    • (2010) Biotechnol J , vol.5 , pp. 726-738
    • Salimi, F.1    Zhuang, K.2    Mahadevan, R.3
  • 32
    • 51849157931 scopus 로고    scopus 로고
    • Genome-scale model for Clostridium acetobutylicum: Part II. Development of specific proton flux states and numerically determined sub-systems
    • 1:CAS:528:DC%2BD1cXhsVWktLbO
    • Senger RS, Papoutsakis ET. Genome-scale model for Clostridium acetobutylicum: Part II. Development of specific proton flux states and numerically determined sub-systems. Biotechnol Bioeng. 2008;101:1053-71.
    • (2008) Biotechnol Bioeng , vol.101 , pp. 1053-1071
    • Senger, R.S.1    Papoutsakis, E.T.2
  • 34
    • 84871712835 scopus 로고    scopus 로고
    • Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation
    • 1:CAS:528:DC%2BC38XhtFahs77I
    • Buckel W, Thauer RK. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Biochim Biophys Acta. 2013;1827:94-113.
    • (2013) Biochim Biophys Acta , vol.1827 , pp. 94-113
    • Buckel, W.1    Thauer, R.K.2
  • 35
    • 4043143078 scopus 로고    scopus 로고
    • Metabolic selectivity and growth of Clostridium thermocellum in continuous culture under elevated hydrostatic pressure
    • 1:CAS:528:DC%2BD2cXmt1Kltbo%3D
    • Bothun GD, Knutson BL, Berberich JA, Strobel HJ, Nokes SE. Metabolic selectivity and growth of Clostridium thermocellum in continuous culture under elevated hydrostatic pressure. Appl Microbiol Biot. 2004;65:149-57.
    • (2004) Appl Microbiol Biot , vol.65 , pp. 149-157
    • Bothun, G.D.1    Knutson, B.L.2    Berberich, J.A.3    Strobel, H.J.4    Nokes, S.E.5
  • 37
    • 77954590959 scopus 로고    scopus 로고
    • OptForce: An optimization procedure for identifying all genetic manipulations leading to targeted overproductions
    • Ranganathan S, Suthers PF, Maranas CD. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol. 2010;6:e1000744.
    • (2010) PLoS Comput Biol , vol.6 , pp. e1000744
    • Ranganathan, S.1    Suthers, P.F.2    Maranas, C.D.3
  • 39
  • 40
    • 0023958641 scopus 로고
    • Amino acid transport by membrane vesicles of an obligate anaerobic bacterium, Clostridium acetobutylicum
    • 1:CAS:528:DyaL1cXht1yht7o%3D
    • Driessen AJ, Ubbink-Kok T, Konings WN. Amino acid transport by membrane vesicles of an obligate anaerobic bacterium, Clostridium acetobutylicum. J Bacteriol. 1988;170:817-20.
    • (1988) J Bacteriol , vol.170 , pp. 817-820
    • Driessen, A.J.1    Ubbink-Kok, T.2    Konings, W.N.3
  • 41
    • 84871402263 scopus 로고    scopus 로고
    • Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum
    • 1:CAS:528:DC%2BC3sXnvFKktg%3D%3D
    • Deng Y, Olson DG, Zhou JL, Herring CD, Shaw AJ, Lynd LR. Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum. Metab Eng. 2013;15:151-8.
    • (2013) Metab Eng , vol.15 , pp. 151-158
    • Deng, Y.1    Olson, D.G.2    Zhou, J.L.3    Herring, C.D.4    Shaw, A.J.5    Lynd, L.R.6
  • 43
    • 84904317199 scopus 로고    scopus 로고
    • A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data
    • 1:CAS:528:DC%2BC2cXht1Orur3J
    • Khodayari A, Zomorrodi AR, Liao JC, Maranas CD. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data. Metab Eng. 2014;25:50-62.
    • (2014) Metab Eng , vol.25 , pp. 50-62
    • Khodayari, A.1    Zomorrodi, A.R.2    Liao, J.C.3    Maranas, C.D.4
  • 44
    • 84866481432 scopus 로고    scopus 로고
    • Proteomic analysis of Clostridium thermocellum core metabolism: Relative protein expression profiles and growth phase-dependent changes in protein expression
    • 1:CAS:528:DC%2BC3sXjsFWjsQ%3D%3D
    • Rydzak T, McQueen PD, Krokhin OV, Spicer V, Ezzati P, Dwivedi RC, Shamshurin D, Levin DB, Wilkins JA, Sparling R. Proteomic analysis of Clostridium thermocellum core metabolism: relative protein expression profiles and growth phase-dependent changes in protein expression. BMC Microbiol. 2012;12:214.
    • (2012) BMC Microbiol , vol.12 , pp. 214
    • Rydzak, T.1    McQueen, P.D.2    Krokhin, O.V.3    Spicer, V.4    Ezzati, P.5    Dwivedi, R.C.6    Shamshurin, D.7    Levin, D.B.8    Wilkins, J.A.9    Sparling, R.10
  • 45
    • 0019125267 scopus 로고
    • Purification, properties, and kinetic mechanism of coenzyme a-linked aldehyde dehydrogenase from Clostridium kluyver
    • 1:CAS:528:DyaL3cXlvVWltLw%3D
    • Smith LT, Kaplan NO. Purification, properties, and kinetic mechanism of coenzyme a-linked aldehyde dehydrogenase from Clostridium kluyver. Arch Biochem Biophys. 1980;203:663-75.
    • (1980) Arch Biochem Biophys , vol.203 , pp. 663-675
    • Smith, L.T.1    Kaplan, N.O.2
  • 46
    • 0021682728 scopus 로고
    • Alternative pathways for biosynthesis of leucine and other amino acids in Bacteroides ruminicola and Bacteroides fragilis
    • 1:CAS:528:DyaL2MXkt1Kksw%3D%3D
    • Allison MJ, Baetz AL, Wiegel J. Alternative pathways for biosynthesis of leucine and other amino acids in Bacteroides ruminicola and Bacteroides fragilis. Appl Environ Microbiol. 1984;48:1111-7.
    • (1984) Appl Environ Microbiol , vol.48 , pp. 1111-1117
    • Allison, M.J.1    Baetz, A.L.2    Wiegel, J.3
  • 47
    • 78649786133 scopus 로고    scopus 로고
    • Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism
    • 1:CAS:528:DC%2BC3cXhsF2jsbbJ
    • Miller R, Wu G, Deshpande RR, Vieler A, Gartner K, Li X, Moellering ER, Zauner S, Cornish AJ, Liu B, et al. Changes in transcript abundance in Chlamydomonas reinhardtii following nitrogen deprivation predict diversion of metabolism. Plant Physiol. 2010;154:1737-52.
    • (2010) Plant Physiol , vol.154 , pp. 1737-1752
    • Miller, R.1    Wu, G.2    Deshpande, R.R.3    Vieler, A.4    Gartner, K.5    Li, X.6    Moellering, E.R.7    Zauner, S.8    Cornish, A.J.9    Liu, B.10
  • 48
    • 79551571018 scopus 로고    scopus 로고
    • Metabolomics in systems microbiology
    • 1:CAS:528:DC%2BC3MXhs1egtrw%3D
    • Reaves ML, Rabinowitz JD. Metabolomics in systems microbiology. Curr Opin Biotechnol. 2011;22:17-25.
    • (2011) Curr Opin Biotechnol , vol.22 , pp. 17-25
    • Reaves, M.L.1    Rabinowitz, J.D.2
  • 51
    • 84904296838 scopus 로고    scopus 로고
    • Ensemble modeling for robustness analysis in engineering non-native metabolic pathways
    • 1:CAS:528:DC%2BC2cXht1OrurzF
    • Lee Y, Lafontaine Rivera JG, Liao JC. Ensemble modeling for robustness analysis in engineering non-native metabolic pathways. Metab Eng. 2014;25:63-71.
    • (2014) Metab Eng , vol.25 , pp. 63-71
    • Lee, Y.1    Lafontaine Rivera, J.G.2    Liao, J.C.3
  • 52
    • 84962052932 scopus 로고    scopus 로고
    • Stability of ensemble models predicts productivity of enzymatic systems
    • Theisen MK, Lafontaine Rivera JG, Liao JC. Stability of ensemble models predicts productivity of enzymatic systems. PLoS Comput Biol. 2016;12:e1004800.
    • (2016) PLoS Comput Biol , vol.12 , pp. e1004800
    • Theisen, M.K.1    Lafontaine Rivera, J.G.2    Liao, J.C.3
  • 53
    • 0042932693 scopus 로고    scopus 로고
    • Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum
    • 1:CAS:528:DC%2BD3sXmslensLo%3D
    • Leyval D, Uy D, Delaunay S, Goergen JL, Engasser JM. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J Biotechnol. 2003;104:241-52.
    • (2003) J Biotechnol , vol.104 , pp. 241-252
    • Leyval, D.1    Uy, D.2    Delaunay, S.3    Goergen, J.L.4    Engasser, J.M.5
  • 54
    • 85007015976 scopus 로고    scopus 로고
    • A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains
    • 1:CAS:528:DC%2BC28XitFGjtbbM
    • Khodayari A, Maranas CD. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat Commun. 2016;7:13806.
    • (2016) Nat Commun , vol.7 , pp. 13806
    • Khodayari, A.1    Maranas, C.D.2
  • 56
    • 84924023248 scopus 로고    scopus 로고
    • Elimination of hydrogenase active site assembly blocks H-2 production and increases ethanol yield in Clostridium thermocellum
    • Biswas R, Zheng TY, Olson DG, Lynd LR, Guss AM. Elimination of hydrogenase active site assembly blocks H-2 production and increases ethanol yield in Clostridium thermocellum. Biotechnol Biofuels. 2015;8:20.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 20
    • Biswas, R.1    Zheng, T.Y.2    Olson, D.G.3    Lynd, L.R.4    Guss, A.M.5
  • 57
    • 84876991459 scopus 로고    scopus 로고
    • Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production
    • 1:CAS:528:DC%2BC3sXntF2js7Y%3D
    • Schuster BG, Chinn MS. Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production. Bioenerg Res. 2013;6(2):416-35.
    • (2013) Bioenerg Res , vol.6 , Issue.2 , pp. 416-435
    • Schuster, B.G.1    Chinn, M.S.2
  • 58
    • 85006046049 scopus 로고    scopus 로고
    • Engineering electron metabolism to increase ethanol production in Clostridium thermocellum
    • 1:CAS:528:DC%2BC28Xhsl2iu73E
    • Lo J, Olson DG, Murphy SJ, Tian L, Hon S, Lanahan A, Guss AM, Lynd LR. Engineering electron metabolism to increase ethanol production in Clostridium thermocellum. Metab Eng. 2017;39:71-9.
    • (2017) Metab Eng , vol.39 , pp. 71-79
    • Lo, J.1    Olson, D.G.2    Murphy, S.J.3    Tian, L.4    Hon, S.5    Lanahan, A.6    Guss, A.M.7    Lynd, L.R.8
  • 59
    • 84895756673 scopus 로고    scopus 로고
    • K-OptForce: Integrating kinetics with flux balance analysis for strain design
    • Chowdhury A, Zomorrodi AR, Maranas CD. k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput Biol. 2014;10:e1003487.
    • (2014) PLoS Comput Biol , vol.10 , pp. e1003487
    • Chowdhury, A.1    Zomorrodi, A.R.2    Maranas, C.D.3
  • 60
    • 84877149255 scopus 로고    scopus 로고
    • SMET: Systematic multiple enzyme targeting - A method to rationally design optimal strains for target chemical overproduction
    • 1:CAS:528:DC%2BC3sXmsVeitrw%3D
    • Flowers D, Thompson RA, Birdwell D, Wang T, Trinh CT. SMET: systematic multiple enzyme targeting - a method to rationally design optimal strains for target chemical overproduction. Biotechnol J. 2013;8:605-18.
    • (2013) Biotechnol J , vol.8 , pp. 605-618
    • Flowers, D.1    Thompson, R.A.2    Birdwell, D.3    Wang, T.4    Trinh, C.T.5
  • 61
    • 84880528485 scopus 로고    scopus 로고
    • Automated genome annotation and metabolic model reconstruction in the SEED and model SEED
    • 1:CAS:528:DC%2BC3sXhvVaisrvP
    • Devoid S, Overbeek R, DeJongh M, Vonstein V, Best AA, Henry C. Automated genome annotation and metabolic model reconstruction in the SEED and model SEED. Methods Mol Biol. 2013;985:17-45.
    • (2013) Methods Mol Biol , vol.985 , pp. 17-45
    • Devoid, S.1    Overbeek, R.2    Dejongh, M.3    Vonstein, V.4    Best, A.A.5    Henry, C.6
  • 62
    • 79551676901 scopus 로고    scopus 로고
    • Elimination of thermodynamically infeasible loops in steady-state metabolic models
    • 1:CAS:528:DC%2BC3MXhtlGgtbg%3D
    • Schellenberger J, Lewis NE, Palsson BO. Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys J. 2011;100:544-53.
    • (2011) Biophys J , vol.100 , pp. 544-553
    • Schellenberger, J.1    Lewis, N.E.2    Palsson, B.O.3
  • 63
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • 1:CAS:528:DC%2BC3cXivV2rtL4%3D
    • Orth JD, Thiele I, Palsson BO. What is flux balance analysis? Nat Biotechnol. 2010;28:245-8.
    • (2010) Nat Biotechnol , vol.28 , pp. 245-248
    • Orth, J.D.1    Thiele, I.2    Palsson, B.O.3
  • 65
    • 84863469563 scopus 로고    scopus 로고
    • A defined growth medium with very low background carbon for culturing Clostridium thermocellum
    • 1:CAS:528:DC%2BC38XntlOntLs%3D
    • Holwerda EK, Hirst KD, Lynd LR. A defined growth medium with very low background carbon for culturing Clostridium thermocellum. J Ind Microbiol Biotechnol. 2012;39:943-7.
    • (2012) J Ind Microbiol Biotechnol , vol.39 , pp. 943-947
    • Holwerda, E.K.1    Hirst, K.D.2    Lynd, L.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.