메뉴 건너뛰기




Volumn 8, Issue , 2017, Pages

Redesigning metabolism based on orthogonality principles

Author keywords

[No Author keywords available]

Indexed keywords

6 PHOSPHOFRUCTOKINASE; ACKA PROTEIN; ADHE PROTEIN; ETHYLENE GLYCOL; GLUCOSE; ISOCITRATE DEHYDROGENASE; LDHA PROTEIN; MALATE DEHYDROGENASE (DECARBOXYLATING); METHYLGLYOXAL; OXALOACETIC ACID; PHOSPHOENOLPYRUVATE; PHOSPHOENOLPYRUVATE CARBOXYKINASE (GTP); PROTEIN; PYRUVIC ACID; SUCCINIC ACID; SUCCINYL COENZYME A; TRICARBOXYLIC ACID; UNCLASSIFIED DRUG;

EID: 85020003398     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms15188     Document Type: Article
Times cited : (54)

References (60)
  • 1
    • 83255174106 scopus 로고    scopus 로고
    • Relative potential of biosynthetic pathways for biofuels and bio-based products
    • Dugar, D. & Stephanopoulos, G. Relative potential of biosynthetic pathways for biofuels and bio-based products. Nat. Biotechnol. 29, 1074-1078 (2011).
    • (2011) Nat. Biotechnol. , vol.29 , pp. 1074-1078
    • Dugar, D.1    Stephanopoulos, G.2
  • 2
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard, A. P., Pharkya, P. & Maranas, C. D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647-657 (2003).
    • (2003) Biotechnol. Bioeng. , vol.84 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 3
    • 84938074954 scopus 로고    scopus 로고
    • Co-evolution of strain design methods based on flux balance and elementary mode analysis
    • Machado, D. & Herrgård, M. Co-evolution of strain design methods based on flux balance and elementary mode analysis. Metab. Eng. Commun. 2, 85-92 (2015).
    • (2015) Metab. Eng. Commun. , vol.2 , pp. 85-92
    • Machado, D.1    Herrgård, M.2
  • 4
    • 84858439602 scopus 로고    scopus 로고
    • Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods
    • Lewis, N. E., Nagarajan, H. & Palsson, B. Ø. Constraining the metabolic genotype-phenotype relationship using a phylogeny of in silico methods. Nat. Rev. Microbiol. 10, 291-305 (2012).
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 291-305
    • Lewis, N.E.1    Nagarajan, H.2    Palsson, B.Ø.3
  • 5
    • 84920937371 scopus 로고    scopus 로고
    • Computational methods in metabolic engineering for strain design
    • Long, M. R., Ong, W. K. & Reed, J. L. Computational methods in metabolic engineering for strain design. Curr. Opin. Biotechnol. 34, 135-141 (2015).
    • (2015) Curr. Opin. Biotechnol. , vol.34 , pp. 135-141
    • Long, M.R.1    Ong, W.K.2    Reed, J.L.3
  • 7
    • 84942935817 scopus 로고    scopus 로고
    • Lower glycolysis carries a higher flux than any biochemically possible alternative
    • Court, S. J., Waclaw, B. & Allen, R. J. Lower glycolysis carries a higher flux than any biochemically possible alternative. Nat. Commun. 6, 8427 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 8427
    • Court, S.J.1    Waclaw, B.2    Allen, R.J.3
  • 8
    • 0025935927 scopus 로고
    • Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks II
    • Schuster, S., Schuster, R. & Heinrich, R. Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks II. J. Math. Biol. 29, 443-455 (1991).
    • (1991) J. Math. Biol. , vol.29 , pp. 443-455
    • Schuster, S.1    Schuster, R.2    Heinrich, R.3
  • 10
    • 0031030714 scopus 로고    scopus 로고
    • Theoretical approaches to the evolutionary optimization of glycolysis. Thermodynamic and kinetic constraints
    • Helnrlch, R., Montero, F., Klipp, E., Waddell, T. G. & Melendez-Hevia, E. Theoretical approaches to the evolutionary optimization of glycolysis. thermodynamic and kinetic constraints. Eur. J. Biochem. 243, 191-201 (1997).
    • (1997) Eur. J. Biochem. , vol.243 , pp. 191-201
    • Helnrlch, R.1    Montero, F.2    Klipp, E.3    Waddell, T.G.4    Melendez-Hevia, E.5
  • 11
    • 11844280852 scopus 로고    scopus 로고
    • Game-theoretical approaches to studying the evolution of biochemical systems
    • Pfeiffer, T. & Schuster, S. Game-theoretical approaches to studying the evolution of biochemical systems. Trends Biochem. Sci. 30, 20-25 (2005).
    • (2005) Trends Biochem. Sci. , vol.30 , pp. 20-25
    • Pfeiffer, T.1    Schuster, S.2
  • 13
    • 4344670936 scopus 로고    scopus 로고
    • Bow ties, metabolism and disease
    • Csete, M. & Doyle, J. Bow ties, metabolism and disease. Trends Biotechnol. 22, 446-450 (2004).
    • (2004) Trends Biotechnol. , vol.22 , pp. 446-450
    • Csete, M.1    Doyle, J.2
  • 14
    • 56949085134 scopus 로고    scopus 로고
    • The origin and evolution of modern metabolism
    • Caetano-Anollés, G. et al. The origin and evolution of modern metabolism. Int. J. Biochem. Cell Biol. 41, 285-297 (2009).
    • (2009) Int. J. Biochem. Cell Biol. , vol.41 , pp. 285-297
    • Caetano-Anollés, G.1
  • 16
    • 84869409254 scopus 로고    scopus 로고
    • Cell-free metabolic engineering: Production of chemicals by minimized reaction cascades
    • Guterl, J.-K. et al. Cell-free metabolic engineering: production of chemicals by minimized reaction cascades. ChemSusChem 5, 2165-2172 (2012).
    • (2012) ChemSusChem , vol.5 , pp. 2165-2172
    • Guterl, J.-K.1
  • 17
    • 84935478514 scopus 로고    scopus 로고
    • On the feasibility of growth-coupled product synthesis in microbial strains
    • Klamt, S. & Mahadevan, R. On the feasibility of growth-coupled product synthesis in microbial strains. Metab. Eng. 30, 166-178 (2015).
    • (2015) Metab. Eng. , vol.30 , pp. 166-178
    • Klamt, S.1    Mahadevan, R.2
  • 18
    • 84957622111 scopus 로고    scopus 로고
    • Engineering nonphosphorylative metabolism to generate lignocellulose-derived products
    • Tai, Y.-S. et al. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nat. Chem. Biol. 12, 247-253 (2016).
    • (2016) Nat. Chem. Biol. , vol.12 , pp. 247-253
    • Tai, Y.-S.1
  • 19
    • 33846617808 scopus 로고    scopus 로고
    • Bringing metabolic networks to life: Convenience rate law and thermodynamic constraints
    • Liebermeister, W. & Klipp, E. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints. Theor. Biol. Med. Model 3, 41 (2006).
    • (2006) Theor. Biol. Med. Model , vol.3 , pp. 41
    • Liebermeister, W.1    Klipp, E.2
  • 20
    • 77954196484 scopus 로고    scopus 로고
    • Modular rate laws for enzymatic reactions: Thermodynamics, elasticities and implementation
    • Liebermeister, W., Uhlendorf, J. & Klipp, E. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation. Bioinformatics 26, 1528-1534 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 1528-1534
    • Liebermeister, W.1    Uhlendorf, J.2    Klipp, E.3
  • 21
    • 0037199968 scopus 로고    scopus 로고
    • Hierarchical organization of modularity in metabolic networks
    • Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A.-L. Hierarchical organization of modularity in metabolic networks. Science 297, 1551-1555 (2002).
    • (2002) Science , vol.297 , pp. 1551-1555
    • Ravasz, E.1    Somera, A.L.2    Mongru, D.A.3    Oltvai, Z.N.4    Barabási, A.-L.5
  • 22
    • 25444448797 scopus 로고    scopus 로고
    • Spontaneous evolution of modularity and network motifs
    • Kashtan, N. & Alon, U. Spontaneous evolution of modularity and network motifs. Proc. Natl Acad. Sci. USA 102, 13773-13778 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 13773-13778
    • Kashtan, N.1    Alon, U.2
  • 24
    • 84877804801 scopus 로고    scopus 로고
    • Modular optimization of multi-gene pathways for fatty acids production in E
    • Xu, P. et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat. Commun. 4, 1409 (2013).
    • (2013) Coli. Nat. Commun. , vol.4 , pp. 1409
    • Xu, P.1
  • 25
    • 84923320438 scopus 로고    scopus 로고
    • Retro-biosynthetic screening of a modular pathway design achieves selective route for microbial synthesis of 4-methyl-pentanol
    • Sheppard, M. J., Kunjapur, A. M., Wenck, S. J. & Prather, K. L. J. Retro-biosynthetic screening of a modular pathway design achieves selective route for microbial synthesis of 4-methyl-pentanol. Nat. Commun. 5, 5031 (2014).
    • (2014) Nat. Commun. , vol.5 , pp. 5031
    • Sheppard, M.J.1    Kunjapur, A.M.2    Wenck, S.J.3    Prather, K.L.J.4
  • 26
    • 84941129321 scopus 로고    scopus 로고
    • Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine
    • Qin, J. et al. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of L-ornithine. Nat. Commun. 6, 8224 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 8224
    • Qin, J.1
  • 27
    • 84873333102 scopus 로고    scopus 로고
    • The compositional and evolutionary logic of metabolism
    • Braakman, R. & Smith, E. The compositional and evolutionary logic of metabolism. Phys. Biol. 10, 11001 (2013).
    • (2013) Phys. Biol. , vol.10 , pp. 11001
    • Braakman, R.1    Smith, E.2
  • 28
    • 84874980587 scopus 로고    scopus 로고
    • Functioning of a metabolic flux sensor in Escherichia coli
    • Kochanowski, K. et al. Functioning of a metabolic flux sensor in Escherichia coli. Proc. Natl Acad. Sci. USA 110, 1130-1135 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 1130-1135
    • Kochanowski, K.1
  • 29
    • 84898613992 scopus 로고    scopus 로고
    • Environmental dependence of stationary-phase metabolism in Bacillus subtilis and Escherichia coli
    • Chubukov, V. & Sauer, U. Environmental dependence of stationary-phase metabolism in Bacillus subtilis and Escherichia coli. Appl. Environ. Microbiol. 80, 2901-2909 (2014).
    • (2014) Appl. Environ. Microbiol. , vol.80 , pp. 2901-2909
    • Chubukov, V.1    Sauer, U.2
  • 31
    • 84943572735 scopus 로고    scopus 로고
    • Engineering methylobacterium extorquens for de novo synthesis of the sesquiterpenoid a-humulene from methanol
    • Sonntag, F. et al. Engineering methylobacterium extorquens for de novo synthesis of the sesquiterpenoid a-humulene from methanol. Metab. Eng. 32, 82-94 (2015).
    • (2015) Metab. Eng. , vol.32 , pp. 82-94
    • Sonntag, F.1
  • 32
    • 84890147287 scopus 로고    scopus 로고
    • Highly efficient methane biocatalysis revealed in a methanotrophic bacterium
    • Kalyuzhnaya, M. G. et al. Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat. Commun. 4, 2785 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 2785
    • Kalyuzhnaya, M.G.1
  • 33
    • 39649103644 scopus 로고    scopus 로고
    • Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals
    • Murarka, A., Dharmadi, Y., Yazdani, S. S. & Gonzalez, R. Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl. Environ. Microbiol. 74, 1124-1135 (2008).
    • (2008) Appl. Environ. Microbiol. , vol.74 , pp. 1124-1135
    • Murarka, A.1    Dharmadi, Y.2    Yazdani, S.S.3    Gonzalez, R.4
  • 34
    • 57349088282 scopus 로고    scopus 로고
    • Glycerol: A promising and abundant carbon source for industrial microbiology
    • da Silva, G. P., Mack, M. & Contiero, J. Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol. Adv. 27, 30-39 (2009).
    • (2009) Biotechnol. Adv. , vol.27 , pp. 30-39
    • Da Silva, G.P.1    Mack, M.2    Contiero, J.3
  • 35
    • 50249115104 scopus 로고    scopus 로고
    • Dynamic metabolic engineering for increasing bioprocess productivity
    • Anesiadis, N., Cluett, W. R. & Mahadevan, R. Dynamic metabolic engineering for increasing bioprocess productivity. Metab. Eng. 10, 255-266 (2008).
    • (2008) Metab. Eng. , vol.10 , pp. 255-266
    • Anesiadis, N.1    Cluett, W.R.2    Mahadevan, R.3
  • 36
    • 84882603873 scopus 로고    scopus 로고
    • Analysis and design of a genetic circuit for dynamic metabolic engineering
    • Anesiadis, N., Kobayashi, H., Cluett, W. R. & Mahadevan, R. Analysis and design of a genetic circuit for dynamic metabolic engineering. ACS Synth. Biol. 2, 442-452 (2013).
    • (2013) ACS Synth. Biol. , vol.2 , pp. 442-452
    • Anesiadis, N.1    Kobayashi, H.2    Cluett, W.R.3    Mahadevan, R.4
  • 38
    • 84940592212 scopus 로고    scopus 로고
    • Dynamic metabolic engineering: New strategies for developing responsive cell factories
    • Brockman, I. M. & Prather, K. L. J. Dynamic metabolic engineering: new strategies for developing responsive cell factories. Biotechnol. J. 10, 1360-1369 (2015).
    • (2015) Biotechnol. J. , vol.10 , pp. 1360-1369
    • Brockman, I.M.1    Prather, K.L.J.2
  • 39
    • 84905668376 scopus 로고    scopus 로고
    • Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
    • Xu, P., Li, L., Zhang, F., Stephanopoulos, G. & Koffas, M. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc. Natl Acad. Sci. USA 111, 11299-11304 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 11299-11304
    • Xu, P.1    Li, L.2    Zhang, F.3    Stephanopoulos, G.4    Koffas, M.5
  • 40
    • 63649137435 scopus 로고    scopus 로고
    • Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering
    • Zha, W., Rubin-Pitel, S. B., Shao, Z. & Zhao, H. Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metab. Eng. 11, 192-198 (2009).
    • (2009) Metab. Eng. , vol.11 , pp. 192-198
    • Zha, W.1    Rubin-Pitel, S.B.2    Shao, Z.3    Zhao, H.4
  • 41
    • 84869102255 scopus 로고    scopus 로고
    • A dynamic metabolite valve for the control of central carbon metabolism
    • Solomon, K. V., Sanders, T. M. & Prather, K. L. J. A dynamic metabolite valve for the control of central carbon metabolism. Metab. Eng. 14, 661-671 (2012).
    • (2012) Metab. Eng. , vol.14 , pp. 661-671
    • Solomon, K.V.1    Sanders, T.M.2    Prather, K.L.J.3
  • 42
    • 84899628032 scopus 로고    scopus 로고
    • Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch
    • Soma, Y., Tsuruno, K., Wada, M., Yokota, A. & Hanai, T. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metab. Eng. 23, 175-184 (2014).
    • (2014) Metab. Eng. , vol.23 , pp. 175-184
    • Soma, Y.1    Tsuruno, K.2    Wada, M.3    Yokota, A.4    Hanai, T.5
  • 43
    • 84859633048 scopus 로고    scopus 로고
    • Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids
    • Zhang, F., Carothers, J. M. & Keasling, J. D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30, 354-359 (2012).
    • (2012) Nat. Biotechnol. , vol.30 , pp. 354-359
    • Zhang, F.1    Carothers, J.M.2    Keasling, J.D.3
  • 44
    • 84920747663 scopus 로고    scopus 로고
    • Dynamic knockdown of E. Coli central metabolism for redirecting fluxes of primary metabolites
    • Brockman, I. M. & Prather, K. L. J. Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites. Metab. Eng. 28, 104-113 (2015).
    • (2015) Metab. Eng. , vol.28 , pp. 104-113
    • Brockman, I.M.1    Prather, K.L.J.2
  • 45
    • 84928753819 scopus 로고    scopus 로고
    • Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production
    • Soma, Y. & Hanai, T. Self-induced metabolic state switching by a tunable cell density sensor for microbial isopropanol production. Metab. Eng. 30, 7-15 (2015).
    • (2015) Metab. Eng. , vol.30 , pp. 7-15
    • Soma, Y.1    Hanai, T.2
  • 46
    • 0036309458 scopus 로고    scopus 로고
    • Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions
    • Vemuri, G. N., Eiteman, M. A. & Altman, E. Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J. Ind. Microbiol. Biotechnol. 28, 325-332 (2002).
    • (2002) J. Ind. Microbiol. Biotechnol. , vol.28 , pp. 325-332
    • Vemuri, G.N.1    Eiteman, M.A.2    Altman, E.3
  • 47
    • 0037209790 scopus 로고    scopus 로고
    • Citric acid production by Candida strains under intracellular nitrogen limitation
    • Anastassiadis, S., Aivasidis, A. & Wandrey, C. Citric acid production by Candida strains under intracellular nitrogen limitation. Appl. Microbiol. Biotechnol. 60, 81-87 (2003).
    • (2003) Appl. Microbiol. Biotechnol. , vol.60 , pp. 81-87
    • Anastassiadis, S.1    Aivasidis, A.2    Wandrey, C.3
  • 48
    • 84878013090 scopus 로고    scopus 로고
    • Free fatty acid production in Escherichia coli under phosphate-limited conditions
    • Youngquist, J. T., Rose, J. P. & Pfleger, B. F. Free fatty acid production in Escherichia coli under phosphate-limited conditions. Appl. Microbiol. Biotechnol. 97, 5149-5159 (2013).
    • (2013) Appl. Microbiol. Biotechnol. , vol.97 , pp. 5149-5159
    • Youngquist, J.T.1    Rose, J.P.2    Pfleger, B.F.3
  • 49
    • 0034688174 scopus 로고    scopus 로고
    • Construction of a genetic toggle switch in Escherichia coli
    • Collins, J. J., Gardner, T. S. & Cantor, C. R. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339-342 (2000).
    • (2000) Nature , vol.403 , pp. 339-342
    • Collins, J.J.1    Gardner, T.S.2    Cantor, C.R.3
  • 50
    • 84899066005 scopus 로고    scopus 로고
    • Rethinking biological activation of methane and conversion to liquid fuels
    • Haynes, C. A. & Gonzalez, R. Rethinking biological activation of methane and conversion to liquid fuels. Nat. Chem. Biol. 10, 331-339 (2014).
    • (2014) Nat. Chem. Biol. , vol.10 , pp. 331-339
    • Haynes, C.A.1    Gonzalez, R.2
  • 51
    • 84886947479 scopus 로고    scopus 로고
    • Synthetic non-oxidative glycolysis enables complete carbon conservation
    • Bogorad, I. W., Lin, T.-S. & Liao, J. C. Synthetic non-oxidative glycolysis enables complete carbon conservation. Nature 502, 693-697 (2013).
    • (2013) Nature , vol.502 , pp. 693-697
    • Bogorad, I.W.1    Lin, T.-S.2    Liao, J.C.3
  • 52
    • 84909957408 scopus 로고    scopus 로고
    • Engineering of corynebacterium glutamicum for minimized carbon loss during utilization of d-xylose containing substrates
    • Radek, A. et al. Engineering of corynebacterium glutamicum for minimized carbon loss during utilization of d-xylose containing substrates. J. Biotechnol. 192, 156-160 (2014).
    • (2014) J. Biotechnol. , vol.192 , pp. 156-160
    • Radek, A.1
  • 53
    • 84873258066 scopus 로고    scopus 로고
    • Dynamic strain scanning optimization: An efficient strain design strategy for balanced yield, titer, and productivity. DySScO strategy for strain design
    • Zhuang, K., Yang, L., Cluett, W. R. & Mahadevan, R. Dynamic strain scanning optimization: an efficient strain design strategy for balanced yield, titer, and productivity. DySScO strategy for strain design. BMC Biotechnol. 13, 8 (2013).
    • (2013) BMC Biotechnol. , vol.13 , pp. 8
    • Zhuang, K.1    Yang, L.2    Cluett, W.R.3    Mahadevan, R.4
  • 54
    • 84887622083 scopus 로고    scopus 로고
    • From the first drop to the first truckload: Commercialization of microbial processes for renewable chemicals
    • Van Dien, S. From the first drop to the first truckload: commercialization of microbial processes for renewable chemicals. Curr. Opin. Biotechnol. 24, 1061-1068 (2013).
    • (2013) Curr. Opin. Biotechnol. , vol.24 , pp. 1061-1068
    • Van Dien, S.1
  • 55
    • 0037316342 scopus 로고    scopus 로고
    • FluxAnalyzer: Exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps
    • Klamt, S., Stelling, J., Ginkel, M. & Gilles, E. D. FluxAnalyzer: exploring structure, pathways, and flux distributions in metabolic networks on interactive flux maps. Bioinformatics 19, 261-269 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 261-269
    • Klamt, S.1    Stelling, J.2    Ginkel, M.3    Gilles, E.D.4
  • 56
    • 13244292328 scopus 로고    scopus 로고
    • Computation of elementary modes: A unifying framework and the new binary approach
    • Gagneur, J. & Klamt, S. Computation of elementary modes: a unifying framework and the new binary approach. BMC Bioinformatics 5, 175 (2004).
    • (2004) BMC Bioinformatics , vol.5 , pp. 175
    • Gagneur, J.1    Klamt, S.2
  • 58
    • 84927781592 scopus 로고    scopus 로고
    • Reconstruction and use of microbial metabolic networks: The core Escherichia coli metabolic model as an educational guide
    • Orth, J. D., Palsson, B. Ø. & Fleming, R. M. T. Reconstruction and use of microbial metabolic networks: the core Escherichia coli metabolic model as an educational guide. EcoSal Plus 4, http://dx.doi.org/10.1128/ecosalplus.10.2.1 (2010).
    • (2010) EcoSal Plus , vol.4
    • Orth, J.D.1    Palsson, B.Ø.2    Fleming, R.M.T.3
  • 59
    • 84896731390 scopus 로고    scopus 로고
    • Enumeration of smallest intervention strategies in genome-scale metabolic networks
    • von Kamp, A. & Klamt, S. Enumeration of smallest intervention strategies in genome-scale metabolic networks. PLoS Comput. Biol. 10, e1003378 (2014).
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003378
    • Von Kamp, A.1    Klamt, S.2
  • 60
    • 1042269472 scopus 로고    scopus 로고
    • Minimal cut sets in biochemical reaction networks
    • Klamt, S. & Gilles, E. D. Minimal cut sets in biochemical reaction networks. Bioinformatics 20, 226-234 (2004).
    • (2004) Bioinformatics , vol.20 , pp. 226-234
    • Klamt, S.1    Gilles, E.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.