메뉴 건너뛰기




Volumn 9, Issue 1, 2018, Pages

Molecular mechanism of influenza A NS1-mediated TRIM25 recognition and inhibition

Author keywords

[No Author keywords available]

Indexed keywords

DIMER; HOMODIMER; MONOMER; NONSTRUCTURAL PROTEIN 1; TRIM25 PROTEIN; UNCLASSIFIED DRUG; DDX58 PROTEIN, HUMAN; INS1 PROTEIN, INFLUENZA VIRUS; INTERFERON; PROTEIN BINDING; RETINOIC ACID INDUCIBLE PROTEIN I; TRANSCRIPTION FACTOR; TRIM25 PROTEIN, HUMAN; TRIPARTITE MOTIF PROTEIN; UBIQUITIN PROTEIN LIGASE; VIRAL PROTEIN; VIRUS RNA;

EID: 85046850124     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/s41467-018-04214-8     Document Type: Article
Times cited : (120)

References (70)
  • 2
    • 84874256730 scopus 로고    scopus 로고
    • The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors
    • Versteeg, G. A. et al. The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity 38, 384-398 (2013).
    • (2013) Immunity , vol.38 , pp. 384-398
    • Versteeg, G.A.1
  • 3
    • 84920283191 scopus 로고    scopus 로고
    • TRIM family proteins: Emerging class of RING E3 ligases as regulator of NF-kappaB pathway
    • Tomar, D. & Singh, R. TRIM family proteins: emerging class of RING E3 ligases as regulator of NF-kappaB pathway. Biol. Cell. 107, 22-40 (2015).
    • (2015) Biol. Cell. , vol.107 , pp. 22-40
    • Tomar, D.1    Singh, R.2
  • 4
    • 84869767918 scopus 로고    scopus 로고
    • Origin and diversification of TRIM ubiquitin ligases
    • Marin, I. Origin and diversification of TRIM ubiquitin ligases. PLoS ONE 7, e50030 (2012).
    • (2012) PLoS ONE , vol.7 , pp. e50030
    • Marin, I.1
  • 6
    • 17744371839 scopus 로고    scopus 로고
    • The tripartite motif family identifies cell compartments
    • Reymond, A. et al. The tripartite motif family identifies cell compartments. EMBO J. 20, 2140-2151 (2001).
    • (2001) EMBO J. , vol.20 , pp. 2140-2151
    • Reymond, A.1
  • 7
    • 84905661532 scopus 로고    scopus 로고
    • Pattern recognition and signaling mechanisms of RIG-I and MDA5
    • Reikine, S., Nguyen, J. B. & Modis, Y. Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front. Immunol. 5, 342 (2014).
    • (2014) Front. Immunol. , vol.5 , pp. 342
    • Reikine, S.1    Nguyen, J.B.2    Modis, Y.3
  • 8
    • 33750984771 scopus 로고    scopus 로고
    • RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates
    • Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314, 997-1001 (2006).
    • (2006) Science , vol.314 , pp. 997-1001
    • Pichlmair, A.1
  • 9
    • 81555204380 scopus 로고    scopus 로고
    • Structural basis of RNA recognition and activation by innate immune receptor RIG-I
    • Jiang, F. et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479, 423-427 (2011).
    • (2011) Nature , vol.479 , pp. 423-427
    • Jiang, F.1
  • 10
    • 80054703126 scopus 로고    scopus 로고
    • Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA
    • Kowalinski, E. et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147, 423-435 (2011).
    • (2011) Cell , vol.147 , pp. 423-435
    • Kowalinski, E.1
  • 11
    • 34247341367 scopus 로고    scopus 로고
    • TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
    • Gack, M. U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916-920 (2007).
    • (2007) Nature , vol.446 , pp. 916-920
    • Gack, M.U.1
  • 12
    • 84977627444 scopus 로고    scopus 로고
    • A hierarchical mechanism of RIG-I ubiquitination provides sensitivity, robustness and synergy in antiviral immune responses
    • Sun, X. et al. A hierarchical mechanism of RIG-I ubiquitination provides sensitivity, robustness and synergy in antiviral immune responses. Sci. Rep. 6, 29263 (2016).
    • (2016) Sci. Rep. , vol.6
    • Sun, X.1
  • 13
    • 84906342978 scopus 로고    scopus 로고
    • Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I
    • Wu, B. et al. Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol. Cell. 55, 511-523 (2014).
    • (2014) Mol. Cell. , vol.55 , pp. 511-523
    • Wu, B.1
  • 14
    • 84898747432 scopus 로고    scopus 로고
    • Structural basis for the prion-like MAVS filaments in antiviral innate immunity
    • Xu, H. et al. Structural basis for the prion-like MAVS filaments in antiviral innate immunity. eLife 3, e01489 (2014).
    • (2014) ELife , vol.3 , pp. e01489
    • Xu, H.1
  • 15
    • 85040122916 scopus 로고    scopus 로고
    • Regulation of RIG-I activation by K63-linked polyubiquitination
    • Okamoto, M., Kouwaki, T., Fukushima, Y. & Oshiumi, H. Regulation of RIG-I activation by K63-linked polyubiquitination. Front. Immunol. 8, 1942 (2017).
    • (2017) Front. Immunol. , vol.8 , pp. 1942
    • Okamoto, M.1    Kouwaki, T.2    Fukushima, Y.3    Oshiumi, H.4
  • 16
    • 78650189572 scopus 로고    scopus 로고
    • The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection
    • Oshiumi, H. et al. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell. Host. Microbe 8, 496-509 (2010).
    • (2010) Cell. Host. Microbe , vol.8 , pp. 496-509
    • Oshiumi, H.1
  • 17
    • 84883324602 scopus 로고    scopus 로고
    • A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses
    • Oshiumi, H., Miyashita, M., Matsumoto, M. & Seya, T. A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS Pathog. 9, e1003533 (2013).
    • (2013) PLoS Pathog. , vol.9 , pp. e1003533
    • Oshiumi, H.1    Miyashita, M.2    Matsumoto, M.3    Seya, T.4
  • 18
    • 85028720027 scopus 로고    scopus 로고
    • Ube2D3 and Ube2N are essential for RIG-I-mediated MAVS aggregation in antiviral innate immunity
    • Shi, Y. et al. Ube2D3 and Ube2N are essential for RIG-I-mediated MAVS aggregation in antiviral innate immunity. Nat. Commun. 8, 15138 (2017).
    • (2017) Nat. Commun. , vol.8 , pp. 15138
    • Shi, Y.1
  • 19
    • 77951708374 scopus 로고    scopus 로고
    • Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
    • Zeng, W. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315-330 (2010).
    • (2010) Cell , vol.141 , pp. 315-330
    • Zeng, W.1
  • 20
    • 84899957213 scopus 로고    scopus 로고
    • Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I
    • Peisley, A., Wu, B., Xu, H., Chen, Z. J. & Hur, S. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 509, 110-114 (2014).
    • (2014) Nature , vol.509 , pp. 110-114
    • Peisley, A.1    Wu, B.2    Xu, H.3    Chen, Z.J.4    Hur, S.5
  • 21
    • 84978807214 scopus 로고    scopus 로고
    • Mechanism of TRIM25 catalytic activation in the antiviral RIG-I pathway
    • Sanchez, J. G. et al. Mechanism of TRIM25 catalytic activation in the antiviral RIG-I pathway. Cell Rep. 16, 1315-1325 (2016).
    • (2016) Cell Rep. , vol.16 , pp. 1315-1325
    • Sanchez, J.G.1
  • 22
    • 84887461994 scopus 로고    scopus 로고
    • Crystal structure of the TRIM25 B30.2 (PRYSPRY) domain: A key component of antiviral signalling
    • D'Cruz, A. A. et al. Crystal structure of the TRIM25 B30.2 (PRYSPRY) domain: a key component of antiviral signalling. Biochem. J. 456, 231-240 (2013).
    • (2013) Biochem. J. , vol.456 , pp. 231-240
    • D'Cruz, A.A.1
  • 23
    • 84966297180 scopus 로고    scopus 로고
    • Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity
    • Koliopoulos, M. G., Esposito, D., Christodoulou, E., Taylor, I. A. & Rittinger, K. Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity. EMBO J. 35, 1204-1218 (2016).
    • (2016) EMBO J. , vol.35 , pp. 1204-1218
    • Koliopoulos, M.G.1    Esposito, D.2    Christodoulou, E.3    Taylor, I.A.4    Rittinger, K.5
  • 24
    • 84930620950 scopus 로고    scopus 로고
    • Crystal structure of TRIM20 C-terminal coiled-coil/B30.2 fragment: Implications for the recognition of higher order oligomers
    • Weinert, C., Morger, D., Djekic, A., Grutter, M. G. & Mittl, P. R. Crystal structure of TRIM20 C-terminal coiled-coil/B30.2 fragment: implications for the recognition of higher order oligomers. Sci. Rep. 5, 10819 (2015).
    • (2015) Sci. Rep. , vol.5 , pp. 10819
    • Weinert, C.1    Morger, D.2    Djekic, A.3    Grutter, M.G.4    Mittl, P.R.5
  • 25
    • 84886731532 scopus 로고    scopus 로고
    • Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: Hide, mask, hit
    • Zinzula, L. & Tramontano, E. Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit. Antivir. Res. 100, 615-635 (2013).
    • (2013) Antivir. Res. , vol.100 , pp. 615-635
    • Zinzula, L.1    Tramontano, E.2
  • 26
    • 84992079455 scopus 로고    scopus 로고
    • Host and viral modulation of RIG-I-mediated antiviralImmunity
    • Liu, Y., Olagnier, D. & Lin, R. Host and viral modulation of RIG-I-mediated antiviral Immunity. Front. Immunol. 7, 662 (2016).
    • (2016) Front. Immunol. , vol.7 , pp. 662
    • Liu, Y.1    Olagnier, D.2    Lin, R.3
  • 27
    • 65549164536 scopus 로고    scopus 로고
    • Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I
    • Gack, M. U. et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell. Host Microbe 5, 439-449 (2009).
    • (2009) Cell. Host Microbe , vol.5 , pp. 439-449
    • Gack, M.U.1
  • 28
    • 84910684859 scopus 로고    scopus 로고
    • Influenza virus non-structural protein NS1: Interferon antagonism and beyond
    • Marc, D. Influenza virus non-structural protein NS1: interferon antagonism and beyond. J. Gen. Virol. 95, 2594-2611 (2014).
    • (2014) J. Gen. Virol. , vol.95 , pp. 2594-2611
    • Marc, D.1
  • 29
    • 84896968094 scopus 로고    scopus 로고
    • The influenza A virus protein NS1 displays structural polymorphism
    • Carrillo, B. et al. The influenza A virus protein NS1 displays structural polymorphism. J. Virol. 88, 4113-4122 (2014).
    • (2014) J. Virol. , vol.88 , pp. 4113-4122
    • Carrillo, B.1
  • 30
    • 57749169511 scopus 로고    scopus 로고
    • X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus
    • Bornholdt, Z. A. & Prasad, B. V. X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus. Nature 456, 985-988 (2008).
    • (2008) Nature , vol.456 , pp. 985-988
    • Bornholdt, Z.A.1    Prasad, B.V.2
  • 31
    • 84907212573 scopus 로고    scopus 로고
    • Conformational plasticity of the influenza A virus NS1 protein
    • Hale, B. G. Conformational plasticity of the influenza A virus NS1 protein. J. Gen. Virol. 95, 2099-2105 (2014).
    • (2014) J. Gen. Virol. , vol.95 , pp. 2099-2105
    • Hale, B.G.1
  • 32
    • 79953159555 scopus 로고    scopus 로고
    • A transient homotypic interaction model for the influenza A virus NS1 protein effector domain
    • Kerry, P. S. et al. A transient homotypic interaction model for the influenza A virus NS1 protein effector domain. PLoS ONE 6, e17946 (2011).
    • (2011) PLoS ONE , vol.6 , pp. e17946
    • Kerry, P.S.1
  • 33
    • 84898459926 scopus 로고    scopus 로고
    • (19)F NMR reveals multiple conformations at the dimer interface of the nonstructural protein 1 effector domain from influenza A virus
    • Aramini, J. M. et al. (19)F NMR reveals multiple conformations at the dimer interface of the nonstructural protein 1 effector domain from influenza A virus. Structure 22, 515-525 (2014).
    • (2014) Structure , vol.22 , pp. 515-525
    • Aramini, J.M.1
  • 34
    • 79960387064 scopus 로고    scopus 로고
    • Dimer interface of the effector domain of non-structural protein 1 from influenza A virus: An interface with multiple functions
    • Aramini, J. M. et al. Dimer interface of the effector domain of non-structural protein 1 from influenza A virus: an interface with multiple functions. J. Biol. Chem. 286, 26050-26060 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 26050-26060
    • Aramini, J.M.1
  • 35
    • 59449110919 scopus 로고    scopus 로고
    • Structural basis for dsRNA recognition by NS1 protein of influenza A virus
    • Cheng, A., Wong, S. M. & Yuan, Y. A. Structural basis for dsRNA recognition by NS1 protein of influenza A virus. Cell. Res. 19, 187-195 (2009).
    • (2009) Cell. Res. , vol.19 , pp. 187-195
    • Cheng, A.1    Wong, S.M.2    Yuan, Y.A.3
  • 36
    • 85032382654 scopus 로고    scopus 로고
    • Nuclear TRIM25 specifically targets influenza virus ribonucleoproteins to block the onset of RNA chain elongation
    • Meyerson, N. R. et al. Nuclear TRIM25 specifically targets influenza virus ribonucleoproteins to block the onset of RNA chain elongation. Cell Host Microbe 22, 627-638.e7 (2017).
    • (2017) Cell Host Microbe , vol.22 , pp. 627-627e7
    • Meyerson, N.R.1
  • 37
    • 84894322624 scopus 로고    scopus 로고
    • The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer
    • Sanchez, J. G. et al. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer. Proc. Natl Acad. Sci. USA 111, 2494-2499 (2014).
    • (2014) Proc. Natl Acad. Sci. USA , vol.111 , pp. 2494-2499
    • Sanchez, J.G.1
  • 38
    • 0030710459 scopus 로고    scopus 로고
    • Crystal structure of the unique RNA-binding domain of the influenza virus NS1 protein
    • Liu, J. et al. Crystal structure of the unique RNA-binding domain of the influenza virus NS1 protein. Nat. Struct. Biol. 4, 896-899 (1997).
    • (1997) Nat. Struct. Biol. , vol.4 , pp. 896-899
    • Liu, J.1
  • 40
    • 85046624089 scopus 로고    scopus 로고
    • Identification of a second binding site on the TRIM25 B30.2 domain
    • D'Cruz, A. A. et al. Identification of a second binding site on the TRIM25 B30.2 domain. Biochem. J. 475, 429-440 (2018).
    • (2018) Biochem. J. , vol.475 , pp. 429-440
    • D'Cruz, A.A.1
  • 41
    • 0032995665 scopus 로고    scopus 로고
    • RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimer structure and a small number of specific basic amino acids
    • Wang, W. et al. RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimer structure and a small number of specific basic amino acids. RNA 5, 195-205 (1999).
    • (1999) RNA , vol.5 , pp. 195-205
    • Wang, W.1
  • 42
    • 0033870894 scopus 로고    scopus 로고
    • Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein
    • Talon, J. et al. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J. Virol. 74, 7989-7996 (2000).
    • (2000) J. Virol. , vol.74 , pp. 7989-7996
    • Talon, J.1
  • 43
    • 76649088363 scopus 로고    scopus 로고
    • Structural insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 protein
    • Hale, B. G. et al. Structural insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 protein. Proc. Natl. Acad. Sci. USA 107, 1954-1959 (2010).
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 1954-1959
    • Hale, B.G.1
  • 44
    • 85031095954 scopus 로고    scopus 로고
    • Structure-guided functional annotation of the influenza A Virus NS1 protein reveals dynamic evolution of the p85beta-binding site during circulation in humans
    • Lopes, A. M., Domingues, P., Zell, R. & Hale, B. G. Structure-guided functional annotation of the influenza A Virus NS1 protein reveals dynamic evolution of the p85beta-binding site during circulation in humans. J. Virol. 91, e01081-17 (2017).
    • (2017) J. Virol. , vol.91 , pp. e01081-e01117
    • Lopes, A.M.1    Domingues, P.2    Zell, R.3    Hale, B.G.4
  • 45
    • 84912143439 scopus 로고    scopus 로고
    • Crystal structure of cytomegalovirus IE1 protein reveals targeting of TRIM family member PML via coiled-coil interactions
    • Scherer, M. et al. Crystal structure of cytomegalovirus IE1 protein reveals targeting of TRIM family member PML via coiled-coil interactions. PLoS Pathog. 10, e1004512 (2014).
    • (2014) PLoS Pathog. , vol.10 , pp. e1004512
    • Scherer, M.1
  • 46
    • 85011957208 scopus 로고    scopus 로고
    • The human cytomegalovirus IE1 protein antagonizes PML nuclear body-mediated intrinsic immunity via the inhibition of PML de novo SUMOylation
    • Schilling, E. M. et al. The human cytomegalovirus IE1 protein antagonizes PML nuclear body-mediated intrinsic immunity via the inhibition of PML de novo SUMOylation. J. Virol. 91, e02049-16 (2017).
    • (2017) J. Virol. , vol.91 , pp. e02049-e02116
    • Schilling, E.M.1
  • 47
    • 77956936946 scopus 로고    scopus 로고
    • MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases
    • Doyle, J. M., Gao, J., Wang, J., Yang, M. & Potts, P. R. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell. 39, 963-974 (2010).
    • (2010) Mol. Cell. , vol.39 , pp. 963-974
    • Doyle, J.M.1    Gao, J.2    Wang, J.3    Yang, M.4    Potts, P.R.5
  • 48
    • 84922689340 scopus 로고    scopus 로고
    • Degradation of AMPK by a cancer-specific ubiquitin ligase
    • Pineda, C. T. et al. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160, 715-728 (2015).
    • (2015) Cell , vol.160 , pp. 715-728
    • Pineda, C.T.1
  • 49
    • 84871886300 scopus 로고    scopus 로고
    • High-yield expression in Escherichia coli and purification of mouse ubiquitin-activating enzyme E1
    • Carvalho, A. F. et al. High-yield expression in Escherichia coli and purification of mouse ubiquitin-activating enzyme E1. Mol. Biotechnol. 51, 254-261 (2012).
    • (2012) Mol. Biotechnol. , vol.51 , pp. 254-261
    • Carvalho, A.F.1
  • 51
    • 84991516778 scopus 로고    scopus 로고
    • TheBiophysical characterisation and SAXS analysis of human NLRP1 uncover a new level of complexity of NLR proteins
    • Martino, L. et al. The Biophysical characterisation and SAXS analysis of human NLRP1 uncover a new level of complexity of NLR proteins. PLoS ONE 11, e0164662 (2016).
    • (2016) PLoS ONE , vol.11 , pp. e0164662
    • Martino, L.1
  • 52
    • 84888034624 scopus 로고    scopus 로고
    • Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP
    • Stieglitz, B. et al. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Nature 503, 422-426 (2013).
    • (2013) Nature , vol.503 , pp. 422-426
    • Stieglitz, B.1
  • 54
    • 79953733151 scopus 로고    scopus 로고
    • Data processing and analysis with the autoPROC toolbox
    • Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 67, 293-302 (2011).
    • (2011) Acta Crystallogr. D Biol. Crystallogr. , vol.67 , pp. 293-302
    • Vonrhein, C.1
  • 58
    • 34548232365 scopus 로고    scopus 로고
    • Inference of macromolecular assemblies from crystalline state
    • Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774-797 (2007).
    • (2007) J. Mol. Biol. , vol.372 , pp. 774-797
    • Krissinel, E.1    Henrick, K.2
  • 60
    • 50249136103 scopus 로고    scopus 로고
    • Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7
    • Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171-1179 (2008).
    • (2008) Nat. Protoc. , vol.3 , pp. 1171-1179
    • Langer, G.1    Cohen, S.X.2    Lamzin, V.S.3    Perrakis, A.4
  • 61
    • 78651087678 scopus 로고    scopus 로고
    • New beamline dedicated to solution scattering from biological macromolecules at the ESRF
    • Pernot, P. et al. New beamline dedicated to solution scattering from biological macromolecules at the ESRF. J. Phys.: Conf. Ser. 247, 012009 (2010).
    • (2010) J. Phys. , vol.247 , pp. 012009
    • Pernot, P.1
  • 63
    • 0026910457 scopus 로고
    • Determination of the regularization parameter in indirect-transform methods using perceptual criteria
    • Svergun, D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495-503. (1992).
    • (1992) J. Appl. Crystallogr. , vol.25 , pp. 495
    • Svergun, D.I.1
  • 64
    • 85028894746 scopus 로고    scopus 로고
    • 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: An update
    • Trewhella, J. et al. 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update.Acta Crystallogr. D Biol. Crystallogr. 73, 710-728 (2017).
    • (2017) Acta Crystallogr. D Biol. Crystallogr. , vol.73 , pp. 710-728
    • Trewhella, J.1
  • 65
    • 37049014272 scopus 로고    scopus 로고
    • Version 1.2 of the crystallography and NMR system
    • Brunger, A. T. Version 1.2 of the crystallography and NMR system. Nat. Protoc. 2, 2728-2733 (2007).
    • (2007) Nat. Protoc. , vol.2 , pp. 2728-2733
    • Brunger, A.T.1
  • 66
    • 85021812302 scopus 로고    scopus 로고
    • Segmental, domain-selective perdeuteration and small-angle neutron scattering for structural analysis of multi-domain proteins
    • Sonntag, M. et al. Segmental, domain-selective perdeuteration and small-angle neutron scattering for structural analysis of multi-domain proteins. Angew Chem. 56, 9322-9325 (2017).
    • (2017) Angew Chem. , vol.56 , pp. 9322-9325
    • Sonntag, M.1
  • 67
    • 0029185933 scopus 로고
    • CRYSOL- A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates
    • Svergun, D.I., BarberatoC. & KochM. H. J. CRYSOL- A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 28, 768-773 (1995).
    • (1995) J. Appl. Cryst. , vol.28 , pp. 768-773
    • Svergun, D.I.1    Barberato, C.2    Koch, M.H.J.3
  • 68
    • 0029400480 scopus 로고
    • NMRPipe: A multidimensional spectral processing system based on UNIX pipes
    • Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277-293 (1995).
    • (1995) J. Biomol. NMR , vol.6 , pp. 277-293
    • Delaglio, F.1
  • 69
    • 85046874209 scopus 로고    scopus 로고
    • University of California, San Francisco
    • Goddard, T. D. & Kneller, D. G. SPARKY 3. v.3.115, https://www.cgl.ucsf.edu/home/sparky (University of California, San Francisco, 2015).
    • (2015) SPARKY 3. V.3.115
    • Goddard, T.D.1    Kneller, D.G.2
  • 70
    • 19444382397 scopus 로고    scopus 로고
    • The CCPN data model for NMR spectroscopy: Development of a software pipeline
    • Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687-696 (2005).
    • (2005) Proteins , vol.59 , pp. 687-696
    • Vranken, W.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.