-
2
-
-
84874256730
-
The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors
-
Versteeg, G. A. et al. The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity 38, 384-398 (2013).
-
(2013)
Immunity
, vol.38
, pp. 384-398
-
-
Versteeg, G.A.1
-
3
-
-
84920283191
-
TRIM family proteins: Emerging class of RING E3 ligases as regulator of NF-kappaB pathway
-
Tomar, D. & Singh, R. TRIM family proteins: emerging class of RING E3 ligases as regulator of NF-kappaB pathway. Biol. Cell. 107, 22-40 (2015).
-
(2015)
Biol. Cell.
, vol.107
, pp. 22-40
-
-
Tomar, D.1
Singh, R.2
-
4
-
-
84869767918
-
Origin and diversification of TRIM ubiquitin ligases
-
Marin, I. Origin and diversification of TRIM ubiquitin ligases. PLoS ONE 7, e50030 (2012).
-
(2012)
PLoS ONE
, vol.7
, pp. e50030
-
-
Marin, I.1
-
5
-
-
85014878791
-
Structural determinants of TRIM protein function
-
Esposito, D., Koliopoulos, M. G. & Rittinger, K. Structural determinants of TRIM protein function. Biochem. Soc. Trans. 45, 183-191 (2017).
-
(2017)
Biochem. Soc. Trans.
, vol.45
, pp. 183-191
-
-
Esposito, D.1
Koliopoulos, M.G.2
Rittinger, K.3
-
6
-
-
17744371839
-
The tripartite motif family identifies cell compartments
-
Reymond, A. et al. The tripartite motif family identifies cell compartments. EMBO J. 20, 2140-2151 (2001).
-
(2001)
EMBO J.
, vol.20
, pp. 2140-2151
-
-
Reymond, A.1
-
7
-
-
84905661532
-
Pattern recognition and signaling mechanisms of RIG-I and MDA5
-
Reikine, S., Nguyen, J. B. & Modis, Y. Pattern recognition and signaling mechanisms of RIG-I and MDA5. Front. Immunol. 5, 342 (2014).
-
(2014)
Front. Immunol.
, vol.5
, pp. 342
-
-
Reikine, S.1
Nguyen, J.B.2
Modis, Y.3
-
8
-
-
33750984771
-
RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates
-
Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science 314, 997-1001 (2006).
-
(2006)
Science
, vol.314
, pp. 997-1001
-
-
Pichlmair, A.1
-
9
-
-
81555204380
-
Structural basis of RNA recognition and activation by innate immune receptor RIG-I
-
Jiang, F. et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479, 423-427 (2011).
-
(2011)
Nature
, vol.479
, pp. 423-427
-
-
Jiang, F.1
-
10
-
-
80054703126
-
Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA
-
Kowalinski, E. et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147, 423-435 (2011).
-
(2011)
Cell
, vol.147
, pp. 423-435
-
-
Kowalinski, E.1
-
11
-
-
34247341367
-
TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
-
Gack, M. U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916-920 (2007).
-
(2007)
Nature
, vol.446
, pp. 916-920
-
-
Gack, M.U.1
-
12
-
-
84977627444
-
A hierarchical mechanism of RIG-I ubiquitination provides sensitivity, robustness and synergy in antiviral immune responses
-
Sun, X. et al. A hierarchical mechanism of RIG-I ubiquitination provides sensitivity, robustness and synergy in antiviral immune responses. Sci. Rep. 6, 29263 (2016).
-
(2016)
Sci. Rep.
, vol.6
-
-
Sun, X.1
-
13
-
-
84906342978
-
Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I
-
Wu, B. et al. Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol. Cell. 55, 511-523 (2014).
-
(2014)
Mol. Cell.
, vol.55
, pp. 511-523
-
-
Wu, B.1
-
14
-
-
84898747432
-
Structural basis for the prion-like MAVS filaments in antiviral innate immunity
-
Xu, H. et al. Structural basis for the prion-like MAVS filaments in antiviral innate immunity. eLife 3, e01489 (2014).
-
(2014)
ELife
, vol.3
, pp. e01489
-
-
Xu, H.1
-
15
-
-
85040122916
-
Regulation of RIG-I activation by K63-linked polyubiquitination
-
Okamoto, M., Kouwaki, T., Fukushima, Y. & Oshiumi, H. Regulation of RIG-I activation by K63-linked polyubiquitination. Front. Immunol. 8, 1942 (2017).
-
(2017)
Front. Immunol.
, vol.8
, pp. 1942
-
-
Okamoto, M.1
Kouwaki, T.2
Fukushima, Y.3
Oshiumi, H.4
-
16
-
-
78650189572
-
The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection
-
Oshiumi, H. et al. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell. Host. Microbe 8, 496-509 (2010).
-
(2010)
Cell. Host. Microbe
, vol.8
, pp. 496-509
-
-
Oshiumi, H.1
-
17
-
-
84883324602
-
A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses
-
Oshiumi, H., Miyashita, M., Matsumoto, M. & Seya, T. A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS Pathog. 9, e1003533 (2013).
-
(2013)
PLoS Pathog.
, vol.9
, pp. e1003533
-
-
Oshiumi, H.1
Miyashita, M.2
Matsumoto, M.3
Seya, T.4
-
18
-
-
85028720027
-
Ube2D3 and Ube2N are essential for RIG-I-mediated MAVS aggregation in antiviral innate immunity
-
Shi, Y. et al. Ube2D3 and Ube2N are essential for RIG-I-mediated MAVS aggregation in antiviral innate immunity. Nat. Commun. 8, 15138 (2017).
-
(2017)
Nat. Commun.
, vol.8
, pp. 15138
-
-
Shi, Y.1
-
19
-
-
77951708374
-
Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
-
Zeng, W. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315-330 (2010).
-
(2010)
Cell
, vol.141
, pp. 315-330
-
-
Zeng, W.1
-
20
-
-
84899957213
-
Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I
-
Peisley, A., Wu, B., Xu, H., Chen, Z. J. & Hur, S. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 509, 110-114 (2014).
-
(2014)
Nature
, vol.509
, pp. 110-114
-
-
Peisley, A.1
Wu, B.2
Xu, H.3
Chen, Z.J.4
Hur, S.5
-
21
-
-
84978807214
-
Mechanism of TRIM25 catalytic activation in the antiviral RIG-I pathway
-
Sanchez, J. G. et al. Mechanism of TRIM25 catalytic activation in the antiviral RIG-I pathway. Cell Rep. 16, 1315-1325 (2016).
-
(2016)
Cell Rep.
, vol.16
, pp. 1315-1325
-
-
Sanchez, J.G.1
-
22
-
-
84887461994
-
Crystal structure of the TRIM25 B30.2 (PRYSPRY) domain: A key component of antiviral signalling
-
D'Cruz, A. A. et al. Crystal structure of the TRIM25 B30.2 (PRYSPRY) domain: a key component of antiviral signalling. Biochem. J. 456, 231-240 (2013).
-
(2013)
Biochem. J.
, vol.456
, pp. 231-240
-
-
D'Cruz, A.A.1
-
23
-
-
84966297180
-
Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity
-
Koliopoulos, M. G., Esposito, D., Christodoulou, E., Taylor, I. A. & Rittinger, K. Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity. EMBO J. 35, 1204-1218 (2016).
-
(2016)
EMBO J.
, vol.35
, pp. 1204-1218
-
-
Koliopoulos, M.G.1
Esposito, D.2
Christodoulou, E.3
Taylor, I.A.4
Rittinger, K.5
-
24
-
-
84930620950
-
Crystal structure of TRIM20 C-terminal coiled-coil/B30.2 fragment: Implications for the recognition of higher order oligomers
-
Weinert, C., Morger, D., Djekic, A., Grutter, M. G. & Mittl, P. R. Crystal structure of TRIM20 C-terminal coiled-coil/B30.2 fragment: implications for the recognition of higher order oligomers. Sci. Rep. 5, 10819 (2015).
-
(2015)
Sci. Rep.
, vol.5
, pp. 10819
-
-
Weinert, C.1
Morger, D.2
Djekic, A.3
Grutter, M.G.4
Mittl, P.R.5
-
25
-
-
84886731532
-
Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: Hide, mask, hit
-
Zinzula, L. & Tramontano, E. Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit. Antivir. Res. 100, 615-635 (2013).
-
(2013)
Antivir. Res.
, vol.100
, pp. 615-635
-
-
Zinzula, L.1
Tramontano, E.2
-
26
-
-
84992079455
-
Host and viral modulation of RIG-I-mediated antiviralImmunity
-
Liu, Y., Olagnier, D. & Lin, R. Host and viral modulation of RIG-I-mediated antiviral Immunity. Front. Immunol. 7, 662 (2016).
-
(2016)
Front. Immunol.
, vol.7
, pp. 662
-
-
Liu, Y.1
Olagnier, D.2
Lin, R.3
-
27
-
-
65549164536
-
Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I
-
Gack, M. U. et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell. Host Microbe 5, 439-449 (2009).
-
(2009)
Cell. Host Microbe
, vol.5
, pp. 439-449
-
-
Gack, M.U.1
-
28
-
-
84910684859
-
Influenza virus non-structural protein NS1: Interferon antagonism and beyond
-
Marc, D. Influenza virus non-structural protein NS1: interferon antagonism and beyond. J. Gen. Virol. 95, 2594-2611 (2014).
-
(2014)
J. Gen. Virol.
, vol.95
, pp. 2594-2611
-
-
Marc, D.1
-
29
-
-
84896968094
-
The influenza A virus protein NS1 displays structural polymorphism
-
Carrillo, B. et al. The influenza A virus protein NS1 displays structural polymorphism. J. Virol. 88, 4113-4122 (2014).
-
(2014)
J. Virol.
, vol.88
, pp. 4113-4122
-
-
Carrillo, B.1
-
30
-
-
57749169511
-
X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus
-
Bornholdt, Z. A. & Prasad, B. V. X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus. Nature 456, 985-988 (2008).
-
(2008)
Nature
, vol.456
, pp. 985-988
-
-
Bornholdt, Z.A.1
Prasad, B.V.2
-
31
-
-
84907212573
-
Conformational plasticity of the influenza A virus NS1 protein
-
Hale, B. G. Conformational plasticity of the influenza A virus NS1 protein. J. Gen. Virol. 95, 2099-2105 (2014).
-
(2014)
J. Gen. Virol.
, vol.95
, pp. 2099-2105
-
-
Hale, B.G.1
-
32
-
-
79953159555
-
A transient homotypic interaction model for the influenza A virus NS1 protein effector domain
-
Kerry, P. S. et al. A transient homotypic interaction model for the influenza A virus NS1 protein effector domain. PLoS ONE 6, e17946 (2011).
-
(2011)
PLoS ONE
, vol.6
, pp. e17946
-
-
Kerry, P.S.1
-
33
-
-
84898459926
-
(19)F NMR reveals multiple conformations at the dimer interface of the nonstructural protein 1 effector domain from influenza A virus
-
Aramini, J. M. et al. (19)F NMR reveals multiple conformations at the dimer interface of the nonstructural protein 1 effector domain from influenza A virus. Structure 22, 515-525 (2014).
-
(2014)
Structure
, vol.22
, pp. 515-525
-
-
Aramini, J.M.1
-
34
-
-
79960387064
-
Dimer interface of the effector domain of non-structural protein 1 from influenza A virus: An interface with multiple functions
-
Aramini, J. M. et al. Dimer interface of the effector domain of non-structural protein 1 from influenza A virus: an interface with multiple functions. J. Biol. Chem. 286, 26050-26060 (2011).
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 26050-26060
-
-
Aramini, J.M.1
-
35
-
-
59449110919
-
Structural basis for dsRNA recognition by NS1 protein of influenza A virus
-
Cheng, A., Wong, S. M. & Yuan, Y. A. Structural basis for dsRNA recognition by NS1 protein of influenza A virus. Cell. Res. 19, 187-195 (2009).
-
(2009)
Cell. Res.
, vol.19
, pp. 187-195
-
-
Cheng, A.1
Wong, S.M.2
Yuan, Y.A.3
-
36
-
-
85032382654
-
Nuclear TRIM25 specifically targets influenza virus ribonucleoproteins to block the onset of RNA chain elongation
-
Meyerson, N. R. et al. Nuclear TRIM25 specifically targets influenza virus ribonucleoproteins to block the onset of RNA chain elongation. Cell Host Microbe 22, 627-638.e7 (2017).
-
(2017)
Cell Host Microbe
, vol.22
, pp. 627-627e7
-
-
Meyerson, N.R.1
-
37
-
-
84894322624
-
The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer
-
Sanchez, J. G. et al. The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer. Proc. Natl Acad. Sci. USA 111, 2494-2499 (2014).
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. 2494-2499
-
-
Sanchez, J.G.1
-
38
-
-
0030710459
-
Crystal structure of the unique RNA-binding domain of the influenza virus NS1 protein
-
Liu, J. et al. Crystal structure of the unique RNA-binding domain of the influenza virus NS1 protein. Nat. Struct. Biol. 4, 896-899 (1997).
-
(1997)
Nat. Struct. Biol.
, vol.4
, pp. 896-899
-
-
Liu, J.1
-
39
-
-
85008712433
-
Subcellular localizations of RIG-I TRIM25 and MAVS complexes
-
Sanchez-Aparicio, M. T., Ayllon, J., Leo-Macias, A., Wolff, T. & Garcia-Sastre, A. Subcellular localizations of RIG-I, TRIM25, and MAVS complexes. J. Virol. 91, e01155-16 (2017).
-
(2017)
J. Virol.
, vol.91
, pp. e01155-e01216
-
-
Sanchez-Aparicio, M.T.1
Ayllon, J.2
Leo-Macias, A.3
Wolff, T.4
Garcia-Sastre, A.5
-
40
-
-
85046624089
-
Identification of a second binding site on the TRIM25 B30.2 domain
-
D'Cruz, A. A. et al. Identification of a second binding site on the TRIM25 B30.2 domain. Biochem. J. 475, 429-440 (2018).
-
(2018)
Biochem. J.
, vol.475
, pp. 429-440
-
-
D'Cruz, A.A.1
-
41
-
-
0032995665
-
RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimer structure and a small number of specific basic amino acids
-
Wang, W. et al. RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimer structure and a small number of specific basic amino acids. RNA 5, 195-205 (1999).
-
(1999)
RNA
, vol.5
, pp. 195-205
-
-
Wang, W.1
-
42
-
-
0033870894
-
Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein
-
Talon, J. et al. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J. Virol. 74, 7989-7996 (2000).
-
(2000)
J. Virol.
, vol.74
, pp. 7989-7996
-
-
Talon, J.1
-
43
-
-
76649088363
-
Structural insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 protein
-
Hale, B. G. et al. Structural insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 protein. Proc. Natl. Acad. Sci. USA 107, 1954-1959 (2010).
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 1954-1959
-
-
Hale, B.G.1
-
44
-
-
85031095954
-
Structure-guided functional annotation of the influenza A Virus NS1 protein reveals dynamic evolution of the p85beta-binding site during circulation in humans
-
Lopes, A. M., Domingues, P., Zell, R. & Hale, B. G. Structure-guided functional annotation of the influenza A Virus NS1 protein reveals dynamic evolution of the p85beta-binding site during circulation in humans. J. Virol. 91, e01081-17 (2017).
-
(2017)
J. Virol.
, vol.91
, pp. e01081-e01117
-
-
Lopes, A.M.1
Domingues, P.2
Zell, R.3
Hale, B.G.4
-
45
-
-
84912143439
-
Crystal structure of cytomegalovirus IE1 protein reveals targeting of TRIM family member PML via coiled-coil interactions
-
Scherer, M. et al. Crystal structure of cytomegalovirus IE1 protein reveals targeting of TRIM family member PML via coiled-coil interactions. PLoS Pathog. 10, e1004512 (2014).
-
(2014)
PLoS Pathog.
, vol.10
, pp. e1004512
-
-
Scherer, M.1
-
46
-
-
85011957208
-
The human cytomegalovirus IE1 protein antagonizes PML nuclear body-mediated intrinsic immunity via the inhibition of PML de novo SUMOylation
-
Schilling, E. M. et al. The human cytomegalovirus IE1 protein antagonizes PML nuclear body-mediated intrinsic immunity via the inhibition of PML de novo SUMOylation. J. Virol. 91, e02049-16 (2017).
-
(2017)
J. Virol.
, vol.91
, pp. e02049-e02116
-
-
Schilling, E.M.1
-
47
-
-
77956936946
-
MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases
-
Doyle, J. M., Gao, J., Wang, J., Yang, M. & Potts, P. R. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell. 39, 963-974 (2010).
-
(2010)
Mol. Cell.
, vol.39
, pp. 963-974
-
-
Doyle, J.M.1
Gao, J.2
Wang, J.3
Yang, M.4
Potts, P.R.5
-
48
-
-
84922689340
-
Degradation of AMPK by a cancer-specific ubiquitin ligase
-
Pineda, C. T. et al. Degradation of AMPK by a cancer-specific ubiquitin ligase. Cell 160, 715-728 (2015).
-
(2015)
Cell
, vol.160
, pp. 715-728
-
-
Pineda, C.T.1
-
49
-
-
84871886300
-
High-yield expression in Escherichia coli and purification of mouse ubiquitin-activating enzyme E1
-
Carvalho, A. F. et al. High-yield expression in Escherichia coli and purification of mouse ubiquitin-activating enzyme E1. Mol. Biotechnol. 51, 254-261 (2012).
-
(2012)
Mol. Biotechnol.
, vol.51
, pp. 254-261
-
-
Carvalho, A.F.1
-
50
-
-
84865709638
-
LUBAC synthesizes linear ubiquitin chains via a thioester intermediate
-
Stieglitz, B., Morris-Davies, A. C., Koliopoulos, M. G., Christodoulou, E. & Rittinger, K. LUBAC synthesizes linear ubiquitin chains via a thioester intermediate. EMBO Rep. 13, 840-846 (2012).
-
(2012)
EMBO Rep.
, vol.13
, pp. 840-846
-
-
Stieglitz, B.1
Morris-Davies, A.C.2
Koliopoulos, M.G.3
Christodoulou, E.4
Rittinger, K.5
-
51
-
-
84991516778
-
TheBiophysical characterisation and SAXS analysis of human NLRP1 uncover a new level of complexity of NLR proteins
-
Martino, L. et al. The Biophysical characterisation and SAXS analysis of human NLRP1 uncover a new level of complexity of NLR proteins. PLoS ONE 11, e0164662 (2016).
-
(2016)
PLoS ONE
, vol.11
, pp. e0164662
-
-
Martino, L.1
-
52
-
-
84888034624
-
Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP
-
Stieglitz, B. et al. Structural basis for ligase-specific conjugation of linear ubiquitin chains by HOIP. Nature 503, 422-426 (2013).
-
(2013)
Nature
, vol.503
, pp. 422-426
-
-
Stieglitz, B.1
-
54
-
-
79953733151
-
Data processing and analysis with the autoPROC toolbox
-
Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 67, 293-302 (2011).
-
(2011)
Acta Crystallogr. D Biol. Crystallogr.
, vol.67
, pp. 293-302
-
-
Vonrhein, C.1
-
57
-
-
0030924992
-
Refinement of macromolecular structures by the maximum-likelihood method
-
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240-255 (1997).
-
(1997)
Acta Crystallogr. D Biol. Crystallogr.
, vol.53
, pp. 240-255
-
-
Murshudov, G.N.1
Vagin, A.A.2
Dodson, E.J.3
-
58
-
-
34548232365
-
Inference of macromolecular assemblies from crystalline state
-
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774-797 (2007).
-
(2007)
J. Mol. Biol.
, vol.372
, pp. 774-797
-
-
Krissinel, E.1
Henrick, K.2
-
59
-
-
36549027357
-
Automated structure solution with autoSHARP
-
Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. Automated structure solution with autoSHARP. Methods Mol. Biol. 364, 215-230 (2007).
-
(2007)
Methods Mol. Biol.
, vol.364
, pp. 215-230
-
-
Vonrhein, C.1
Blanc, E.2
Roversi, P.3
Bricogne, G.4
-
60
-
-
50249136103
-
Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7
-
Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171-1179 (2008).
-
(2008)
Nat. Protoc.
, vol.3
, pp. 1171-1179
-
-
Langer, G.1
Cohen, S.X.2
Lamzin, V.S.3
Perrakis, A.4
-
61
-
-
78651087678
-
New beamline dedicated to solution scattering from biological macromolecules at the ESRF
-
Pernot, P. et al. New beamline dedicated to solution scattering from biological macromolecules at the ESRF. J. Phys.: Conf. Ser. 247, 012009 (2010).
-
(2010)
J. Phys.
, vol.247
, pp. 012009
-
-
Pernot, P.1
-
62
-
-
0141484613
-
PRIMUS- A Windows-PC based system for small-angle scattering data analysis
-
Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. & SvergunD.I. PRIMUS- A Windows-PC based system for small-angle scattering data analysis. J. Appl. Cryst. 36, 1277-1282 (2003).
-
(2003)
J. Appl. Cryst.
, vol.36
, pp. 1277-1282
-
-
Konarev, P.V.1
Volkov, V.V.2
Sokolova, A.V.3
Koch, M.H.J.4
Svergun, D.I.5
-
63
-
-
0026910457
-
Determination of the regularization parameter in indirect-transform methods using perceptual criteria
-
Svergun, D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Crystallogr. 25, 495-503. (1992).
-
(1992)
J. Appl. Crystallogr.
, vol.25
, pp. 495
-
-
Svergun, D.I.1
-
64
-
-
85028894746
-
2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: An update
-
Trewhella, J. et al. 2017 publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution: an update.Acta Crystallogr. D Biol. Crystallogr. 73, 710-728 (2017).
-
(2017)
Acta Crystallogr. D Biol. Crystallogr.
, vol.73
, pp. 710-728
-
-
Trewhella, J.1
-
65
-
-
37049014272
-
Version 1.2 of the crystallography and NMR system
-
Brunger, A. T. Version 1.2 of the crystallography and NMR system. Nat. Protoc. 2, 2728-2733 (2007).
-
(2007)
Nat. Protoc.
, vol.2
, pp. 2728-2733
-
-
Brunger, A.T.1
-
66
-
-
85021812302
-
Segmental, domain-selective perdeuteration and small-angle neutron scattering for structural analysis of multi-domain proteins
-
Sonntag, M. et al. Segmental, domain-selective perdeuteration and small-angle neutron scattering for structural analysis of multi-domain proteins. Angew Chem. 56, 9322-9325 (2017).
-
(2017)
Angew Chem.
, vol.56
, pp. 9322-9325
-
-
Sonntag, M.1
-
67
-
-
0029185933
-
CRYSOL- A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates
-
Svergun, D.I., BarberatoC. & KochM. H. J. CRYSOL- A program to evaluate X-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Cryst. 28, 768-773 (1995).
-
(1995)
J. Appl. Cryst.
, vol.28
, pp. 768-773
-
-
Svergun, D.I.1
Barberato, C.2
Koch, M.H.J.3
-
68
-
-
0029400480
-
NMRPipe: A multidimensional spectral processing system based on UNIX pipes
-
Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277-293 (1995).
-
(1995)
J. Biomol. NMR
, vol.6
, pp. 277-293
-
-
Delaglio, F.1
-
69
-
-
85046874209
-
-
University of California, San Francisco
-
Goddard, T. D. & Kneller, D. G. SPARKY 3. v.3.115, https://www.cgl.ucsf.edu/home/sparky (University of California, San Francisco, 2015).
-
(2015)
SPARKY 3. V.3.115
-
-
Goddard, T.D.1
Kneller, D.G.2
-
70
-
-
19444382397
-
The CCPN data model for NMR spectroscopy: Development of a software pipeline
-
Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687-696 (2005).
-
(2005)
Proteins
, vol.59
, pp. 687-696
-
-
Vranken, W.F.1
|