메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 5957-5966

WILDCAT: Weakly supervised learning of deep convnets for image classification, pointwise localization and segmentation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; DEEP LEARNING; IMAGE SEGMENTATION; NEURAL NETWORKS; SEMANTICS;

EID: 85044546504     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.631     Document Type: Conference Paper
Times cited : (361)

References (71)
  • 1
  • 3
    • 85019329399 scopus 로고    scopus 로고
    • What's the point: Semantic segmentation with point supervision
    • A. Bearman, O. Russakovsky, V. Ferrari, and L. Fei-Fei. What's the Point: Semantic Segmentation with Point Supervision. In ECCV, 2016.
    • (2016) ECCV
    • Bearman, A.1    Russakovsky, O.2    Ferrari, V.3    Fei-Fei, L.4
  • 6
    • 84986269551 scopus 로고    scopus 로고
    • Weakly supervised deep detection networks
    • H. Bilen and A. Vedaldi. Weakly supervised deep detection networks. In CVPR, 2016.
    • (2016) CVPR
    • Bilen, H.1    Vedaldi, A.2
  • 8
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFS
    • L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. In ICLR, 2015.
    • (2015) ICLR
    • Chen, L.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 9
    • 85041931014 scopus 로고    scopus 로고
    • Instance-sensitive fully convolutional networks
    • J. Dai, K. He, Y. Li, S. Ren, and J. Sun. Instance-sensitive fully convolutional networks. In ECCV, 2016.
    • (2016) ECCV
    • Dai, J.1    He, K.2    Li, Y.3    Ren, S.4    Sun, J.5
  • 10
    • 85018938177 scopus 로고    scopus 로고
    • R-FCN: Object detection via region-based fully convolutional networks
    • J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection via region-based fully convolutional networks. In NIPS, 2016.
    • (2016) NIPS
    • Dai, J.1    Li, Y.2    He, K.3    Sun, J.4
  • 12
    • 84973897339 scopus 로고    scopus 로고
    • MANTRA: Minimum maximum latent structural SVM for image classification and ranking
    • T. Durand, N. Thome, and M. Cord. MANTRA: Minimum Maximum Latent Structural SVM for Image Classification and Ranking. In ICCV, 2015.
    • (2015) ICCV
    • Durand, T.1    Thome, N.2    Cord, M.3
  • 13
    • 85009902110 scopus 로고    scopus 로고
    • Weldon:
    • T. Durand, N. Thome, and M. Cord. WELDON: Weakly Supervised Learning of Deep Convolutional Neural Networks. In CVPR, 2016.
    • (2016) CVPR
    • Durand, T.1    Thome, N.2    Cord, M.3
  • 19
    • 84973864191 scopus 로고    scopus 로고
    • Object detection via a multi-region and semantic segmentation-aware cnn model
    • S. Gidaris and N. Komodakis. Object detection via a multi-region and semantic segmentation-aware cnn model. In ICCV, 2015.
    • (2015) ICCV
    • Gidaris, S.1    Komodakis, N.2
  • 20
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • R. Girshick. Fast R-CNN. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 21
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 22
    • 84959195179 scopus 로고    scopus 로고
    • Deformable part models are convolutional neural networks
    • R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable part models are convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Girshick, R.1    Iandola, F.2    Darrell, T.3    Malik, J.4
  • 23
    • 84977644905 scopus 로고    scopus 로고
    • Contextual action recognition with r* cnn
    • G. Gkioxari, R. Girshick, and J. Malik. Contextual action recognition with r* cnn. In CVPR, 2015.
    • (2015) CVPR
    • Gkioxari, G.1    Girshick, R.2    Malik, J.3
  • 25
    • 84938217896 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. In ECCV, 2014.
    • (2014) ECCV
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 27
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 28
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 30
    • 84887325186 scopus 로고    scopus 로고
    • Blocks that shout: Distinctive parts for scene classification
    • M. Juneja, A. Vedaldi, C. V. Jawahar, and A. Zisserman. Blocks that shout: Distinctive parts for scene classification. In CVPR, 2013.
    • (2013) CVPR
    • Juneja, M.1    Vedaldi, A.2    Jawahar, C.V.3    Zisserman, A.4
  • 31
    • 84990042872 scopus 로고    scopus 로고
    • Seed, expand and constrain: Three principles for weakly-supervised image segmentation
    • A. Kolesnikov and C. H. Lampert. Seed, expand and constrain: Three principles for weakly-supervised image segmentation. In ECCV, 2016.
    • (2016) ECCV
    • Kolesnikov, A.1    Lampert, C.H.2
  • 32
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected crfs with Gaussian edge potentials
    • P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge potentials. In NIPS. 2011.
    • (2011) NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 33
    • 84919933137 scopus 로고    scopus 로고
    • Learning features and parts for fine-grained recognition
    • J. Krause, T. Gebru, J. Deng, L.-J. Li, and F.-F. Li. Learning features and parts for fine-grained recognition. In ICPR, 2014.
    • (2014) ICPR
    • Krause, J.1    Gebru, T.2    Deng, J.3    Li, L.-J.4    Li, F.-F.5
  • 34
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS. 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 36
    • 84911413388 scopus 로고    scopus 로고
    • Video event detection by inferring temporal instance labels
    • K.-T. Lai, F. X. Yu, M.-S. Chen, and S.-F. Chang. Video event detection by inferring temporal instance labels. In CVPR, 2014.
    • (2014) CVPR
    • Lai, K.-T.1    Yu, F.X.2    Chen, M.-S.3    Chang, S.-F.4
  • 37
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 38
    • 85162513516 scopus 로고    scopus 로고
    • Object bank: A high-level image representation for scene classification & semantic feature sparsification
    • L.-J. Li, H. Su, E. P. Xing, and L. Fei-Fei. Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification. In NIPS, 2010.
    • (2010) NIPS
    • Li, L.-J.1    Su, H.2    Xing, E.P.3    Fei-Fei, L.4
  • 39
    • 84959247149 scopus 로고    scopus 로고
    • Multiple instance learning for soft bags via top instances
    • W. Li and N. Vasconcelos. Multiple Instance Learning for Soft Bags via Top Instances. In CVPR, 2015.
    • (2015) CVPR
    • Li, W.1    Vasconcelos, N.2
  • 40
    • 84959188579 scopus 로고    scopus 로고
    • Deep lac: Deep localization, alignment and classification for fine-grained recognition
    • D. Lin, X. Shen, C. Lu, and J. Jia. Deep lac: Deep localization, alignment and classification for fine-grained recognition. In CVPR, 2015.
    • (2015) CVPR
    • Lin, D.1    Shen, X.2    Lu, C.3    Jia, J.4
  • 42
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for Semantic Segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 43
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks. In CVPR, 2014.
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 44
    • 84953933150 scopus 로고    scopus 로고
    • Is object localization for free? Weakly-supervised learning with convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free? Weakly-supervised learning with convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 45
    • 84965124068 scopus 로고    scopus 로고
    • Weakly-and semi-supervised learning of a DCNN for semantic image segmentation
    • G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weakly-and semi-supervised learning of a DCNN for semantic image segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Papandreou, G.1    Chen, L.-C.2    Murphy, K.3    Yuille, A.L.4
  • 47
    • 85083950313 scopus 로고    scopus 로고
    • Automatic discovery and optimization of parts for image classification
    • S. N. Parizi, A. Vedaldi, A. Zisserman, and P. F. Felzenszwalb. Automatic discovery and optimization of parts for image classification. In ICLR, 2015.
    • (2015) ICLR
    • Parizi, S.N.1    Vedaldi, A.2    Zisserman, A.3    Felzenszwalb, P.F.4
  • 48
    • 84973922870 scopus 로고    scopus 로고
    • Constrained convolutional neural networks for weakly supervised segmentation
    • D. Pathak, P. Krahenbuhl, and T. Darrell. Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Pathak, D.1    Krahenbuhl, P.2    Darrell, T.3
  • 50
    • 84959200585 scopus 로고    scopus 로고
    • From image-level to pixel-level labeling with convolutional networks
    • P. O. Pinheiro and R. Collobert. From image-level to pixel-level labeling with convolutional networks. In CVPR, 2015.
    • (2015) CVPR
    • Pinheiro, P.O.1    Collobert, R.2
  • 51
    • 70450162315 scopus 로고    scopus 로고
    • Recognizing indoor scenes
    • A. Quattoni and A. Torralba. Recognizing indoor scenes. In CVPR, 2009.
    • (2009) CVPR
    • Quattoni, A.1    Torralba, A.2
  • 52
    • 84960980241 scopus 로고    scopus 로고
    • Faster r-cnn: Towards real-time object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In NIPS. 2015.
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 54
    • 84902249208 scopus 로고    scopus 로고
    • Latent pyramidal regions for recognizing scenes
    • F. Sadeghi and M. F. Tappen. Latent pyramidal regions for recognizing scenes. In ECCV, 2012.
    • (2012) ECCV
    • Sadeghi, F.1    Tappen, M.F.2
  • 55
    • 84998679622 scopus 로고    scopus 로고
    • Understanding and improving convolutional neural networks via concatenated rectified linear units
    • W. Shang, K. Sohn, D. Almeida, and H. Lee. Understanding and improving convolutional neural networks via concatenated rectified linear units. In ICML, 2016.
    • (2016) ICML
    • Shang, W.1    Sohn, K.2    Almeida, D.3    Lee, H.4
  • 56
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 57
    • 0345414182 scopus 로고    scopus 로고
    • Video google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV, 2003.
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 58
    • 84986244130 scopus 로고    scopus 로고
    • Pronet: Learning to propose object-specific boxes for cascaded neural networks
    • C. Sun, M. Paluri, R. Collobert, R. Nevatia, and L. Bourdev. ProNet: Learning to Propose Object-Specific Boxes for Cascaded Neural Networks. In CVPR, 2016.
    • (2016) CVPR
    • Sun, C.1    Paluri, M.2    Collobert, R.3    Nevatia, R.4    Bourdev, L.5
  • 59
    • 84898806407 scopus 로고    scopus 로고
    • Learning discriminative part detectors for image classification and cosegmentation
    • J. Sun and J. Ponce. Learning discriminative part detectors for image classification and cosegmentation. In ICCV, 2013.
    • (2013) ICCV
    • Sun, J.1    Ponce, J.2
  • 60
    • 84959203164 scopus 로고    scopus 로고
    • End-to-end integration of a convolution network, deformable parts model and non-maximum suppression
    • L. Wan, D. Eigen, and R. Fergus. End-to-end integration of a convolution network, deformable parts model and non-maximum suppression. In CVPR, 2015.
    • (2015) CVPR
    • Wan, L.1    Eigen, D.2    Fergus, R.3
  • 61
    • 84986268600 scopus 로고    scopus 로고
    • Region ranking SVM for image classification
    • In June
    • Z. Wei and M. Hoai. Region Ranking SVM for Image Classification. In CVPR, June 2016.
    • (2016) CVPR
    • Wei, Z.1    Hoai, M.2
  • 63
    • 85030092451 scopus 로고    scopus 로고
    • Show, attend and tell: Neural image caption generation with visual attention
    • Xu, Ba, Kiros, Cho, Courville, Salakhutdinov, Zemel, and Bengio. Show, attend and tell: Neural image caption generation with visual attention. In ICML, 2015.
    • (2015) ICML
    • Xu, B.1    Kiros, C.2    Courville3    Salakhutdinov4    Zemel5    Bengio6
  • 64
    • 85035008367 scopus 로고    scopus 로고
    • Ask, attend and answer: Exploring question-guided spatial attention for visual question answering
    • In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors
    • H. Xu and K. Saenko. Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering. In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors, ECCV, 2016.
    • (2016) ECCV
    • Xu, H.1    Saenko, K.2
  • 66
    • 85030460332 scopus 로고    scopus 로고
    • Top-down neural attention by excitation backprop
    • Zhang, Lin, Brandt, Shen, and Sclaroff. Top-down neural attention by excitation backprop. In ECCV, 2016.
    • (2016) ECCV
    • Zhang, L.1    Brandt2    Shen3    Sclaroff4
  • 67
    • 84986309458 scopus 로고    scopus 로고
    • SPDA-CNN: Unifying semantic part detection and abstraction for fine-grained recognition
    • H. Zhang, T. Xu, M. Elhoseiny, X. Huang, S. Zhang, A. El-gammal, and D. Metaxas. SPDA-CNN: Unifying Semantic Part Detection and Abstraction for Fine-grained Recognition. In CVPR, 2016.
    • (2016) CVPR
    • Zhang, H.1    Xu, T.2    Elhoseiny, M.3    Huang, X.4    Zhang, S.5    El-Gammal, A.6    Metaxas, D.7
  • 68
    • 84956617559 scopus 로고    scopus 로고
    • Part-based r-cnns for fine-grained category detection
    • N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Part-based r-cnns for fine-grained category detection. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, N.1    Donahue, J.2    Girshick, R.3    Darrell, T.4
  • 71
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning Deep Features for Scene Recognition using Places Database. In NIPS, 2014.
    • (2014) NIPS
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.