-
1
-
-
84986296991
-
NetVLAD: CNN architecture for weakly supervised place recognition
-
R. Arandjelović, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. NetVLAD: CNN architecture for weakly supervised place recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
Arandjelović, R.1
Gronat, P.2
Torii, A.3
Pajdla, T.4
Sivic, J.5
-
2
-
-
84973914286
-
Pooling in image representation: The visual codeword point of view
-
S. Avila, N. Thome, M. Cord, E. Valle, and A. Araujo. Pooling in image representation: the visual codeword point of view. Computer Vision and Image Understanding, 2012.
-
(2012)
Computer Vision and Image Understanding
-
-
Avila, S.1
Thome, N.2
Cord, M.3
Valle, E.4
Araujo, A.5
-
5
-
-
85027535347
-
Weakly supervised localization using deep feature maps
-
A. J. Bency, H. Kwon, H. Lee, S. Karthikeyan, and B. S. Manjunath. Weakly supervised localization using deep feature maps. In ECCV, 2016.
-
(2016)
ECCV
-
-
Bency, A.J.1
Kwon, H.2
Lee, H.3
Karthikeyan, S.4
Manjunath, B.S.5
-
6
-
-
84986269551
-
Weakly supervised deep detection networks
-
H. Bilen and A. Vedaldi. Weakly supervised deep detection networks. In CVPR, 2016.
-
(2016)
CVPR
-
-
Bilen, H.1
Vedaldi, A.2
-
8
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected CRFS
-
L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. In ICLR, 2015.
-
(2015)
ICLR
-
-
Chen, L.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
9
-
-
85041931014
-
Instance-sensitive fully convolutional networks
-
J. Dai, K. He, Y. Li, S. Ren, and J. Sun. Instance-sensitive fully convolutional networks. In ECCV, 2016.
-
(2016)
ECCV
-
-
Dai, J.1
He, K.2
Li, Y.3
Ren, S.4
Sun, J.5
-
10
-
-
85018938177
-
R-FCN: Object detection via region-based fully convolutional networks
-
J. Dai, Y. Li, K. He, and J. Sun. R-FCN: Object detection via region-based fully convolutional networks. In NIPS, 2016.
-
(2016)
NIPS
-
-
Dai, J.1
Li, Y.2
He, K.3
Sun, J.4
-
12
-
-
84973897339
-
MANTRA: Minimum maximum latent structural SVM for image classification and ranking
-
T. Durand, N. Thome, and M. Cord. MANTRA: Minimum Maximum Latent Structural SVM for Image Classification and Ranking. In ICCV, 2015.
-
(2015)
ICCV
-
-
Durand, T.1
Thome, N.2
Cord, M.3
-
13
-
-
85009902110
-
Weldon:
-
T. Durand, N. Thome, and M. Cord. WELDON: Weakly Supervised Learning of Deep Convolutional Neural Networks. In CVPR, 2016.
-
(2016)
CVPR
-
-
Durand, T.1
Thome, N.2
Cord, M.3
-
17
-
-
84990060711
-
-
A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, and M. Rohrbach. Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding. arXiv:1606.01847, 2016.
-
(2016)
Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding
-
-
Fukui, A.1
Park, D.H.2
Yang, D.3
Rohrbach, A.4
Darrell, T.5
Rohrbach, M.6
-
19
-
-
84973864191
-
Object detection via a multi-region and semantic segmentation-aware cnn model
-
S. Gidaris and N. Komodakis. Object detection via a multi-region and semantic segmentation-aware cnn model. In ICCV, 2015.
-
(2015)
ICCV
-
-
Gidaris, S.1
Komodakis, N.2
-
20
-
-
85029359197
-
Fast R-CNN
-
R. Girshick. Fast R-CNN. In ICCV, 2015.
-
(2015)
ICCV
-
-
Girshick, R.1
-
21
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
22
-
-
84959195179
-
Deformable part models are convolutional neural networks
-
R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable part models are convolutional neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Girshick, R.1
Iandola, F.2
Darrell, T.3
Malik, J.4
-
23
-
-
84977644905
-
Contextual action recognition with r* cnn
-
G. Gkioxari, R. Girshick, and J. Malik. Contextual action recognition with r* cnn. In CVPR, 2015.
-
(2015)
CVPR
-
-
Gkioxari, G.1
Girshick, R.2
Malik, J.3
-
25
-
-
84938217896
-
Multi-scale orderless pooling of deep convolutional activation features
-
Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. In ECCV, 2014.
-
(2014)
ECCV
-
-
Gong, Y.1
Wang, L.2
Guo, R.3
Lazebnik, S.4
-
26
-
-
84856686500
-
Semantic contours from inverse detectors
-
B. Hariharan, P. Arbelaez, L. D. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse detectors. In ICCV, 2011.
-
(2011)
ICCV
-
-
Hariharan, B.1
Arbelaez, P.2
Bourdev, L.D.3
Maji, S.4
Malik, J.5
-
27
-
-
84928278589
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
-
(2014)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
28
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
31
-
-
84990042872
-
Seed, expand and constrain: Three principles for weakly-supervised image segmentation
-
A. Kolesnikov and C. H. Lampert. Seed, expand and constrain: Three principles for weakly-supervised image segmentation. In ECCV, 2016.
-
(2016)
ECCV
-
-
Kolesnikov, A.1
Lampert, C.H.2
-
32
-
-
85162351107
-
Efficient inference in fully connected crfs with Gaussian edge potentials
-
P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge potentials. In NIPS. 2011.
-
(2011)
NIPS
-
-
Krähenbühl, P.1
Koltun, V.2
-
33
-
-
84919933137
-
Learning features and parts for fine-grained recognition
-
J. Krause, T. Gebru, J. Deng, L.-J. Li, and F.-F. Li. Learning features and parts for fine-grained recognition. In ICPR, 2014.
-
(2014)
ICPR
-
-
Krause, J.1
Gebru, T.2
Deng, J.3
Li, L.-J.4
Li, F.-F.5
-
34
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS. 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
35
-
-
85040141113
-
Spleap: Soft pooling of learned parts for image classification
-
P. Kulkarni, F. Jurie, J. Zepeda, P. Pérez, and L. Chevallier. Spleap: Soft pooling of learned parts for image classification. In ECCV, 2016.
-
(2016)
ECCV
-
-
Kulkarni, P.1
Jurie, F.2
Zepeda, J.3
Pérez, P.4
Chevallier, L.5
-
36
-
-
84911413388
-
Video event detection by inferring temporal instance labels
-
K.-T. Lai, F. X. Yu, M.-S. Chen, and S.-F. Chang. Video event detection by inferring temporal instance labels. In CVPR, 2014.
-
(2014)
CVPR
-
-
Lai, K.-T.1
Yu, F.X.2
Chen, M.-S.3
Chang, S.-F.4
-
37
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
-
(2006)
CVPR
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
38
-
-
85162513516
-
Object bank: A high-level image representation for scene classification & semantic feature sparsification
-
L.-J. Li, H. Su, E. P. Xing, and L. Fei-Fei. Object Bank: A High-Level Image Representation for Scene Classification & Semantic Feature Sparsification. In NIPS, 2010.
-
(2010)
NIPS
-
-
Li, L.-J.1
Su, H.2
Xing, E.P.3
Fei-Fei, L.4
-
39
-
-
84959247149
-
Multiple instance learning for soft bags via top instances
-
W. Li and N. Vasconcelos. Multiple Instance Learning for Soft Bags via Top Instances. In CVPR, 2015.
-
(2015)
CVPR
-
-
Li, W.1
Vasconcelos, N.2
-
40
-
-
84959188579
-
Deep lac: Deep localization, alignment and classification for fine-grained recognition
-
D. Lin, X. Shen, C. Lu, and J. Jia. Deep lac: Deep localization, alignment and classification for fine-grained recognition. In CVPR, 2015.
-
(2015)
CVPR
-
-
Lin, D.1
Shen, X.2
Lu, C.3
Jia, J.4
-
41
-
-
84937834115
-
Microsoft COCO: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Common Objects in Context. In ECCV, 2014.
-
(2014)
ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ra-Manan, D.6
Dollár, P.7
Zitnick, C.L.8
-
42
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for Semantic Segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
43
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks. In CVPR, 2014.
-
(2014)
CVPR
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
44
-
-
84953933150
-
Is object localization for free? Weakly-supervised learning with convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free? Weakly-supervised learning with convolutional neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
45
-
-
84965124068
-
Weakly-and semi-supervised learning of a DCNN for semantic image segmentation
-
G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weakly-and semi-supervised learning of a DCNN for semantic image segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Papandreou, G.1
Chen, L.-C.2
Murphy, K.3
Yuille, A.L.4
-
48
-
-
84973922870
-
Constrained convolutional neural networks for weakly supervised segmentation
-
D. Pathak, P. Krahenbuhl, and T. Darrell. Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Pathak, D.1
Krahenbuhl, P.2
Darrell, T.3
-
50
-
-
84959200585
-
From image-level to pixel-level labeling with convolutional networks
-
P. O. Pinheiro and R. Collobert. From image-level to pixel-level labeling with convolutional networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Pinheiro, P.O.1
Collobert, R.2
-
52
-
-
84960980241
-
Faster r-cnn: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In NIPS. 2015.
-
(2015)
NIPS
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
53
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet large scale visual recognition challenge. International Journal of Computer Vision (IJCV), 2015.
-
(2015)
International Journal of Computer Vision (IJCV)
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
54
-
-
84902249208
-
Latent pyramidal regions for recognizing scenes
-
F. Sadeghi and M. F. Tappen. Latent pyramidal regions for recognizing scenes. In ECCV, 2012.
-
(2012)
ECCV
-
-
Sadeghi, F.1
Tappen, M.F.2
-
55
-
-
84998679622
-
Understanding and improving convolutional neural networks via concatenated rectified linear units
-
W. Shang, K. Sohn, D. Almeida, and H. Lee. Understanding and improving convolutional neural networks via concatenated rectified linear units. In ICML, 2016.
-
(2016)
ICML
-
-
Shang, W.1
Sohn, K.2
Almeida, D.3
Lee, H.4
-
56
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
57
-
-
0345414182
-
Video google: A text retrieval approach to object matching in videos
-
J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV, 2003.
-
(2003)
ICCV
-
-
Sivic, J.1
Zisserman, A.2
-
58
-
-
84986244130
-
Pronet: Learning to propose object-specific boxes for cascaded neural networks
-
C. Sun, M. Paluri, R. Collobert, R. Nevatia, and L. Bourdev. ProNet: Learning to Propose Object-Specific Boxes for Cascaded Neural Networks. In CVPR, 2016.
-
(2016)
CVPR
-
-
Sun, C.1
Paluri, M.2
Collobert, R.3
Nevatia, R.4
Bourdev, L.5
-
59
-
-
84898806407
-
Learning discriminative part detectors for image classification and cosegmentation
-
J. Sun and J. Ponce. Learning discriminative part detectors for image classification and cosegmentation. In ICCV, 2013.
-
(2013)
ICCV
-
-
Sun, J.1
Ponce, J.2
-
60
-
-
84959203164
-
End-to-end integration of a convolution network, deformable parts model and non-maximum suppression
-
L. Wan, D. Eigen, and R. Fergus. End-to-end integration of a convolution network, deformable parts model and non-maximum suppression. In CVPR, 2015.
-
(2015)
CVPR
-
-
Wan, L.1
Eigen, D.2
Fergus, R.3
-
61
-
-
84986268600
-
Region ranking SVM for image classification
-
In June
-
Z. Wei and M. Hoai. Region Ranking SVM for Image Classification. In CVPR, June 2016.
-
(2016)
CVPR
-
-
Wei, Z.1
Hoai, M.2
-
63
-
-
85030092451
-
Show, attend and tell: Neural image caption generation with visual attention
-
Xu, Ba, Kiros, Cho, Courville, Salakhutdinov, Zemel, and Bengio. Show, attend and tell: Neural image caption generation with visual attention. In ICML, 2015.
-
(2015)
ICML
-
-
Xu, B.1
Kiros, C.2
Courville3
Salakhutdinov4
Zemel5
Bengio6
-
64
-
-
85035008367
-
Ask, attend and answer: Exploring question-guided spatial attention for visual question answering
-
In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors
-
H. Xu and K. Saenko. Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering. In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors, ECCV, 2016.
-
(2016)
ECCV
-
-
Xu, H.1
Saenko, K.2
-
65
-
-
84897544696
-
∝SVM for learning with label proportions
-
F. X. Yu, D. Liu, S. Kumar, T. Jebara, and S.-F. Chang. ∝svm for learning with label proportions. In ICML, 2013.
-
(2013)
ICML
-
-
Yu, F.X.1
Liu, D.2
Kumar, S.3
Jebara, T.4
Chang, S.-F.5
-
66
-
-
85030460332
-
Top-down neural attention by excitation backprop
-
Zhang, Lin, Brandt, Shen, and Sclaroff. Top-down neural attention by excitation backprop. In ECCV, 2016.
-
(2016)
ECCV
-
-
Zhang, L.1
Brandt2
Shen3
Sclaroff4
-
67
-
-
84986309458
-
SPDA-CNN: Unifying semantic part detection and abstraction for fine-grained recognition
-
H. Zhang, T. Xu, M. Elhoseiny, X. Huang, S. Zhang, A. El-gammal, and D. Metaxas. SPDA-CNN: Unifying Semantic Part Detection and Abstraction for Fine-grained Recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
Zhang, H.1
Xu, T.2
Elhoseiny, M.3
Huang, X.4
Zhang, S.5
El-Gammal, A.6
Metaxas, D.7
-
69
-
-
84911443783
-
Panda: Pose aligned networks for deep attribute modeling
-
N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev. PANDA: Pose Aligned Networks for Deep Attribute Modeling. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zhang, N.1
Paluri, M.2
Ranzato, M.3
Darrell, T.4
Bourdev, L.5
-
70
-
-
84986247435
-
Learning deep features for discriminative localization
-
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning Deep Features for Discriminative Localization. In CVPR, 2016.
-
(2016)
CVPR
-
-
Zhou, B.1
Khosla, A.2
Lapedriza, A.3
Oliva, A.4
Torralba, A.5
-
71
-
-
84937964578
-
Learning deep features for scene recognition using places database
-
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning Deep Features for Scene Recognition using Places Database. In NIPS, 2014.
-
(2014)
NIPS
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
|