-
1
-
-
0345414182
-
Video google: A text retrieval approach to object matching in videos
-
J. Sivic and A. Zisserman, "Video Google: A text retrieval approach to object matching in videos," in Proc. 9th ICCV, 2003, pp. 1470-1477
-
(2003)
Proc. 9th ICCV
, pp. 1470-1477
-
-
Sivic, J.1
Zisserman, A.2
-
2
-
-
3042535216
-
Distinctive image features from scale-invariant keypoints
-
D. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004
-
(2004)
Int. J. Comput. Vis
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.1
-
3
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
Jun
-
N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. CVPR, Jun. 2005, pp. 886-893
-
(2005)
Proc. CVPR
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
-
4
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories," in Proc. CVPR, 2006, pp. 2169-2178
-
(2006)
Proc. CVPR
, pp. 2169-2178
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
5
-
-
84878919540
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Proc. NIPS, 2012, pp. 1-8
-
(2012)
Proc. NIPS
, pp. 1-8
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
6
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in Proc. CVPR, 2009, pp. 248-255
-
(2009)
Proc. CVPR
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
7
-
-
84867869779
-
Unsupervised and supervised visual codes with restricted boltzmann machines
-
H. Goh, N. Thome, M. Cord, and J.-H. Lim, "Unsupervised and supervised visual codes with restricted boltzmann machines," in Proc. 12th ECCV, 2012, pp. 298-311
-
(2012)
Proc. 12th ECCV
, pp. 298-311
-
-
Goh, H.1
Thome, N.2
Cord, M.3
Lim, J.-H.4
-
8
-
-
84863049755
-
Efficient learning of sparse, distributed, convolutional feature representations for object recognition
-
K. Sohn, D. Y. Jung, H. Lee, and A. Hero, "Efficient learning of sparse, distributed, convolutional feature representations for object recognition," in Proc. ICCV, 2011, pp. 2643-2650
-
(2011)
Proc. ICCV
, pp. 2643-2650
-
-
Sohn, K.1
Jung, D.Y.2
Lee, H.3
Hero, A.4
-
9
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Proc. ICML, 2009, pp. 609-616
-
(2009)
Proc. ICML
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
10
-
-
70450209196
-
Linear spatial pyramid matching using sparse coding for image classification
-
J. Yang, K. Yu, Y. Gong, and T. Huang, "Linear spatial pyramid matching using sparse coding for image classification," in Proc. CVPR, 2009, pp. 1794-1801
-
(2009)
Proc. CVPR
, pp. 1794-1801
-
-
Yang, J.1
Yu, K.2
Gong, Y.3
Huang, T.4
-
11
-
-
69349090197
-
Learning deep architectures for ai
-
Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009
-
(2009)
Found. Trends Mach. Learn
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
12
-
-
33745805403
-
A fast learning algorithm for deep belief networks
-
G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief networks," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006
-
(2006)
Neural Comput
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
13
-
-
84864073449
-
Greedy layerwise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layerwise training of deep networks," in Proc. NIPS, 2006, pp. 153-160
-
(2006)
Proc. NIPS
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
14
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Netw., vol. 4, no. 2, pp. 251-257, 1991
-
(1991)
Neural Netw
, vol.4
, Issue.2
, pp. 251-257
-
-
Hornik, K.1
-
15
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition," Neural Comput., vol. 1, no. 4, pp. 541-551, 1989
-
(1989)
Neural Comput
, vol.1
, Issue.4
, pp. 541-551
-
-
Lecun, Y.1
-
16
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
17
-
-
34948870900
-
Unsupervised learning of invariant feature hierarchies with applications to object recognition
-
M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun, "Unsupervised learning of invariant feature hierarchies with applications to object recognition," in Proc. CVPR, 2007, pp. 1-8
-
(2007)
Proc. CVPR
, pp. 1-8
-
-
Ranzato, M.1
Huang, F.2
Boureau, Y.3
Le Cun, Y.4
-
18
-
-
56449117245
-
To recognize shapes, first learn to generate images
-
P. Cisek, T. Drew, and J. Kalaska, Eds. New York, NY, USA Elsevier
-
G. E. Hinton, "To recognize shapes, first learn to generate images," in Computational Neuroscience: Theoretical Insights into Brain Function, P. Cisek, T. Drew, and J. Kalaska, Eds. New York, NY, USA: Elsevier, 2007
-
(2007)
Computational Neuroscience: Theoretical Insights into Brain Function
-
-
Hinton, G.E.1
-
19
-
-
0000329993
-
Information processing in dynamical systems: Foundations of harmony theory
-
D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA, USA MIT Press
-
P. Smolensky, "Information processing in dynamical systems: Foundations of harmony theory," in Parallel Distributed Processing: Foundations, vol. 1, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA, USA: MIT Press, 1986, pp. 194-281
-
(1986)
Parallel Distributed Processing: Foundations
, vol.1
, pp. 194-281
-
-
Smolensky, P.1
-
20
-
-
0000134812
-
Une procédure dapprentissage pour réseau a seuil asymmetrique a learning scheme for asymmetric threshold networks
-
Paris, France
-
Y. LeCun, "Une procédure dapprentissage pour réseau a seuil asymmetrique a learning scheme for asymmetric threshold networks," in Proc. Cognitiva, Paris, France, 1985, pp. 599-604
-
(1985)
Proc. Cognitiva
, pp. 599-604
-
-
Lecun, Y.1
-
21
-
-
0022471098
-
Learning representations by back-propagating errors
-
Oct
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, pp. 533-536, Oct. 1986
-
(1986)
Nature
, vol.323
, pp. 533-536
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
22
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.2
-
23
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and composing robust features with denoising autoencoders," in Proc. 25th ICML, 2008, pp. 1096-1103
-
(2008)
Proc. 25th ICML
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.-A.4
-
24
-
-
0029938380
-
Emergence of simple-cell receptive field properties by learning a sparse code for natural images
-
B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature, vol. 381, no. 6583, pp. 607-609, 1996
-
(1996)
Nature
, vol.381
, Issue.6583
, pp. 607-609
-
-
Olshausen, B.A.1
Field, D.J.2
-
25
-
-
85162460675
-
Learning convolutional feature hierachies for visual recognition
-
K. Kavukcuoglu, P. Sermanet, Y. Boureau, K. Gregor, M. Mathieu, and Y. LeCun, "Learning convolutional feature hierachies for visual recognition," in Proc. NIPS, 2010, pp. 1-9
-
(2010)
Proc. NIPS
, pp. 1-9
-
-
Kavukcuoglu, K.1
Sermanet, P.2
Boureau, Y.3
Gregor, K.4
Mathieu, M.5
Le Cun, Y.6
-
26
-
-
84887371778
-
Multipath sparse coding using hierarchical matching pursuit
-
L. Bo and X. R. D. Fox, "Multipath sparse coding using hierarchical matching pursuit," in Proc. CVPR, 2013, pp. 660-667
-
(2013)
Proc. CVPR
, pp. 660-667
-
-
Bo., L.1
Fox, X.R.D.2
-
27
-
-
77952671498
-
Visual word ambiguity
-
Jul
-
J. Van Gemert, C. Veenman, A. Smeulders, and J.-M. Geusebroek, "Visual word ambiguity," IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 7, pp. 1271-1283, Jul. 2010
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.32
, Issue.7
, pp. 1271-1283
-
-
Van Gemert, J.1
Veenman, C.2
Smeulders, A.3
Geusebroek, J.-M.4
-
28
-
-
84856649187
-
Ask the locals: Multi-way local pooling for image recognition
-
Y. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun, "Ask the locals: Multi-way local pooling for image recognition," in Proc. ICCV, 2011, pp. 1-8
-
(2011)
Proc ICCV
, pp. 1-8
-
-
Boureau, Y.1
Le Roux, N.2
Bach, F.3
Ponce, J.4
Le Cun, Y.5
-
29
-
-
85161980001
-
Sparse deep belief net model for visual area V2
-
H. Lee, C. Ekanadham, and A. Ng, "Sparse deep belief net model for visual area V2," in Proc. NIPS, 2008, pp. 1-5
-
(2008)
Proc. NIPS
, pp. 1-5
-
-
Lee, H.1
Ekanadham, C.2
Ng, A.3
-
30
-
-
84858761801
-
Supervised dictionary learning
-
J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, "Supervised dictionary learning," in Proc. NIPS, 2008, pp. 1033-1040
-
(2008)
Proc. NIPS
, pp. 1033-1040
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
Zisserman, A.5
-
31
-
-
80052901219
-
Learning a discriminative dictionary for sparse coding via label consistent K-SVD
-
Z. Jiang, Z. Lin, and L. S. Davis, "Learning a discriminative dictionary for sparse coding via label consistent K-SVD," in Proc. CVPR, 2011, pp. 1697-1704
-
(2011)
Proc. CVPR
, pp. 1697-1704
-
-
Jiang, Z.1
Lin, Z.2
Davis, L.S.3
-
32
-
-
51949103737
-
Unifying discriminative visual codebook generation with classifier training for object category recognition
-
L. Yang, R. Jin, R. Sukthankar, and F. Jurie, "Unifying discriminative visual codebook generation with classifier training for object category recognition," in Proc. CVPR, 2008, pp. 1-8
-
(2008)
Proc. CVPR
, pp. 1-8
-
-
Yang, L.1
Jin, R.2
Sukthankar, R.3
Jurie, F.4
-
33
-
-
77955995785
-
Supervised translation-invariant sparse coding
-
J. Yang, K. Yu, and T. Huang, "Supervised translation-invariant sparse coding," in Proc. CVPR, 2010, pp. 3517-3524
-
(2010)
Proc. CVPR
, pp. 3517-3524
-
-
Yang, J.1
Yu, K.2
Huang, T.3
-
34
-
-
77955993281
-
Learning mid-level features for recognition
-
Y. Boureau, F. Bach, Y. LeCun, and J. Ponce, "Learning mid-level features for recognition," in Proc. CVPR, 2010, pp. 2559-2566
-
(2010)
Proc. CVPR
, pp. 2559-2566
-
-
Boureau, Y.1
Bach, F.2
Lecun, Y.3
Ponce, J.4
-
35
-
-
78149308464
-
Efficient highly over-complete sparse coding using a mixture model
-
J. Yang, K. Yu, and T. Huang, "Efficient highly over-complete sparse coding using a mixture model," in Proc. ECCV, 2010, pp. 113-126
-
(2010)
Proc. ECCV
, pp. 113-126
-
-
Yang, J.1
Yu, K.2
Huang, T.3
-
36
-
-
77955996870
-
Localityconstrained linear coding for image classification
-
J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, "Localityconstrained linear coding for image classification," in Proc. CVPR, 2010, pp. 3360-3367
-
(2010)
Proc. CVPR
, pp. 3360-3367
-
-
Wang, J.1
Yang, J.2
Yu, K.3
Lv., F.4
Huang, T.5
Gong, Y.6
-
37
-
-
84899683325
-
Biasing restricted Boltzmann machines to manipulate latent selectivity and sparsity
-
H. Goh, N. Thome, and M. Cord, "Biasing restricted Boltzmann machines to manipulate latent selectivity and sparsity," in Proc. NIPS Workshop, 2010, pp. 1-10
-
(2010)
Proc. NIPS Workshop
, pp. 1-10
-
-
Goh, H.1
Thome, N.2
Cord, M.3
-
38
-
-
84856253178
-
Learning invariant color features with sparse topographic restricted boltzmann machines
-
H. Goh, L. Kusmierz, J.-H. Lim, N. Thome, and M. Cord, "Learning invariant color features with sparse topographic restricted Boltzmann machines," in Proc. 18th ICIP, 2011, pp. 1241-1244
-
(2011)
Proc. 18th ICIP
, pp. 1241-1244
-
-
Goh, H.1
Kusmierz, L.2
Lim, J.-H.3
Thome, N.4
Cord, M.5
-
39
-
-
67349266616
-
Supervised learning of quantizer codebooks by information loss minimization
-
Jul
-
S. Lazebnik and M. Raginsky, "Supervised learning of quantizer codebooks by information loss minimization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 7, pp. 1294-1309, Jul. 2009
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.31
, Issue.7
, pp. 1294-1309
-
-
Lazebnik, S.1
Raginsky, M.2
-
40
-
-
77956502203
-
A theoretical analysis of feature pooling in vision algorithms
-
Y. Boureau, J. Ponce, and Y. LeCun, "A theoretical analysis of feature pooling in vision algorithms," in Proc. ICML, 2010, pp. 111-118
-
(2010)
Proc. ICML
, pp. 111-118
-
-
Boureau, Y.1
Ponce, J.2
Le Cun, Y.3
-
41
-
-
84875955437
-
Pooling in image representation: The visual codeword point of view
-
S. Avila, N. Thome, M. Cord, E. Valle, and A. Araujo, "Pooling in image representation: The visual codeword point of view," Comput. Vis. Image. Und., vol. 117, no. 5, pp. 453-465, 2012
-
(2012)
Comput. Vis. Image. und
, vol.117
, Issue.5
, pp. 453-465
-
-
Avila, S.1
Thome, N.2
Cord, M.3
Valle, E.4
Araujo, A.5
-
42
-
-
34948815101
-
Fisher kernels on visual vocabularies for image categorization
-
F. Perronnin and C. Dance, "Fisher kernels on visual vocabularies for image categorization," in Proc. CVPR, 2007, pp. 1-8
-
(2007)
Proc. CVPR
, pp. 1-8
-
-
Perronnin, F.1
Dance, C.2
-
43
-
-
77956004473
-
Aggregating local descriptors into a compact image representation
-
H. Jégou, M. Douze, C. Schmid, and P. Pérez, "Aggregating local descriptors into a compact image representation," in Proc. CVPR, 2010, pp. 3304-3311
-
(2010)
Proc. CVPR
, pp. 3304-3311
-
-
Jégou, H.1
Douze, M.2
Schmid, C.3
Pérez, P.4
-
44
-
-
78149344615
-
Image classification using super-vector coding of local image descriptors
-
X. Zhou, K. Yu, T. Zhang, and T. Huang, "Image classification using super-vector coding of local image descriptors," in Proc. ECCV, 2010, pp. 141-154
-
(2010)
Proc. ECCV
, pp. 141-154
-
-
Zhou, X.1
Yu, K.2
Zhang, T.3
Huang, T.4
-
45
-
-
84899104715
-
Spatially local coding for object recognition
-
S. McCann and D. G. Lowe, "Spatially local coding for object recognition," in Proc. ACCV, 2012, pp. 204-217
-
(2012)
Proc. ACCV
, pp. 204-217
-
-
McCann, S.1
Lowe, D.G.2
-
47
-
-
70450177775
-
Learning invariant features through topographic filter maps
-
K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun, "Learning invariant features through topographic filter maps," in Proc. CVPR, 2009, pp. 1605-1612
-
(2009)
Proc. CVPR
, pp. 1605-1612
-
-
Kavukcuoglu, K.1
Ranzato, M.2
Fergus, R.3
Le Cun, Y.4
-
48
-
-
80052889296
-
Learning image representations from the pixel level via hierarchical sparse coding
-
K. Yu, Y. Lin, and J. D. Lafferty, "Learning image representations from the pixel level via hierarchical sparse coding," in Proc. CVPR, 2011, pp. 1713-1720
-
(2011)
Proc. CVPR
, pp. 1713-1720
-
-
Yu, K.1
Lin, Y.2
Lafferty, J.D.3
-
49
-
-
0033316361
-
Hierarchical models of object recognition in cortex
-
M. Riesenhuber and T. Poggio, "Hierarchical models of object recognition in cortex," Nat. Neurosci., vol. 2, no. 11, pp. 1019-1025, 1999
-
(1999)
Nat. Neurosci
, vol.2
, Issue.11
, pp. 1019-1025
-
-
Riesenhuber, M.1
Poggio, T.2
-
50
-
-
33847380121
-
Robust object recognition with cortex-like mechanisms
-
Mar
-
S. Bileschi, M. Riesenhuber, T. Poggio, T. Serre, and L. Wolf, "Robust object recognition with cortex-like mechanisms," IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 3, pp. 411-426, Mar. 2007
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.29
, Issue.3
, pp. 411-426
-
-
Bileschi, S.1
Riesenhuber, M.2
Poggio, T.3
Serre, T.4
Wolf, L.5
-
51
-
-
51149092609
-
Object class recognition and localization using sparse features with limited receptive fields
-
J. Mutch and D. Lowe, "Object class recognition and localization using sparse features with limited receptive fields," Int. J. Comput. Vis., vol. 80, no. 1, pp. 45-47, 2008
-
(2008)
Int. J. Comput. Vis
, vol.80
, Issue.1
, pp. 45-47
-
-
Mutch, J.1
Lowe, D.2
-
52
-
-
84872311376
-
Extended coding and pooling in the hmax model
-
Feb
-
C. Theriault, N. Thome, and M. Cord, "Extended coding and pooling in the HMAX model," IEEE Trans. Image Process., vol. 22, no. 2, pp. 764-777, Feb. 2012
-
(2012)
IEEE Trans. Image Process
, vol.22
, Issue.2
, pp. 764-777
-
-
Theriault, C.1
Thome, N.2
Cord, M.3
-
53
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
G. E. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Comput., vol. 14, no. 8, pp. 1771-1800, 2002
-
(2002)
Neural Comput
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
54
-
-
78650474133
-
A practical guide to training restricted Boltzmann machines
-
Univ. Toronto, Toronto, ON, USA, Tech. Rep. UTML TR 2010 003
-
G. Hinton, "A practical guide to training restricted Boltzmann machines," Dept. Comput. Sci., Univ. Toronto, Toronto, ON, USA, Tech. Rep. UTML TR 2010-003, 2010
-
(2010)
Dept. Comput. Sci
-
-
Hinton, G.1
-
55
-
-
77952681438
-
A tutorial on stochastic approximation algorithms for training restricted Boltzmann machines and deep belief nets
-
K. Swersky, B. Chen, B. Marlin, and N. De Freitas, "A tutorial on stochastic approximation algorithms for training restricted Boltzmann machines and deep belief nets," in Proc. ITA Workshop, 2010, pp. 1-10
-
(2010)
Proc. ITA Workshop
, pp. 1-10
-
-
Swersky, K.1
Chen, B.2
Marlin, B.3
De Freitas, N.4
-
56
-
-
0038969859
-
Conditional expectation and unbiased sequential estimation
-
Mar
-
D. Blackwell, "Conditional expectation and unbiased sequential estimation," Ann. Stat., vol. 18, no. 1, pp. 105-110, Mar. 1947
-
(1947)
Ann. Stat
, vol.18
, Issue.1
, pp. 105-110
-
-
Blackwell, D.1
-
57
-
-
0003682772
-
The need for biases in learning generalizations
-
Rutgers Univ., New Brunswick, NJ, USA, Tech. Rep. CBM-TR-117
-
T. M. Mitchell, "The need for biases in learning generalizations," Dept. Comput. Sci., Rutgers Univ., New Brunswick, NJ, USA, Tech. Rep. CBM-TR-117, 1980
-
(1980)
Dept. Comput. Sci
-
-
Mitchell, T.M.1
-
58
-
-
0005713456
-
Characterizing the sparseness of neural codes
-
B. Willmore and D. J. Tolhurst, "Characterizing the sparseness of neural codes," Netw., Comput. Neural, vol. 12, no. 3, pp. 255-270, 2001
-
(2001)
Netw., Comput. Neural
, vol.12
, Issue.3
, pp. 255-270
-
-
Willmore, B.1
Tolhurst, D.J.2
-
59
-
-
0001471775
-
Unsupervised learning
-
H. B. Barlow, "Unsupervised learning," Neural Comput., vol. 1, no. 3, pp. 295-311, 1989
-
(1989)
Neural Comput
, vol.1
, Issue.3
, pp. 295-311
-
-
Barlow, H.B.1
-
60
-
-
0010325739
-
The relative advantage of sparse versus distributed encoding for associative neuronal networks in the brain
-
E. T. Rolls and A. Treves, "The relative advantage of sparse versus distributed encoding for associative neuronal networks in the brain," Netw., Comput. Neural, vol. 1, no. 4, pp. 407-421, 1990
-
(1990)
Netw., Comput. Neural
, vol.1
, Issue.4
, pp. 407-421
-
-
Rolls, E.T.1
Treves, A.2
-
61
-
-
70349769301
-
Neural coding: Non-local but explicit and conceptual
-
P. Földiák, "Neural coding: Non-local but explicit and conceptual," Current. Biol., vol. 19, no. 19, pp. R904-R906, 2009
-
(2009)
Current. Biol
, vol.19
, Issue.19
, pp. R904-R906
-
-
Földiák, P.1
-
62
-
-
78149306047
-
3D object recognition with deep belief nets
-
V. Nair and G. Hinton, "3D object recognition with deep belief nets," in Proc. NIPS, 2009 pp. 1339-1347
-
(2009)
Proc. NIPS
, pp. 1339-1347
-
-
Nair, V.1
Hinton, G.2
-
63
-
-
84898970768
-
Learning sparse topographic representations with products of student-t distributions
-
M.Welling, G. E. Hinton, and S. Osindero, "Learning sparse topographic representations with products of student-t distributions," in Proc. NIPS, 2003, pp. 1-8
-
(2003)
Proc. NIPS
, pp. 1-8
-
-
Welling, M.1
Hinton, G.E.2
Osindero, S.3
-
64
-
-
0034920427
-
A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images
-
A. Hyvärinen and P. O. Hoyer, "A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images," Vis. Res., vol. 41, no. 18, pp. 2413-2423, 2001
-
(2001)
Vis. Res
, vol.41
, Issue.18
, pp. 2413-2423
-
-
Hyvärinen, A.1
Hoyer, P.O.2
-
65
-
-
85162445285
-
Sparse filtering
-
J. Ngiam, P. W. Koh, Z. Chen, S. Bhaskar, and A. Ng, "Sparse filtering," in Proc. NIPS, 2011, pp. 17-20
-
(2011)
Proc. NIPS
, pp. 17-20
-
-
Ngiam, J.1
Koh, P.W.2
Chen, Z.3
Bhaskar, S.4
Ng, A.5
-
66
-
-
56449110012
-
Classification using discriminative restricted Boltzmann machines
-
H. Larochelle and Y. Bengio, "Classification using discriminative restricted Boltzmann machines," in Proc. 25th ICML, 2008, pp. 536-543
-
(2008)
Proc. 25th ICML
, pp. 536-543
-
-
Larochelle, H.1
Bengio, Y.2
-
67
-
-
84898949859
-
Top-down regularization of deep belief networks
-
H. Goh, N. Thome, M. Cord, and J.-H. Lim, "Top-down regularization of deep belief networks," in Proc. NIPS, 2013, pp. .
-
(2013)
Proc. NIPS
-
-
Goh, H.1
Thome, N.2
Cord, M.3
Lim, J.-H.4
-
68
-
-
84932617705
-
Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
-
L. Fei-Fei, R. Fergus, and P. Perona, "Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories," in Proc. CVPR Workshop, 2004
-
(2004)
Proc. CVPR Workshop
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
69
-
-
34948904828
-
Caltech-256 object category dataset
-
Pasadena, CA, USA, Tech. Rep
-
G. Griffin, A. Holub, and P. Perona, "Caltech-256 object category dataset," California Inst. Technol., Pasadena, CA, USA, Tech. Rep. 7694, 2007
-
(2007)
California Inst. Technol
, vol.7694
-
-
Griffin, G.1
Holub, A.2
Perona, P.3
-
70
-
-
84863044549
-
In defense of soft-assignment coding
-
L. Liu, L. Wang, and X. Liu, "In defense of soft-assignment coding," in Proc. ICCV, 2011, pp. 2486-2493
-
(2011)
Proc. ICCV
, pp. 2486-2493
-
-
Liu, L.1
Wang, L.2
Liu, X.3
-
71
-
-
84864446994
-
Sparse spatial coding: A novel approach for efficient and accurate object recognition
-
G. L. Oliveira, E. R. Nascimento, A. W. Vieira, and M. F. M. Campos, "Sparse spatial coding: A novel approach for efficient and accurate object recognition," in Proc. ICRA, 2012, pp. 2592-2598
-
(2012)
Proc. ICRA
, pp. 2592-2598
-
-
Oliveira, G.L.1
Nascimento, E.R.2
Vieira, A.W.3
Campos, M.F.M.4
-
72
-
-
77956001004
-
Deconvolutional networks
-
M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, "Deconvolutional networks," in Proc. CVPR, 2010, pp. 2528-2535
-
(2010)
Proc. CVPR
, pp. 2528-2535
-
-
Zeiler, M.D.1
Krishnan, D.2
Taylor, G.W.3
Fergus, R.4
-
73
-
-
84856655843
-
A graph-matching kernel for object categorization
-
O. Duchenne, A. Joulin, and J. Ponce, "A graph-matching kernel for object categorization," in Proc. ICCV, 2011, pp. 1792-1799
-
(2011)
Proc. ICCV
, pp. 1792-1799
-
-
Duchenne, O.1
Joulin, A.2
Ponce, J.3
-
74
-
-
84872234907
-
Geometricp-norm feature pooling for image classification
-
J. Feng, B. Ni, Q. Tian, and S. Yan, "Geometricp-norm feature pooling for image classification," in Proc. CVPR, 2011, pp. 2609-2704
-
(2011)
Proc. CVPR
, pp. 2609-2704
-
-
Feng, J.1
Ni, B.2
Tian, Q.3
Yan, S.4
-
75
-
-
51949090223
-
In defense of nearestneighbor based image classification
-
O. Boiman, E. Shechtman, and M. Irani, "In defense of nearestneighbor based image classification," in Proc. CVPR, 2008, pp. 1-8
-
(2008)
Proc. CVPR
, pp. 1-8
-
-
Boiman, O.1
Shechtman, E.2
Irani, M.3
-
76
-
-
84856646753
-
The nbnn kernel
-
T. Tuytelaars, M. Fritz, K. Saenko, and T. Darrell, "The NBNN kernel," in Proc. ICCV, 2011, pp. 1824-1831
-
(2011)
Proc. ICCV
, pp. 1824-1831
-
-
Tuytelaars, T.1
Fritz, M.2
Saenko, K.3
Darrell, T.4
-
77
-
-
34547971961
-
Self-taught learning: Transfer learning from unlabeled data
-
R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, "Self-taught learning: Transfer learning from unlabeled data," in Proc. ICML, 2007, pp. 759-766
-
(2007)
Proc. ICML
, pp. 759-766
-
-
Raina, R.1
Battle, A.2
Lee, H.3
Packer, B.4
Ng, A.Y.5
|