메뉴 건너뛰기




Volumn 25, Issue 12, 2014, Pages 2212-2225

Learning deep hierarchical visual feature coding

Author keywords

Bag of words (BoW) framework; computer vision; deep learning; dictionary learning; hierarchical visual architecture; image categorization; restricted Boltzmann machine (RBM); sparse feature coding; transfer learning.

Indexed keywords

CODES (SYMBOLS); COMPUTER ARCHITECTURE; COMPUTER VISION; IMAGING SYSTEMS;

EID: 84913540875     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2014.2307532     Document Type: Article
Times cited : (102)

References (77)
  • 1
    • 0345414182 scopus 로고    scopus 로고
    • Video google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman, "Video Google: A text retrieval approach to object matching in videos," in Proc. 9th ICCV, 2003, pp. 1470-1477
    • (2003) Proc. 9th ICCV , pp. 1470-1477
    • Sivic, J.1    Zisserman, A.2
  • 2
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004
    • (2004) Int. J. Comput. Vis , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 3
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • Jun
    • N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. CVPR, Jun. 2005, pp. 886-893
    • (2005) Proc. CVPR , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 4
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories," in Proc. CVPR, 2006, pp. 2169-2178
    • (2006) Proc. CVPR , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 5
    • 84878919540 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Proc. NIPS, 2012, pp. 1-8
    • (2012) Proc. NIPS , pp. 1-8
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 7
    • 84867869779 scopus 로고    scopus 로고
    • Unsupervised and supervised visual codes with restricted boltzmann machines
    • H. Goh, N. Thome, M. Cord, and J.-H. Lim, "Unsupervised and supervised visual codes with restricted boltzmann machines," in Proc. 12th ECCV, 2012, pp. 298-311
    • (2012) Proc. 12th ECCV , pp. 298-311
    • Goh, H.1    Thome, N.2    Cord, M.3    Lim, J.-H.4
  • 8
    • 84863049755 scopus 로고    scopus 로고
    • Efficient learning of sparse, distributed, convolutional feature representations for object recognition
    • K. Sohn, D. Y. Jung, H. Lee, and A. Hero, "Efficient learning of sparse, distributed, convolutional feature representations for object recognition," in Proc. ICCV, 2011, pp. 2643-2650
    • (2011) Proc. ICCV , pp. 2643-2650
    • Sohn, K.1    Jung, D.Y.2    Lee, H.3    Hero, A.4
  • 9
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in Proc. ICML, 2009, pp. 609-616
    • (2009) Proc. ICML , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 10
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J. Yang, K. Yu, Y. Gong, and T. Huang, "Linear spatial pyramid matching using sparse coding for image classification," in Proc. CVPR, 2009, pp. 1794-1801
    • (2009) Proc. CVPR , pp. 1794-1801
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 11
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for ai
    • Y. Bengio, "Learning deep architectures for AI," Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009
    • (2009) Found. Trends Mach. Learn , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 12
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief networks
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief networks," Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 14
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Netw., vol. 4, no. 2, pp. 251-257, 1991
    • (1991) Neural Netw , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 15
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code recognition
    • Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition," Neural Comput., vol. 1, no. 4, pp. 541-551, 1989
    • (1989) Neural Comput , vol.1 , Issue.4 , pp. 541-551
    • Lecun, Y.1
  • 16
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 17
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun, "Unsupervised learning of invariant feature hierarchies with applications to object recognition," in Proc. CVPR, 2007, pp. 1-8
    • (2007) Proc. CVPR , pp. 1-8
    • Ranzato, M.1    Huang, F.2    Boureau, Y.3    Le Cun, Y.4
  • 18
    • 56449117245 scopus 로고    scopus 로고
    • To recognize shapes, first learn to generate images
    • P. Cisek, T. Drew, and J. Kalaska, Eds. New York, NY, USA Elsevier
    • G. E. Hinton, "To recognize shapes, first learn to generate images," in Computational Neuroscience: Theoretical Insights into Brain Function, P. Cisek, T. Drew, and J. Kalaska, Eds. New York, NY, USA: Elsevier, 2007
    • (2007) Computational Neuroscience: Theoretical Insights into Brain Function
    • Hinton, G.E.1
  • 19
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA, USA MIT Press
    • P. Smolensky, "Information processing in dynamical systems: Foundations of harmony theory," in Parallel Distributed Processing: Foundations, vol. 1, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge, MA, USA: MIT Press, 1986, pp. 194-281
    • (1986) Parallel Distributed Processing: Foundations , vol.1 , pp. 194-281
    • Smolensky, P.1
  • 20
    • 0000134812 scopus 로고
    • Une procédure dapprentissage pour réseau a seuil asymmetrique a learning scheme for asymmetric threshold networks
    • Paris, France
    • Y. LeCun, "Une procédure dapprentissage pour réseau a seuil asymmetrique a learning scheme for asymmetric threshold networks," in Proc. Cognitiva, Paris, France, 1985, pp. 599-604
    • (1985) Proc. Cognitiva , pp. 599-604
    • Lecun, Y.1
  • 21
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Oct
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Nature, vol. 323, pp. 533-536, Oct. 1986
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 22
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 23
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, "Extracting and composing robust features with denoising autoencoders," in Proc. 25th ICML, 2008, pp. 1096-1103
    • (2008) Proc. 25th ICML , pp. 1096-1103
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 24
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • B. A. Olshausen and D. J. Field, "Emergence of simple-cell receptive field properties by learning a sparse code for natural images," Nature, vol. 381, no. 6583, pp. 607-609, 1996
    • (1996) Nature , vol.381 , Issue.6583 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 26
    • 84887371778 scopus 로고    scopus 로고
    • Multipath sparse coding using hierarchical matching pursuit
    • L. Bo and X. R. D. Fox, "Multipath sparse coding using hierarchical matching pursuit," in Proc. CVPR, 2013, pp. 660-667
    • (2013) Proc. CVPR , pp. 660-667
    • Bo., L.1    Fox, X.R.D.2
  • 28
    • 84856649187 scopus 로고    scopus 로고
    • Ask the locals: Multi-way local pooling for image recognition
    • Y. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun, "Ask the locals: Multi-way local pooling for image recognition," in Proc. ICCV, 2011, pp. 1-8
    • (2011) Proc ICCV , pp. 1-8
    • Boureau, Y.1    Le Roux, N.2    Bach, F.3    Ponce, J.4    Le Cun, Y.5
  • 29
    • 85161980001 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area V2
    • H. Lee, C. Ekanadham, and A. Ng, "Sparse deep belief net model for visual area V2," in Proc. NIPS, 2008, pp. 1-5
    • (2008) Proc. NIPS , pp. 1-5
    • Lee, H.1    Ekanadham, C.2    Ng, A.3
  • 31
    • 80052901219 scopus 로고    scopus 로고
    • Learning a discriminative dictionary for sparse coding via label consistent K-SVD
    • Z. Jiang, Z. Lin, and L. S. Davis, "Learning a discriminative dictionary for sparse coding via label consistent K-SVD," in Proc. CVPR, 2011, pp. 1697-1704
    • (2011) Proc. CVPR , pp. 1697-1704
    • Jiang, Z.1    Lin, Z.2    Davis, L.S.3
  • 32
    • 51949103737 scopus 로고    scopus 로고
    • Unifying discriminative visual codebook generation with classifier training for object category recognition
    • L. Yang, R. Jin, R. Sukthankar, and F. Jurie, "Unifying discriminative visual codebook generation with classifier training for object category recognition," in Proc. CVPR, 2008, pp. 1-8
    • (2008) Proc. CVPR , pp. 1-8
    • Yang, L.1    Jin, R.2    Sukthankar, R.3    Jurie, F.4
  • 33
    • 77955995785 scopus 로고    scopus 로고
    • Supervised translation-invariant sparse coding
    • J. Yang, K. Yu, and T. Huang, "Supervised translation-invariant sparse coding," in Proc. CVPR, 2010, pp. 3517-3524
    • (2010) Proc. CVPR , pp. 3517-3524
    • Yang, J.1    Yu, K.2    Huang, T.3
  • 34
    • 77955993281 scopus 로고    scopus 로고
    • Learning mid-level features for recognition
    • Y. Boureau, F. Bach, Y. LeCun, and J. Ponce, "Learning mid-level features for recognition," in Proc. CVPR, 2010, pp. 2559-2566
    • (2010) Proc. CVPR , pp. 2559-2566
    • Boureau, Y.1    Bach, F.2    Lecun, Y.3    Ponce, J.4
  • 35
    • 78149308464 scopus 로고    scopus 로고
    • Efficient highly over-complete sparse coding using a mixture model
    • J. Yang, K. Yu, and T. Huang, "Efficient highly over-complete sparse coding using a mixture model," in Proc. ECCV, 2010, pp. 113-126
    • (2010) Proc. ECCV , pp. 113-126
    • Yang, J.1    Yu, K.2    Huang, T.3
  • 36
    • 77955996870 scopus 로고    scopus 로고
    • Localityconstrained linear coding for image classification
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, "Localityconstrained linear coding for image classification," in Proc. CVPR, 2010, pp. 3360-3367
    • (2010) Proc. CVPR , pp. 3360-3367
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv., F.4    Huang, T.5    Gong, Y.6
  • 37
    • 84899683325 scopus 로고    scopus 로고
    • Biasing restricted Boltzmann machines to manipulate latent selectivity and sparsity
    • H. Goh, N. Thome, and M. Cord, "Biasing restricted Boltzmann machines to manipulate latent selectivity and sparsity," in Proc. NIPS Workshop, 2010, pp. 1-10
    • (2010) Proc. NIPS Workshop , pp. 1-10
    • Goh, H.1    Thome, N.2    Cord, M.3
  • 38
    • 84856253178 scopus 로고    scopus 로고
    • Learning invariant color features with sparse topographic restricted boltzmann machines
    • H. Goh, L. Kusmierz, J.-H. Lim, N. Thome, and M. Cord, "Learning invariant color features with sparse topographic restricted Boltzmann machines," in Proc. 18th ICIP, 2011, pp. 1241-1244
    • (2011) Proc. 18th ICIP , pp. 1241-1244
    • Goh, H.1    Kusmierz, L.2    Lim, J.-H.3    Thome, N.4    Cord, M.5
  • 39
    • 67349266616 scopus 로고    scopus 로고
    • Supervised learning of quantizer codebooks by information loss minimization
    • Jul
    • S. Lazebnik and M. Raginsky, "Supervised learning of quantizer codebooks by information loss minimization," IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 7, pp. 1294-1309, Jul. 2009
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell , vol.31 , Issue.7 , pp. 1294-1309
    • Lazebnik, S.1    Raginsky, M.2
  • 40
    • 77956502203 scopus 로고    scopus 로고
    • A theoretical analysis of feature pooling in vision algorithms
    • Y. Boureau, J. Ponce, and Y. LeCun, "A theoretical analysis of feature pooling in vision algorithms," in Proc. ICML, 2010, pp. 111-118
    • (2010) Proc. ICML , pp. 111-118
    • Boureau, Y.1    Ponce, J.2    Le Cun, Y.3
  • 41
    • 84875955437 scopus 로고    scopus 로고
    • Pooling in image representation: The visual codeword point of view
    • S. Avila, N. Thome, M. Cord, E. Valle, and A. Araujo, "Pooling in image representation: The visual codeword point of view," Comput. Vis. Image. Und., vol. 117, no. 5, pp. 453-465, 2012
    • (2012) Comput. Vis. Image. und , vol.117 , Issue.5 , pp. 453-465
    • Avila, S.1    Thome, N.2    Cord, M.3    Valle, E.4    Araujo, A.5
  • 42
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • F. Perronnin and C. Dance, "Fisher kernels on visual vocabularies for image categorization," in Proc. CVPR, 2007, pp. 1-8
    • (2007) Proc. CVPR , pp. 1-8
    • Perronnin, F.1    Dance, C.2
  • 43
    • 77956004473 scopus 로고    scopus 로고
    • Aggregating local descriptors into a compact image representation
    • H. Jégou, M. Douze, C. Schmid, and P. Pérez, "Aggregating local descriptors into a compact image representation," in Proc. CVPR, 2010, pp. 3304-3311
    • (2010) Proc. CVPR , pp. 3304-3311
    • Jégou, H.1    Douze, M.2    Schmid, C.3    Pérez, P.4
  • 44
    • 78149344615 scopus 로고    scopus 로고
    • Image classification using super-vector coding of local image descriptors
    • X. Zhou, K. Yu, T. Zhang, and T. Huang, "Image classification using super-vector coding of local image descriptors," in Proc. ECCV, 2010, pp. 141-154
    • (2010) Proc. ECCV , pp. 141-154
    • Zhou, X.1    Yu, K.2    Zhang, T.3    Huang, T.4
  • 45
    • 84899104715 scopus 로고    scopus 로고
    • Spatially local coding for object recognition
    • S. McCann and D. G. Lowe, "Spatially local coding for object recognition," in Proc. ACCV, 2012, pp. 204-217
    • (2012) Proc. ACCV , pp. 204-217
    • McCann, S.1    Lowe, D.G.2
  • 47
    • 70450177775 scopus 로고    scopus 로고
    • Learning invariant features through topographic filter maps
    • K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun, "Learning invariant features through topographic filter maps," in Proc. CVPR, 2009, pp. 1605-1612
    • (2009) Proc. CVPR , pp. 1605-1612
    • Kavukcuoglu, K.1    Ranzato, M.2    Fergus, R.3    Le Cun, Y.4
  • 48
    • 80052889296 scopus 로고    scopus 로고
    • Learning image representations from the pixel level via hierarchical sparse coding
    • K. Yu, Y. Lin, and J. D. Lafferty, "Learning image representations from the pixel level via hierarchical sparse coding," in Proc. CVPR, 2011, pp. 1713-1720
    • (2011) Proc. CVPR , pp. 1713-1720
    • Yu, K.1    Lin, Y.2    Lafferty, J.D.3
  • 49
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • M. Riesenhuber and T. Poggio, "Hierarchical models of object recognition in cortex," Nat. Neurosci., vol. 2, no. 11, pp. 1019-1025, 1999
    • (1999) Nat. Neurosci , vol.2 , Issue.11 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 51
    • 51149092609 scopus 로고    scopus 로고
    • Object class recognition and localization using sparse features with limited receptive fields
    • J. Mutch and D. Lowe, "Object class recognition and localization using sparse features with limited receptive fields," Int. J. Comput. Vis., vol. 80, no. 1, pp. 45-47, 2008
    • (2008) Int. J. Comput. Vis , vol.80 , Issue.1 , pp. 45-47
    • Mutch, J.1    Lowe, D.2
  • 52
    • 84872311376 scopus 로고    scopus 로고
    • Extended coding and pooling in the hmax model
    • Feb
    • C. Theriault, N. Thome, and M. Cord, "Extended coding and pooling in the HMAX model," IEEE Trans. Image Process., vol. 22, no. 2, pp. 764-777, Feb. 2012
    • (2012) IEEE Trans. Image Process , vol.22 , Issue.2 , pp. 764-777
    • Theriault, C.1    Thome, N.2    Cord, M.3
  • 53
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Comput., vol. 14, no. 8, pp. 1771-1800, 2002
    • (2002) Neural Comput , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 54
    • 78650474133 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • Univ. Toronto, Toronto, ON, USA, Tech. Rep. UTML TR 2010 003
    • G. Hinton, "A practical guide to training restricted Boltzmann machines," Dept. Comput. Sci., Univ. Toronto, Toronto, ON, USA, Tech. Rep. UTML TR 2010-003, 2010
    • (2010) Dept. Comput. Sci
    • Hinton, G.1
  • 55
    • 77952681438 scopus 로고    scopus 로고
    • A tutorial on stochastic approximation algorithms for training restricted Boltzmann machines and deep belief nets
    • K. Swersky, B. Chen, B. Marlin, and N. De Freitas, "A tutorial on stochastic approximation algorithms for training restricted Boltzmann machines and deep belief nets," in Proc. ITA Workshop, 2010, pp. 1-10
    • (2010) Proc. ITA Workshop , pp. 1-10
    • Swersky, K.1    Chen, B.2    Marlin, B.3    De Freitas, N.4
  • 56
    • 0038969859 scopus 로고
    • Conditional expectation and unbiased sequential estimation
    • Mar
    • D. Blackwell, "Conditional expectation and unbiased sequential estimation," Ann. Stat., vol. 18, no. 1, pp. 105-110, Mar. 1947
    • (1947) Ann. Stat , vol.18 , Issue.1 , pp. 105-110
    • Blackwell, D.1
  • 57
    • 0003682772 scopus 로고
    • The need for biases in learning generalizations
    • Rutgers Univ., New Brunswick, NJ, USA, Tech. Rep. CBM-TR-117
    • T. M. Mitchell, "The need for biases in learning generalizations," Dept. Comput. Sci., Rutgers Univ., New Brunswick, NJ, USA, Tech. Rep. CBM-TR-117, 1980
    • (1980) Dept. Comput. Sci
    • Mitchell, T.M.1
  • 58
    • 0005713456 scopus 로고    scopus 로고
    • Characterizing the sparseness of neural codes
    • B. Willmore and D. J. Tolhurst, "Characterizing the sparseness of neural codes," Netw., Comput. Neural, vol. 12, no. 3, pp. 255-270, 2001
    • (2001) Netw., Comput. Neural , vol.12 , Issue.3 , pp. 255-270
    • Willmore, B.1    Tolhurst, D.J.2
  • 59
    • 0001471775 scopus 로고
    • Unsupervised learning
    • H. B. Barlow, "Unsupervised learning," Neural Comput., vol. 1, no. 3, pp. 295-311, 1989
    • (1989) Neural Comput , vol.1 , Issue.3 , pp. 295-311
    • Barlow, H.B.1
  • 60
    • 0010325739 scopus 로고
    • The relative advantage of sparse versus distributed encoding for associative neuronal networks in the brain
    • E. T. Rolls and A. Treves, "The relative advantage of sparse versus distributed encoding for associative neuronal networks in the brain," Netw., Comput. Neural, vol. 1, no. 4, pp. 407-421, 1990
    • (1990) Netw., Comput. Neural , vol.1 , Issue.4 , pp. 407-421
    • Rolls, E.T.1    Treves, A.2
  • 61
    • 70349769301 scopus 로고    scopus 로고
    • Neural coding: Non-local but explicit and conceptual
    • P. Földiák, "Neural coding: Non-local but explicit and conceptual," Current. Biol., vol. 19, no. 19, pp. R904-R906, 2009
    • (2009) Current. Biol , vol.19 , Issue.19 , pp. R904-R906
    • Földiák, P.1
  • 62
    • 78149306047 scopus 로고    scopus 로고
    • 3D object recognition with deep belief nets
    • V. Nair and G. Hinton, "3D object recognition with deep belief nets," in Proc. NIPS, 2009 pp. 1339-1347
    • (2009) Proc. NIPS , pp. 1339-1347
    • Nair, V.1    Hinton, G.2
  • 63
    • 84898970768 scopus 로고    scopus 로고
    • Learning sparse topographic representations with products of student-t distributions
    • M.Welling, G. E. Hinton, and S. Osindero, "Learning sparse topographic representations with products of student-t distributions," in Proc. NIPS, 2003, pp. 1-8
    • (2003) Proc. NIPS , pp. 1-8
    • Welling, M.1    Hinton, G.E.2    Osindero, S.3
  • 64
    • 0034920427 scopus 로고    scopus 로고
    • A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images
    • A. Hyvärinen and P. O. Hoyer, "A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images," Vis. Res., vol. 41, no. 18, pp. 2413-2423, 2001
    • (2001) Vis. Res , vol.41 , Issue.18 , pp. 2413-2423
    • Hyvärinen, A.1    Hoyer, P.O.2
  • 66
    • 56449110012 scopus 로고    scopus 로고
    • Classification using discriminative restricted Boltzmann machines
    • H. Larochelle and Y. Bengio, "Classification using discriminative restricted Boltzmann machines," in Proc. 25th ICML, 2008, pp. 536-543
    • (2008) Proc. 25th ICML , pp. 536-543
    • Larochelle, H.1    Bengio, Y.2
  • 67
    • 84898949859 scopus 로고    scopus 로고
    • Top-down regularization of deep belief networks
    • H. Goh, N. Thome, M. Cord, and J.-H. Lim, "Top-down regularization of deep belief networks," in Proc. NIPS, 2013, pp. .
    • (2013) Proc. NIPS
    • Goh, H.1    Thome, N.2    Cord, M.3    Lim, J.-H.4
  • 68
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona, "Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories," in Proc. CVPR Workshop, 2004
    • (2004) Proc. CVPR Workshop
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 69
    • 34948904828 scopus 로고    scopus 로고
    • Caltech-256 object category dataset
    • Pasadena, CA, USA, Tech. Rep
    • G. Griffin, A. Holub, and P. Perona, "Caltech-256 object category dataset," California Inst. Technol., Pasadena, CA, USA, Tech. Rep. 7694, 2007
    • (2007) California Inst. Technol , vol.7694
    • Griffin, G.1    Holub, A.2    Perona, P.3
  • 70
    • 84863044549 scopus 로고    scopus 로고
    • In defense of soft-assignment coding
    • L. Liu, L. Wang, and X. Liu, "In defense of soft-assignment coding," in Proc. ICCV, 2011, pp. 2486-2493
    • (2011) Proc. ICCV , pp. 2486-2493
    • Liu, L.1    Wang, L.2    Liu, X.3
  • 71
    • 84864446994 scopus 로고    scopus 로고
    • Sparse spatial coding: A novel approach for efficient and accurate object recognition
    • G. L. Oliveira, E. R. Nascimento, A. W. Vieira, and M. F. M. Campos, "Sparse spatial coding: A novel approach for efficient and accurate object recognition," in Proc. ICRA, 2012, pp. 2592-2598
    • (2012) Proc. ICRA , pp. 2592-2598
    • Oliveira, G.L.1    Nascimento, E.R.2    Vieira, A.W.3    Campos, M.F.M.4
  • 73
    • 84856655843 scopus 로고    scopus 로고
    • A graph-matching kernel for object categorization
    • O. Duchenne, A. Joulin, and J. Ponce, "A graph-matching kernel for object categorization," in Proc. ICCV, 2011, pp. 1792-1799
    • (2011) Proc. ICCV , pp. 1792-1799
    • Duchenne, O.1    Joulin, A.2    Ponce, J.3
  • 74
    • 84872234907 scopus 로고    scopus 로고
    • Geometricp-norm feature pooling for image classification
    • J. Feng, B. Ni, Q. Tian, and S. Yan, "Geometricp-norm feature pooling for image classification," in Proc. CVPR, 2011, pp. 2609-2704
    • (2011) Proc. CVPR , pp. 2609-2704
    • Feng, J.1    Ni, B.2    Tian, Q.3    Yan, S.4
  • 75
    • 51949090223 scopus 로고    scopus 로고
    • In defense of nearestneighbor based image classification
    • O. Boiman, E. Shechtman, and M. Irani, "In defense of nearestneighbor based image classification," in Proc. CVPR, 2008, pp. 1-8
    • (2008) Proc. CVPR , pp. 1-8
    • Boiman, O.1    Shechtman, E.2    Irani, M.3
  • 77
    • 34547971961 scopus 로고    scopus 로고
    • Self-taught learning: Transfer learning from unlabeled data
    • R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng, "Self-taught learning: Transfer learning from unlabeled data," in Proc. ICML, 2007, pp. 759-766
    • (2007) Proc. ICML , pp. 759-766
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.