메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 2713-2721

MANTRA: Minimum maximum latent structural SVM for image classification and ranking

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; EQUIVALENCE CLASSES;

EID: 84973897339     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.311     Document Type: Conference Paper
Times cited : (29)

References (42)
  • 2
    • 84911427064 scopus 로고    scopus 로고
    • Optimizing average precision using weakly supervised data
    • 2, 4, 5, 7, 8
    • A. Behl, C. V. Jawahar, and M. P. Kumar. Optimizing average precision using weakly supervised data. In CVPR, 2014. 2, 4, 5, 7, 8
    • (2014) CVPR
    • Behl, A.1    Jawahar, C.V.2    Kumar, M.P.3
  • 3
    • 84911382755 scopus 로고    scopus 로고
    • Object classification with latent window parameters
    • 1, 2
    • H. Bilen, V. Namboodiri, and L. Van Gool. Object classification with latent window parameters. In IJCV, 2013. 1, 2
    • (2013) IJCV
    • Bilen, H.1    Namboodiri, V.2    Van Gool, L.3
  • 4
    • 84973892991 scopus 로고    scopus 로고
    • Tutorial: Visual learning with weak supervision
    • 1
    • M. Blaschko, P. Kumar, and B. Taskar. Tutorial: Visual learning with weak supervision, CVPR 2013. 1
    • (2013) CVPR
    • Blaschko, M.1    Kumar, P.2    Taskar, B.3
  • 5
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • 2, 8
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014. 2, 8
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 6
    • 84873463794 scopus 로고    scopus 로고
    • Regularized bundle methods for convex and non-convex risks
    • 4
    • T.-M.-T. Do and T. Artières. Regularized bundle methods for convex and non-convex risks. JMLR, 2012. 4
    • (2012) JMLR
    • Do, T.-M.-T.1    Artières, T.2
  • 7
    • 84898936638 scopus 로고    scopus 로고
    • Mid-level visual element discovery as discriminative mode seeking
    • 6
    • C. Doersch, A. Gupta, and A. A. Efros. Mid-level visual element discovery as discriminative mode seeking. In NIPS, 2013. 6
    • (2013) NIPS
    • Doersch, C.1    Gupta, A.2    Efros, A.A.3
  • 8
    • 84949926853 scopus 로고    scopus 로고
    • Incremental learning of latent structural SVM for weakly supervised image classification
    • 1
    • T. Durand, N. Thome, M. Cord, and D. Picard. Incremental learning of latent structural SVM for weakly supervised image classification. In ICIP, 2014. 1
    • (2014) ICIP
    • Durand, T.1    Thome, N.2    Cord, M.3    Picard, D.4
  • 9
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part based models
    • 1, 2, 7
    • P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part based models. PAMI, 2010. 1, 2, 7
    • (2010) PAMI
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.3    Ramanan, D.4
  • 10
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 1
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014. 1
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 12
    • 84938217896 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • 2, 6
    • Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. In ECCV, 2014. 2, 6
    • (2014) ECCV
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 13
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • 2, 8
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014. 2, 8
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 16
    • 84887325186 scopus 로고    scopus 로고
    • Blocks that shout: Distinctive parts for scene classification
    • 2, 5, 6
    • M. Juneja, A. Vedaldi, C. V. Jawahar, and A. Zisserman. Blocks that shout: Distinctive parts for scene classification. In CVPR, 2013. 2, 5, 6
    • (2013) CVPR
    • Juneja, M.1    Vedaldi, A.2    Jawahar, C.V.3    Zisserman, A.4
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 1, 2
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS. 2012. 1, 2
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 18
    • 85161967298 scopus 로고    scopus 로고
    • Self-paced learning for latent variable models
    • 1, 2
    • P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS, 2010. 1, 2
    • (2010) NIPS
    • Kumar, P.1    Packer, B.2    Koller, D.3
  • 19
    • 84911453134 scopus 로고    scopus 로고
    • Fantope regularization in metric learning
    • 8
    • M. T. Law, N. Thome, and M. Cord. Fantope regularization in metric learning. In CVPR, 2014. 8
    • (2014) CVPR
    • Law, M.T.1    Thome, N.2    Cord, M.3
  • 20
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • 2, 5, 6
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006. 2, 5, 6
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 21
    • 50649103674 scopus 로고    scopus 로고
    • What, where and who? Classifying events by scene and object recognition
    • 5
    • L.-J. Li and F.-F. Li. What, where and who? classifying events by scene and object recognition. In ICCV, 2007. 5
    • (2007) ICCV
    • Li, L.-J.1    Li, F.-F.2
  • 22
    • 85162513516 scopus 로고    scopus 로고
    • Object bank: A high-level image representation for scene classification & semantic feature sparsification
    • 5, 6, 8
    • E. P. X. Li-Jia Li, Hao Su and L. Fei-Fei. Object bank: A high-level image representation for scene classification & semantic feature sparsification. In NIPS, 2010. 5, 6, 8
    • (2010) NIPS
    • Li-Jia Li, E.P.X.1    Su, H.2    Fei-Fei, L.3
  • 23
    • 84937889162 scopus 로고    scopus 로고
    • Efficient optimization for average precision SVM
    • 5
    • P. Mohapatra, C. Jawahar, and M. P. Kumar. Efficient optimization for average precision SVM. In NIPS. 2014. 5
    • (2014) NIPS
    • Mohapatra, P.1    Jawahar, C.2    Kumar, M.P.3
  • 24
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • 1, 8
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014. 1, 8
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 25
    • 84856650974 scopus 로고    scopus 로고
    • Scene recognition and weakly supervised object localization with deformable part-based models
    • 1, 2
    • M. Pandey and S. Lazebnik. Scene recognition and weakly supervised object localization with deformable part-based models. In ICCV, 2011. 1, 2
    • (2011) ICCV
    • Pandey, M.1    Lazebnik, S.2
  • 26
    • 84866674135 scopus 로고    scopus 로고
    • Reconfigurable models for scene recognition
    • 1, 2, 6
    • S. N. Parizi, J. G. Oberlin, and P. F. Felzenszwalb. Reconfigurable models for scene recognition. In CVPR, 2012. 1, 2, 6
    • (2012) CVPR
    • Parizi, S.N.1    Oberlin, J.G.2    Felzenszwalb, P.F.3
  • 27
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • 2
    • F. Perronnin and C. R. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007. 2
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.R.2
  • 28
    • 70450162315 scopus 로고    scopus 로고
    • Recognizing indoor scenes
    • 5
    • A. Quattoni and A. Torralba. Recognizing indoor scenes. In CVPR, 2009. 5
    • (2009) CVPR
    • Quattoni, A.1    Torralba, A.2
  • 29
    • 84885881090 scopus 로고    scopus 로고
    • Objectcentric spatial pooling for image classification
    • 1, 2
    • O. Russakovsky, Y. Lin, K. Yu, and L. Fei-Fei. Objectcentric spatial pooling for image classification. In ECCV, 2012. 1, 2
    • (2012) ECCV
    • Russakovsky, O.1    Lin, Y.2    Yu, K.3    Fei-Fei, L.4
  • 30
    • 84902249208 scopus 로고    scopus 로고
    • Latent pyramidal regions for recognizing scenes
    • 2, 5, 6
    • F. Sadeghi and M. F. Tappen. Latent pyramidal regions for recognizing scenes. In ECCV, 2012. 2, 5, 6
    • (2012) ECCV
    • Sadeghi, F.1    Tappen, M.F.2
  • 32
    • 84866677469 scopus 로고    scopus 로고
    • Discriminative spatial saliency for image classification
    • 1, 6
    • G. Sharma, F. Jurie, and C. Schmid. Discriminative spatial saliency for image classification. In CVPR, 2012. 1, 6
    • (2012) CVPR
    • Sharma, G.1    Jurie, F.2    Schmid, C.3
  • 33
    • 84898806407 scopus 로고    scopus 로고
    • Learning discriminative part detectors for image classification and cosegmentation
    • 1, 2, 5, 6
    • J. Sun and J. Ponce. Learning discriminative part detectors for image classification and cosegmentation. In ICCV, 2013. 1, 2, 5, 6
    • (2013) ICCV
    • Sun, J.1    Ponce, J.2
  • 34
    • 84887333346 scopus 로고    scopus 로고
    • Dynamic scene classification: Learning motion descriptors with slow features analysis
    • 2
    • C. Thériault, N. Thome, and M. Cord. Dynamic scene classification: Learning motion descriptors with slow features analysis. In CVPR, 2013. 2
    • (2013) CVPR
    • Thériault, C.1    Thome, N.2    Cord, M.3
  • 36
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • 3
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 2005. 3
    • (2005) JMLR
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 37
    • 77955987964 scopus 로고    scopus 로고
    • Grouplet: A structured image representation for recognizing human and object interactions
    • 5
    • B. Yao and L. Fei-Fei. Grouplet: A structured image representation for recognizing human and object interactions. In CVPR, 2010. 5
    • (2010) CVPR
    • Yao, B.1    Fei-Fei, L.2
  • 38
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural SVMs with latent variables
    • 1, 2, 5, 6, 7
    • C.-N. Yu and T. Joachims. Learning structural SVMs with latent variables. In ICML, 2009. 1, 2, 5, 6, 7
    • (2009) ICML
    • Yu, C.-N.1    Joachims, T.2
  • 39
    • 36448983903 scopus 로고    scopus 로고
    • A support vector method for optimizing average precision
    • 2, 4, 5
    • Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In SIGIR, 2007. 2, 4, 5
    • (2007) SIGIR
    • Yue, Y.1    Finley, T.2    Radlinski, F.3    Joachims, T.4
  • 41
  • 42
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • 2, 5, 6
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning Deep Features for Scene Recognition using Places Database. NIPS, 2014. 2, 5, 6
    • (2014) NIPS
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.