메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 1143-1152

SPDA-CNN: Unifying semantic part detection and abstraction for fine-grained recognition

Author keywords

[No Author keywords available]

Indexed keywords

ABSTRACTING; COMPUTER VISION; CONVOLUTION; NETWORK ARCHITECTURE; NEURAL NETWORKS; OBJECT RECOGNITION; SEMANTICS;

EID: 84986309458     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.129     Document Type: Conference Paper
Times cited : (344)

References (43)
  • 2
    • 84885880085 scopus 로고    scopus 로고
    • Object detection using stronglysupervised deformable part models
    • 5, 6, 8
    • H. Azizpour and I. Laptev. Object detection using stronglysupervised deformable part models. In ECCV, 2012.
    • (2012) ECCV
    • Azizpour, H.1    Laptev, I.2
  • 3
    • 84887356895 scopus 로고    scopus 로고
    • POOF: Part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation
    • 7
    • T. Berg and P. N. Belhumeur. POOF: part-based one-vs.-one features for fine-grained categorization, face verification, and attribute estimation. In CVPR, 2013.
    • (2013) CVPR
    • Berg, T.1    Belhumeur, P.N.2
  • 4
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d human pose annotations
    • 2
    • L. D. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In ICCV, 2009.
    • (2009) ICCV
    • Bourdev, L.D.1    Malik, J.2
  • 5
    • 84919741208 scopus 로고    scopus 로고
    • Improved bird species recognition using pose normalized deep convolutional nets
    • 1, 3, 4
    • S. Branson, G. Van Horn, P. Perona, and S. Belongie. Improved bird species recognition using pose normalized deep convolutional nets. In BMVC, 2014.
    • (2014) BMVC
    • Branson, S.1    Van Horn, G.2    Perona, P.3    Belongie, S.4
  • 6
    • 84861335581 scopus 로고    scopus 로고
    • CPMC: Automatic object segmentation using constrained parametric min-cuts
    • 3
    • J. Carreira and C. Sminchisescu. CPMC: Automatic object segmentation using constrained parametric min-cuts. TPAMI, 2012.
    • (2012) TPAMI
    • Carreira, J.1    Sminchisescu, C.2
  • 7
    • 84898771336 scopus 로고    scopus 로고
    • Symbiotic segmentation and part localization for fine-grained categorization
    • 2, 7
    • Y. Chai, V. S. Lempitsky, and A. Zisserman. Symbiotic segmentation and part localization for fine-grained categorization. In ICCV, 2013.
    • (2013) ICCV
    • Chai, Y.1    Lempitsky, V.S.2    Zisserman, A.3
  • 8
    • 84959216100 scopus 로고    scopus 로고
    • Convolutional feature masking for joint object and stuff segmentation
    • 5
    • J. Dai, K. He, and J. Sun. Convolutional feature masking for joint object and stuff segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Dai, J.1    He, K.2    Sun, J.3
  • 9
    • 84887325349 scopus 로고    scopus 로고
    • Fine-grained crowdsourcing for fine-grained recognition
    • 1
    • J. Deng, J. Krause, and F. Li. Fine-grained crowdsourcing for fine-grained recognition. In CVPR, 2013.
    • (2013) CVPR
    • Deng, J.1    Krause, J.2    Li, F.3
  • 10
    • 84856640018 scopus 로고    scopus 로고
    • Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance
    • 2
    • R. Farrell, O. Oza, N. Zhang, V. I. Morariu, T. Darrell, and L. S. Davis. Birdlets: Subordinate categorization using volumetric primitives and pose-normalized appearance. In ICCV, 2011.
    • (2011) ICCV
    • Farrell, R.1    Oza, O.2    Zhang, N.3    Morariu, V.I.4    Darrell, T.5    Davis, L.S.6
  • 13
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • 2, 3, 4
    • R. B. Girshick. Fast R-CNN. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.B.1
  • 14
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 3
    • R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.B.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 15
    • 84973883539 scopus 로고    scopus 로고
    • Actions and attributes from wholes and parts
    • 3
    • G. Gkioxari, R. Girshick, and J. Malik. Actions and attributes from wholes and parts. In ICCV, 2015.
    • (2015) ICCV
    • Gkioxari, G.1    Girshick, R.2    Malik, J.3
  • 16
    • 84911449570 scopus 로고    scopus 로고
    • Nonparametric part transfer for fine-grained recognition
    • 2, 3, 5, 6, 7
    • C. Göring, E. Rodner, A. Freytag, and J. Denzler. Nonparametric part transfer for fine-grained recognition. In CVPR, 2014.
    • (2014) CVPR
    • Göring, C.1    Rodner, E.2    Freytag, A.3    Denzler, J.4
  • 18
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization
    • 3
    • B. Hariharan, P. A. Arbeláez, R. B. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
    • (2015) CVPR
    • Hariharan, B.1    Arbeláez, P.A.2    Girshick, R.B.3    Malik, J.4
  • 19
    • 84939247735 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • 4
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. TPAMI, 2015.
    • (2015) TPAMI
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 20
    • 84866691616 scopus 로고    scopus 로고
    • Learning hierarchical representations for face verification with convolutional deep belief networks
    • 4
    • G. B. Huang, H. Lee, and E. G. Learned-Miller. Learning hierarchical representations for face verification with convolutional deep belief networks. In CVPR, 2012.
    • (2012) CVPR
    • Huang, G.B.1    Lee, H.2    Learned-Miller, E.G.3
  • 24
    • 84919933137 scopus 로고    scopus 로고
    • Learning features and parts for fine-grained recognition
    • 3
    • J. Krause, T. Gebru, J. Deng, L. Li, and F. Li. Learning features and parts for fine-grained recognition. In ICPR, 2014.
    • (2014) ICPR
    • Krause, J.1    Gebru, T.2    Deng, J.3    Li, L.4    Li, F.5
  • 25
    • 84959232423 scopus 로고    scopus 로고
    • Fine-grained recognition without part annotations
    • 3, 7
    • J. Krause, H. Jin, J. Yang, and F. Li. Fine-grained recognition without part annotations. In CVPR, 2015.
    • (2015) CVPR
    • Krause, J.1    Jin, H.2    Yang, J.3    Li, F.4
  • 26
    • 84897485170 scopus 로고    scopus 로고
    • 3D object representations for fine-grained categorization
    • 1
    • J. Krause, M. Stark, J. Deng, and L. Fei-Fei. 3D object representations for fine-grained categorization. In ICCV Workshop, 2013.
    • (2013) ICCV Workshop
    • Krause, J.1    Stark, M.2    Deng, J.3    Fei-Fei, L.4
  • 27
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 4, 5
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 28
    • 84959188579 scopus 로고    scopus 로고
    • Deep LAC: Deep localization, alignment and classification for fine-grained recognition
    • 1, 3, 4, 5, 6, 7, 8
    • D. Lin, X. Shen, C. Lu, and J. Jia. Deep LAC: Deep localization, alignment and classification for fine-grained recognition. In CVPR, 2015.
    • (2015) CVPR
    • Lin, D.1    Shen, X.2    Lu, C.3    Jia, J.4
  • 29
    • 84973863234 scopus 로고    scopus 로고
    • Bilinear cnn models for fine-grained visual recognition
    • 7
    • T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear cnn models for fine-grained visual recognition. In ICCV, 2015.
    • (2015) ICCV
    • Lin, T.-Y.1    RoyChowdhury, A.2    Maji, S.3
  • 30
    • 84959216767 scopus 로고    scopus 로고
    • Jointly optimizing 3d model fitting and fine-grained classification
    • 1
    • Y.-L. Lin, V. I. Morariu, W. Hsu, and L. S. Davis. Jointly optimizing 3d model fitting and fine-grained classification. In ECCV, 2014.
    • (2014) ECCV
    • Lin, Y.-L.1    Morariu, V.I.2    Hsu, W.3    Davis, L.S.4
  • 32
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • 5
    • S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015.
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 33
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • 5
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014.
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 34
    • 84973884428 scopus 로고    scopus 로고
    • Neural activation constellations: Unsupervised part model discovery with convolutional networks
    • 3, 7
    • M. Simon and E. Rodner. Neural activation constellations: Unsupervised part model discovery with convolutional networks. In ICCV, 2015.
    • (2015) ICCV
    • Simon, M.1    Rodner, E.2
  • 35
    • 84911198048 scopus 로고    scopus 로고
    • DeepFace: Closing the gap to human-level performance in face verification
    • 4
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. DeepFace: Closing the gap to human-level performance in face verification. In CVPR, 2014.
    • (2014) CVPR
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 39
    • 84959255406 scopus 로고    scopus 로고
    • The application of two-level attention models in deep convolutional neural network for fine-grained image classification
    • 1, 3
    • T. Xiao, Y. Xu, K. Yang, J. Zhang, Y. Peng, and Z. Zhang. The application of two-level attention models in deep convolutional neural network for fine-grained image classification. In CVPR, 2015.
    • (2015) CVPR
    • Xiao, T.1    Xu, Y.2    Yang, K.3    Zhang, J.4    Peng, Y.5    Zhang, Z.6
  • 40
    • 85009899017 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • 3
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 41
    • 84956617559 scopus 로고    scopus 로고
    • Part-based R-CNNs for fine-grained category detection
    • 1, 3, 4, 5, 6, 7, 8
    • N. Zhang, J. Donahue, R. B. Girshick, and T. Darrell. Part-based R-CNNs for fine-grained category detection. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, N.1    Donahue, J.2    Girshick, R.B.3    Darrell, T.4
  • 42
    • 84898819241 scopus 로고    scopus 로고
    • Deformable part descriptors for fine-grained recognition and attribute prediction
    • 2, 7
    • N. Zhang, R. Farrell, F. N. Iandola, and T. Darrell. Deformable part descriptors for fine-grained recognition and attribute prediction. In ICCV, 2013.
    • (2013) ICCV
    • Zhang, N.1    Farrell, R.2    Iandola, F.N.3    Darrell, T.4
  • 43
    • 85009853104 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • 3, 6
    • C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014.
    • (2014) ECCV
    • Zitnick, C.L.1    Dollár, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.