메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 4743-4752

WELDON: Weakly supervised learning of deep convolutional neural networks

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; NEURAL NETWORKS; SUPERVISED LEARNING;

EID: 85009902110     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.513     Document Type: Conference Paper
Times cited : (175)

References (54)
  • 1
    • 84898946229 scopus 로고    scopus 로고
    • Support vector machines for multiple-instance learning
    • S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, 2003.
    • (2003) NIPS
    • Andrews, S.1    Tsochantaridis, I.2    Hofmann, T.3
  • 2
  • 4
    • 84911427064 scopus 로고    scopus 로고
    • Optimizing average precision using weakly supervised data
    • A. Behl, C. V. Jawahar, and M. P. Kumar. Optimizing average precision using weakly supervised data. In CVPR, 2014.
    • (2014) CVPR
    • Behl, A.1    Jawahar, C.V.2    Kumar, M.P.3
  • 5
    • 84911382755 scopus 로고    scopus 로고
    • Object classification with latent window parameters
    • H. Bilen, V. Namboodiri, and L. Van Gool. Object classification with latent window parameters. In IJCV, 2013.
    • (2013) IJCV
    • Bilen, H.1    Namboodiri, V.2    Van Gool, L.3
  • 7
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 10
    • 84973897339 scopus 로고    scopus 로고
    • MANTRA: Minimum maximum latent structural SVM for image classification and ranking
    • T. Durand, N. Thome, and M. Cord. MANTRA: Minimum Maximum Latent Structural SVM for Image Classification and Ranking. In ICCV, 2015.
    • (2015) ICCV
    • Durand, T.1    Thome, N.2    Cord, M.3
  • 11
    • 84949926853 scopus 로고    scopus 로고
    • Incremental learning of latent structural SVM for weakly supervised image classification
    • T. Durand, N. Thome, M. Cord, and D. Picard. Incremental learning of latent structural svm for weakly supervised image classification. In ICIP, 2014.
    • (2014) ICIP
    • Durand, T.1    Thome, N.2    Cord, M.3    Picard, D.4
  • 15
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • R. Girshick. Fast R-CNN. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 16
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 18
    • 84938217896 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. In ECCV, 2014.
    • (2014) ECCV
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 19
    • 85009918748 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 21
    • 84887325186 scopus 로고    scopus 로고
    • Blocks that shout: Distinctive parts for scene classification
    • M. Juneja, A. Vedaldi, C. V. Jawahar, and A. Zisserman. Blocks that shout: Distinctive parts for scene classification. In CVPR, 2013.
    • (2013) CVPR
    • Juneja, M.1    Vedaldi, A.2    Jawahar, C.V.3    Zisserman, A.4
  • 22
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS. 2012.
    • (2012) NIPS.
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 23
    • 85161967298 scopus 로고    scopus 로고
    • Self-paced learning for latent variable models
    • P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS, 2010.
    • (2010) NIPS
    • Kumar, P.1    Packer, B.2    Koller, D.3
  • 24
    • 84911413388 scopus 로고    scopus 로고
    • Video event detection by inferring temporal instance labels
    • K.-T. Lai, F. X. Yu, M.-S. Chen, and S.-F. Chang. Video event detection by inferring temporal instance labels. In CVPR, 2014.
    • (2014) CVPR
    • Lai, K.-T.1    Yu, F.X.2    Chen, M.-S.3    Chang, S.-F.4
  • 25
    • 84911453134 scopus 로고    scopus 로고
    • Fantope regularization in metric learning
    • M. T. Law, N. Thome, and M. Cord. Fantope regularization in metric learning. In CVPR, 2014.
    • (2014) CVPR
    • Law, M.T.1    Thome, N.2    Cord, M.3
  • 26
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 27
    • 84959247149 scopus 로고    scopus 로고
    • Multiple instance learning for soft bags via top instances
    • W. Li and N. Vasconcelos. Multiple instance learning for soft bags via top instances. In CVPR, 2015.
    • (2015) CVPR
    • Li, W.1    Vasconcelos, N.2
  • 28
    • 85162513516 scopus 로고    scopus 로고
    • Object bank: A high-level image representation for scene classification & semantic feature sparsification
    • E. P. X. Li-Jia Li, Hao Su and L. Fei-Fei. Object bank: A high-level image representation for scene classification & semantic feature sparsification. In NIPS, 2010.
    • (2010) NIPS
    • Li-Jia Li, E.P.X.1    Su, H.2    Fei-Fei, L.3
  • 29
  • 31
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 32
    • 84937889162 scopus 로고    scopus 로고
    • Efficient optimization for average precision SVM
    • P. Mohapatra, C. Jawahar, and M. P. Kumar. Efficient optimization for average precision svm. In NIPS. 2014.
    • (2014) NIPS.
    • Mohapatra, P.1    Jawahar, C.2    Kumar, M.P.3
  • 33
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014.
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 34
    • 84953933150 scopus 로고    scopus 로고
    • Is object localization for free? Weakly-supervised learning with convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free? weakly-supervised learning with convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 35
    • 84856650974 scopus 로고    scopus 로고
    • Scene recognition and weakly supervised object localization with deformable part-based models
    • M. Pandey and S. Lazebnik. Scene recognition and weakly supervised object localization with deformable part-based models. In ICCV, 2011.
    • (2011) ICCV
    • Pandey, M.1    Lazebnik, S.2
  • 36
    • 84959218210 scopus 로고    scopus 로고
    • Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance learning, and sliding window detection
    • G. Papandreou, I. Kokkinos, and P.-A. Savalle. Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance learning, and sliding window detection. In CVPR, 2015.
    • (2015) CVPR
    • Papandreou, G.1    Kokkinos, I.2    Savalle, P.-A.3
  • 38
    • 85083950313 scopus 로고    scopus 로고
    • Automatic discovery and optimization of parts for image classification
    • S. N. Parizi, A. Vedaldi, A. Zisserman, and P. F. Felzenszwalb. Automatic discovery and optimization of parts for image classification. In ICLR, 2015.
    • (2015) ICLR
    • Parizi, S.N.1    Vedaldi, A.2    Zisserman, A.3    Felzenszwalb, P.F.4
  • 39
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • F. Perronnin and C. R. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
    • (2007) CVPR
    • Perronnin, F.1    Dance, C.R.2
  • 40
    • 70450162315 scopus 로고    scopus 로고
    • Recognizing indoor scenes
    • A. Quattoni and A. Torralba. Recognizing indoor scenes. In CVPR, 2009.
    • (2009) CVPR
    • Quattoni, A.1    Torralba, A.2
  • 41
    • 84885881090 scopus 로고    scopus 로고
    • Objectcentric spatial pooling for image classification
    • O. Russakovsky, Y. Lin, K. Yu, and L. Fei-Fei. Objectcentric spatial pooling for image classification. In ECCV, 2012.
    • (2012) ECCV
    • Russakovsky, O.1    Lin, Y.2    Yu, K.3    Fei-Fei, L.4
  • 42
    • 84902249208 scopus 로고    scopus 로고
    • Latent pyramidal regions for recognizing scenes
    • F. Sadeghi and M. F. Tappen. Latent pyramidal regions for recognizing scenes. In ECCV, 2012.
    • (2012) ECCV
    • Sadeghi, F.1    Tappen, M.F.2
  • 44
    • 84866677469 scopus 로고    scopus 로고
    • Discriminative spatial saliency for image classification
    • G. Sharma, F. Jurie, and C. Schmid. Discriminative spatial saliency for image classification. In CVPR, 2012.
    • (2012) CVPR
    • Sharma, G.1    Jurie, F.2    Schmid, C.3
  • 45
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 46
    • 0345414182 scopus 로고    scopus 로고
    • Video google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV, 2003.
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 47
    • 84898806407 scopus 로고    scopus 로고
    • Learning discriminative part detectors for image classification and cosegmentation
    • J. Sun and J. Ponce. Learning discriminative part detectors for image classification and cosegmentation. In ICCV, 2013.
    • (2013) ICCV
    • Sun, J.1    Ponce, J.2
  • 48
    • 84887333346 scopus 로고    scopus 로고
    • Dynamic scene classification: Learning motion descriptors with slow features analysis
    • C. Thériault, N. Thome, and M. Cord. Dynamic scene classification: Learning motion descriptors with slow features analysis. In CVPR, 2013.
    • (2013) CVPR
    • Thériault, C.1    Thome, N.2    Cord, M.3
  • 50
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural svms with latent variables
    • C.-N. Yu and T. Joachims. Learning structural svms with latent variables. In ICML, 2009.
    • (2009) ICML
    • Yu, C.-N.1    Joachims, T.2
  • 52
    • 36448983903 scopus 로고    scopus 로고
    • A support vector method for optimizing average precision
    • Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In SIGIR, 2007.
    • (2007) SIGIR
    • Yue, Y.1    Finley, T.2    Radlinski, F.3    Joachims, T.4
  • 54
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning Deep Features for Scene Recognition using Places Database. NIPS, 2014.
    • (2014) NIPS
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.