-
1
-
-
84898946229
-
Support vector machines for multiple-instance learning
-
S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-instance learning. In NIPS, 2003.
-
(2003)
NIPS
-
-
Andrews, S.1
Tsochantaridis, I.2
Hofmann, T.3
-
2
-
-
84986296991
-
NetVLAD: CNN architecture for weakly supervised place recognition
-
R. Arandjelovíc, P. Gronat, A. Torii, T. Pajdla, and J. Sivic. NetVLAD: CNN architecture for weakly supervised place recognition. In CVPR, 2016.
-
(2016)
CVPR
-
-
Arandjelovíc, R.1
Gronat, P.2
Torii, A.3
Pajdla, T.4
Sivic, J.5
-
3
-
-
84973914286
-
Pooling in image representation: The visual codeword point of view
-
S. Avila, N. Thome, M. Cord, E. Valle, and A. Araujo. Pooling in image representation: the visual codeword point of view. Computer Vision and Image Understanding, 2012.
-
(2012)
Computer Vision and Image Understanding
-
-
Avila, S.1
Thome, N.2
Cord, M.3
Valle, E.4
Araujo, A.5
-
4
-
-
84911427064
-
Optimizing average precision using weakly supervised data
-
A. Behl, C. V. Jawahar, and M. P. Kumar. Optimizing average precision using weakly supervised data. In CVPR, 2014.
-
(2014)
CVPR
-
-
Behl, A.1
Jawahar, C.V.2
Kumar, M.P.3
-
5
-
-
84911382755
-
Object classification with latent window parameters
-
H. Bilen, V. Namboodiri, and L. Van Gool. Object classification with latent window parameters. In IJCV, 2013.
-
(2013)
IJCV
-
-
Bilen, H.1
Namboodiri, V.2
Van Gool, L.3
-
7
-
-
85072028231
-
Return of the devil in the details: Delving deep into convolutional nets
-
K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
-
(2014)
BMVC
-
-
Chatfield, K.1
Simonyan, K.2
Vedaldi, A.3
Zisserman, A.4
-
10
-
-
84973897339
-
MANTRA: Minimum maximum latent structural SVM for image classification and ranking
-
T. Durand, N. Thome, and M. Cord. MANTRA: Minimum Maximum Latent Structural SVM for Image Classification and Ranking. In ICCV, 2015.
-
(2015)
ICCV
-
-
Durand, T.1
Thome, N.2
Cord, M.3
-
11
-
-
84949926853
-
Incremental learning of latent structural SVM for weakly supervised image classification
-
T. Durand, N. Thome, M. Cord, and D. Picard. Incremental learning of latent structural svm for weakly supervised image classification. In ICIP, 2014.
-
(2014)
ICIP
-
-
Durand, T.1
Thome, N.2
Cord, M.3
Picard, D.4
-
15
-
-
85029359197
-
Fast R-CNN
-
R. Girshick. Fast R-CNN. In ICCV, 2015.
-
(2015)
ICCV
-
-
Girshick, R.1
-
16
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
18
-
-
84938217896
-
Multi-scale orderless pooling of deep convolutional activation features
-
Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. In ECCV, 2014.
-
(2014)
ECCV
-
-
Gong, Y.1
Wang, L.2
Guo, R.3
Lazebnik, S.4
-
19
-
-
85009918748
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
-
(2014)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
20
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM International Conference on Multimedia, 2014.
-
(2014)
ACM International Conference on Multimedia
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
22
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS. 2012.
-
(2012)
NIPS.
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
23
-
-
85161967298
-
Self-paced learning for latent variable models
-
P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS, 2010.
-
(2010)
NIPS
-
-
Kumar, P.1
Packer, B.2
Koller, D.3
-
24
-
-
84911413388
-
Video event detection by inferring temporal instance labels
-
K.-T. Lai, F. X. Yu, M.-S. Chen, and S.-F. Chang. Video event detection by inferring temporal instance labels. In CVPR, 2014.
-
(2014)
CVPR
-
-
Lai, K.-T.1
Yu, F.X.2
Chen, M.-S.3
Chang, S.-F.4
-
25
-
-
84911453134
-
Fantope regularization in metric learning
-
M. T. Law, N. Thome, and M. Cord. Fantope regularization in metric learning. In CVPR, 2014.
-
(2014)
CVPR
-
-
Law, M.T.1
Thome, N.2
Cord, M.3
-
26
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
-
(2006)
CVPR
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
27
-
-
84959247149
-
Multiple instance learning for soft bags via top instances
-
W. Li and N. Vasconcelos. Multiple instance learning for soft bags via top instances. In CVPR, 2015.
-
(2015)
CVPR
-
-
Li, W.1
Vasconcelos, N.2
-
28
-
-
85162513516
-
Object bank: A high-level image representation for scene classification & semantic feature sparsification
-
E. P. X. Li-Jia Li, Hao Su and L. Fei-Fei. Object bank: A high-level image representation for scene classification & semantic feature sparsification. In NIPS, 2010.
-
(2010)
NIPS
-
-
Li-Jia Li, E.P.X.1
Su, H.2
Fei-Fei, L.3
-
30
-
-
84937834115
-
Microsoft coco: Common objects in context
-
September
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV, Zürich, September 2014.
-
(2014)
ECCV, Zürich
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
31
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
32
-
-
84937889162
-
Efficient optimization for average precision SVM
-
P. Mohapatra, C. Jawahar, and M. P. Kumar. Efficient optimization for average precision svm. In NIPS. 2014.
-
(2014)
NIPS.
-
-
Mohapatra, P.1
Jawahar, C.2
Kumar, M.P.3
-
33
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In CVPR, 2014.
-
(2014)
CVPR
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
34
-
-
84953933150
-
Is object localization for free? Weakly-supervised learning with convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Is object localization for free? weakly-supervised learning with convolutional neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
35
-
-
84856650974
-
Scene recognition and weakly supervised object localization with deformable part-based models
-
M. Pandey and S. Lazebnik. Scene recognition and weakly supervised object localization with deformable part-based models. In ICCV, 2011.
-
(2011)
ICCV
-
-
Pandey, M.1
Lazebnik, S.2
-
36
-
-
84959218210
-
Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance learning, and sliding window detection
-
G. Papandreou, I. Kokkinos, and P.-A. Savalle. Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance learning, and sliding window detection. In CVPR, 2015.
-
(2015)
CVPR
-
-
Papandreou, G.1
Kokkinos, I.2
Savalle, P.-A.3
-
39
-
-
34948815101
-
Fisher kernels on visual vocabularies for image categorization
-
F. Perronnin and C. R. Dance. Fisher kernels on visual vocabularies for image categorization. In CVPR, 2007.
-
(2007)
CVPR
-
-
Perronnin, F.1
Dance, C.R.2
-
41
-
-
84885881090
-
Objectcentric spatial pooling for image classification
-
O. Russakovsky, Y. Lin, K. Yu, and L. Fei-Fei. Objectcentric spatial pooling for image classification. In ECCV, 2012.
-
(2012)
ECCV
-
-
Russakovsky, O.1
Lin, Y.2
Yu, K.3
Fei-Fei, L.4
-
42
-
-
84902249208
-
Latent pyramidal regions for recognizing scenes
-
F. Sadeghi and M. F. Tappen. Latent pyramidal regions for recognizing scenes. In ECCV, 2012.
-
(2012)
ECCV
-
-
Sadeghi, F.1
Tappen, M.F.2
-
43
-
-
33847380121
-
Robust object recognition with cortex-like mechanisms
-
T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust object recognition with cortex-like mechanisms. PAMI, 2007.
-
(2007)
PAMI
-
-
Serre, T.1
Wolf, L.2
Bileschi, S.3
Riesenhuber, M.4
Poggio, T.5
-
44
-
-
84866677469
-
Discriminative spatial saliency for image classification
-
G. Sharma, F. Jurie, and C. Schmid. Discriminative spatial saliency for image classification. In CVPR, 2012.
-
(2012)
CVPR
-
-
Sharma, G.1
Jurie, F.2
Schmid, C.3
-
45
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
46
-
-
0345414182
-
Video google: A text retrieval approach to object matching in videos
-
J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV, 2003.
-
(2003)
ICCV
-
-
Sivic, J.1
Zisserman, A.2
-
47
-
-
84898806407
-
Learning discriminative part detectors for image classification and cosegmentation
-
J. Sun and J. Ponce. Learning discriminative part detectors for image classification and cosegmentation. In ICCV, 2013.
-
(2013)
ICCV
-
-
Sun, J.1
Ponce, J.2
-
48
-
-
84887333346
-
Dynamic scene classification: Learning motion descriptors with slow features analysis
-
C. Thériault, N. Thome, and M. Cord. Dynamic scene classification: Learning motion descriptors with slow features analysis. In CVPR, 2013.
-
(2013)
CVPR
-
-
Thériault, C.1
Thome, N.2
Cord, M.3
-
50
-
-
71149086466
-
Learning structural svms with latent variables
-
C.-N. Yu and T. Joachims. Learning structural svms with latent variables. In ICML, 2009.
-
(2009)
ICML
-
-
Yu, C.-N.1
Joachims, T.2
-
51
-
-
84897544696
-
SVM for learning with label proportions
-
F. X. Yu, D. Liu, S. Kumar, T. Jebara, and S.-F. Chang. ?svm for learning with label proportions. In ICML, 2013.
-
(2013)
ICML
-
-
Yu, F.X.1
Liu, D.2
Kumar, S.3
Jebara, T.4
Chang, S.-F.5
-
52
-
-
36448983903
-
A support vector method for optimizing average precision
-
Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A support vector method for optimizing average precision. In SIGIR, 2007.
-
(2007)
SIGIR
-
-
Yue, Y.1
Finley, T.2
Radlinski, F.3
Joachims, T.4
-
53
-
-
84911443783
-
PANDA: Pose aligned networks for deep attribute modeling
-
N. Zhang, M. Paluri, M. Ranzato, T. Darrell, and L. Bourdev. PANDA: Pose Aligned Networks for Deep Attribute Modeling. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zhang, N.1
Paluri, M.2
Ranzato, M.3
Darrell, T.4
Bourdev, L.5
-
54
-
-
84937964578
-
Learning deep features for scene recognition using places database
-
B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning Deep Features for Scene Recognition using Places Database. NIPS, 2014.
-
(2014)
NIPS
-
-
Zhou, B.1
Lapedriza, A.2
Xiao, J.3
Torralba, A.4
Oliva, A.5
|