-
1
-
-
84879877798
-
Invariant scattering convolution networks
-
Bruna, J. and Mallat, S. Invariant scattering convolution networks. PAMI, 2013.
-
(2013)
PAMI
-
-
Bruna, J.1
Mallat, S.2
-
2
-
-
84919951531
-
Signal recovery from pooling representations
-
Bruna, J., Szlam, A., and LeCun, Y. Signal recovery from pooling representations. In ICML, 2013.
-
(2013)
ICML
-
-
Bruna, J.1
Szlam, A.2
LeCun, Y.3
-
4
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
Deng, J., Dong, W, Socher, R, Li, L.-j, Li, K, and Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
5
-
-
84960964146
-
Inverting convolutional networks with convolutional networks
-
Dosovitskiy, A. and Brox, T. Inverting convolutional networks with convolutional networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Dosovitskiy, A.1
Brox, T.2
-
6
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
7
-
-
84860644702
-
Measuring invariances in deep networks
-
Goodfellow, I., Lee, H, Le, Q. V., Saxe, A., and Ng, A. Measuring invariances in deep networks. In NIPS, 2009.
-
(2009)
NIPS
-
-
Goodfellow, I.1
Lee, H.2
Le, Q.V.3
Saxe, A.4
Ng, A.5
-
8
-
-
84897543523
-
Maxout networks
-
Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. Maxout networks. In ICML, 2013.
-
(2013)
ICML
-
-
Goodfellow, I.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
9
-
-
84965140688
-
Learning both weights and connections for efficient neural network
-
Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both weights and connections for efficient neural network. In NIPS, 2015.
-
(2015)
NIPS
-
-
Han, S.1
Pool, J.2
Tran, J.3
Dally, W.J.4
-
10
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
11
-
-
77953183471
-
What is the best multi-stage architecture for object recognition?
-
Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. What is the best multi-stage architecture for object recognition? In CVPR, 2009.
-
(2009)
CVPR
-
-
Jarrett, K.1
Kavukcuoglu, K.2
Ranzato, M.3
LeCun, Y.4
-
13
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., and Hinton, G. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
14
-
-
85067565710
-
Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree
-
Lee, C.-y., Gallagher, P. W., and Tu, Z. Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. In AISTATS, 2016.
-
(2016)
AISTATS
-
-
Lee, C.-Y.1
Gallagher, P.W.2
Tu, Z.3
-
15
-
-
84959193001
-
Recurrent convolutional neural network for object recognition
-
Liang, M. and Hu, X. Recurrent convolutional neural network for object recognition. In CVPR, 2015.
-
(2015)
CVPR
-
-
Liang, M.1
Hu, X.2
-
17
-
-
84893676344
-
Rectifier nonlineari-ties improve neural network acoustic models
-
Maas, A., Hannun, A. Y., and Ng, A. Rectifier nonlineari-ties improve neural network acoustic models. In ICML, .
-
ICML
-
-
Maas, A.1
Hannun, A.Y.2
Ng, A.3
-
18
-
-
84959213675
-
Understanding deep image representations by inverting them
-
Mahendran, A. and Vedaldi, A. Understanding deep image representations by inverting them. In CVPR, 2015.
-
(2015)
CVPR
-
-
Mahendran, A.1
Vedaldi, A.2
-
19
-
-
77956509090
-
Rectified linear units improve restricted boltzmann machines
-
Nair, V. and Hinton, G. Rectified linear units improve restricted boltzmann machines. In ICML, 2010.
-
(2010)
ICML
-
-
Nair, V.1
Hinton, G.2
-
20
-
-
84965137166
-
Spectral representations for convolutional neural networks
-
Rippel, O., Snoek, J., and Adams, R. Spectral representations for convolutional neural networks. In NIPS, 2015.
-
(2015)
NIPS
-
-
Rippel, O.1
Snoek, J.2
Adams, R.3
-
21
-
-
84925410541
-
Very deep convolutional networks for large-scale image recognition
-
Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. In ICLR, .
-
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
22
-
-
84970022032
-
Scalable Bayesian optimization using deep neural networks
-
Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M. M. A., and Adams, R. Scalable Bayesian optimization using deep neural networks. In ICML, 2015.
-
(2015)
ICML
-
-
Snoek, J.1
Rippel, O.2
Swersky, K.3
Kiros, R.4
Satish, N.5
Sundaram, N.6
Patwary, M.M.A.7
Adams, R.8
-
23
-
-
84962006941
-
Striving for simplicity: The all convolutional net
-
Springenberg, J., Dosovitskiy, A., Brox, T., and Riedmiller, M. Striving for simplicity: The all convolutional net. In ICLR Workshop, 2014.
-
(2014)
ICLR Workshop
-
-
Springenberg, J.1
Dosovitskiy, A.2
Brox, T.3
Riedmiller, M.4
-
25
-
-
84937522268
-
Going deeper with convolutions
-
Szegedy, C., Liu, W, Jia, Y., Sermanet, P., Reed, S, Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-novich, A. Going deeper with convolutions. In CVPR, 2015.
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabi-Novich, A.9
-
26
-
-
84897550107
-
Regularization of neural networks using dropconnect
-
Wan, L., Zeiler, M., Zhang, S., LeCun, Y., and Fergus, R. Regularization of neural networks using dropconnect. In ICML, 2013.
-
(2013)
ICML
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
LeCun, Y.4
Fergus, R.5
-
27
-
-
84960920723
-
Empirical evaluation of rectified activations in convolutional network
-
Xu, B., Wang, N, Chen, T., and Li, M. Empirical evaluation of rectified activations in convolutional network. In ICML Workshop, 2015.
-
(2015)
ICML Workshop
-
-
Xu, B.1
Wang, N.2
Chen, T.3
Li, M.4
-
28
-
-
84973904224
-
Deep fried convnets
-
Yang, Z., Moczulski, M., Denil, M., de Freitas, N., Smola, A., Song, L., and Wang, Z. Deep fried convnets. In ICCV, 2015.
-
(2015)
ICCV
-
-
Yang, Z.1
Moczulski, M.2
Denil, M.3
De Freitas, N.4
Smola, A.5
Song, L.6
Wang, Z.7
-
29
-
-
84998683695
-
-
Zagoruyko, S. Torch blog. http://torch.ch/blog/2015/07/30/cifar.html, 2015.
-
(2015)
Torch Blog
-
-
Zagoruyko, S.1
-
30
-
-
85083954484
-
Stochastic pooling for regularization of deep convolutional neural networks
-
Zeiler, M. D. and Fergus, R. Stochastic pooling for regularization of deep convolutional neural networks. In ICLR, 2013.
-
(2013)
ICLR
-
-
Zeiler, M.D.1
Fergus, R.2
-
31
-
-
85014890080
-
Stacked what-where auto-encoders
-
Zhao, J., Mathieu, M., Goroshin, R., and Lecun, Y. Stacked what-where auto-encoders. In ICLR, 2015.
-
(2015)
ICLR
-
-
Zhao, J.1
Mathieu, M.2
Goroshin, R.3
Lecun, Y.4
|