메뉴 건너뛰기




Volumn 5, Issue , 2016, Pages 3276-3284

Understanding and improving convolutional neural networks via concatenated rectified linear units

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTER VISION; CONVOLUTION; NETWORK ARCHITECTURE; NEURAL NETWORKS;

EID: 84998679622     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (243)

References (31)
  • 1
    • 84879877798 scopus 로고    scopus 로고
    • Invariant scattering convolution networks
    • Bruna, J. and Mallat, S. Invariant scattering convolution networks. PAMI, 2013.
    • (2013) PAMI
    • Bruna, J.1    Mallat, S.2
  • 2
    • 84919951531 scopus 로고    scopus 로고
    • Signal recovery from pooling representations
    • Bruna, J., Szlam, A., and LeCun, Y. Signal recovery from pooling representations. In ICML, 2013.
    • (2013) ICML
    • Bruna, J.1    Szlam, A.2    LeCun, Y.3
  • 5
    • 84960964146 scopus 로고    scopus 로고
    • Inverting convolutional networks with convolutional networks
    • Dosovitskiy, A. and Brox, T. Inverting convolutional networks with convolutional networks. In CVPR, 2015.
    • (2015) CVPR
    • Dosovitskiy, A.1    Brox, T.2
  • 6
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 9
    • 84965140688 scopus 로고    scopus 로고
    • Learning both weights and connections for efficient neural network
    • Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both weights and connections for efficient neural network. In NIPS, 2015.
    • (2015) NIPS
    • Han, S.1    Pool, J.2    Tran, J.3    Dally, W.J.4
  • 10
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • Ioffe, S. and Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 11
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. What is the best multi-stage architecture for object recognition? In CVPR, 2009.
    • (2009) CVPR
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    LeCun, Y.4
  • 13
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., and Hinton, G. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 14
    • 85067565710 scopus 로고    scopus 로고
    • Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree
    • Lee, C.-y., Gallagher, P. W., and Tu, Z. Generalizing pooling functions in convolutional neural networks: Mixed, gated, and tree. In AISTATS, 2016.
    • (2016) AISTATS
    • Lee, C.-Y.1    Gallagher, P.W.2    Tu, Z.3
  • 15
    • 84959193001 scopus 로고    scopus 로고
    • Recurrent convolutional neural network for object recognition
    • Liang, M. and Hu, X. Recurrent convolutional neural network for object recognition. In CVPR, 2015.
    • (2015) CVPR
    • Liang, M.1    Hu, X.2
  • 16
  • 17
    • 84893676344 scopus 로고    scopus 로고
    • Rectifier nonlineari-ties improve neural network acoustic models
    • Maas, A., Hannun, A. Y., and Ng, A. Rectifier nonlineari-ties improve neural network acoustic models. In ICML, .
    • ICML
    • Maas, A.1    Hannun, A.Y.2    Ng, A.3
  • 18
    • 84959213675 scopus 로고    scopus 로고
    • Understanding deep image representations by inverting them
    • Mahendran, A. and Vedaldi, A. Understanding deep image representations by inverting them. In CVPR, 2015.
    • (2015) CVPR
    • Mahendran, A.1    Vedaldi, A.2
  • 19
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted boltzmann machines
    • Nair, V. and Hinton, G. Rectified linear units improve restricted boltzmann machines. In ICML, 2010.
    • (2010) ICML
    • Nair, V.1    Hinton, G.2
  • 20
    • 84965137166 scopus 로고    scopus 로고
    • Spectral representations for convolutional neural networks
    • Rippel, O., Snoek, J., and Adams, R. Spectral representations for convolutional neural networks. In NIPS, 2015.
    • (2015) NIPS
    • Rippel, O.1    Snoek, J.2    Adams, R.3
  • 21
    • 84925410541 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • Simonyan, K. and Zisserman, A. Very deep convolutional networks for large-scale image recognition. In ICLR, .
    • ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 26
    • 84897550107 scopus 로고    scopus 로고
    • Regularization of neural networks using dropconnect
    • Wan, L., Zeiler, M., Zhang, S., LeCun, Y., and Fergus, R. Regularization of neural networks using dropconnect. In ICML, 2013.
    • (2013) ICML
    • Wan, L.1    Zeiler, M.2    Zhang, S.3    LeCun, Y.4    Fergus, R.5
  • 27
    • 84960920723 scopus 로고    scopus 로고
    • Empirical evaluation of rectified activations in convolutional network
    • Xu, B., Wang, N, Chen, T., and Li, M. Empirical evaluation of rectified activations in convolutional network. In ICML Workshop, 2015.
    • (2015) ICML Workshop
    • Xu, B.1    Wang, N.2    Chen, T.3    Li, M.4
  • 29
  • 30
    • 85083954484 scopus 로고    scopus 로고
    • Stochastic pooling for regularization of deep convolutional neural networks
    • Zeiler, M. D. and Fergus, R. Stochastic pooling for regularization of deep convolutional neural networks. In ICLR, 2013.
    • (2013) ICLR
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.