메뉴 건너뛰기




Volumn , Issue , 2013, Pages 3400-3407

Learning discriminative part detectors for image classification and cosegmentation

Author keywords

[No Author keywords available]

Indexed keywords

DETECTORS; OPTIMIZATION;

EID: 84898806407     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2013.422     Document Type: Conference Paper
Times cited : (131)

References (41)
  • 1
    • 84866657764 scopus 로고    scopus 로고
    • Slic superpixels compared to state-of-the-art superpixel methods
    • R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk. Slic superpixels compared to state-of-the-art superpixel methods. IEEE T. PAMI, 34(11):2274-2282, 2012.
    • (2012) IEEE T. PAMI , vol.34 , Issue.11 , pp. 2274-2282
    • Achanta, R.1    Shaji, A.2    Smith, K.3    Lucchi, A.4    Fua, P.5    Susstrunk, S.6
  • 3
    • 84885880085 scopus 로고    scopus 로고
    • Object detection using strongly-supervised deformable part models
    • H. Azizpour and I. Laptev. Object detection using strongly-supervised deformable part models. In ECCV, 2012.
    • (2012) ECCV
    • Azizpour, H.1    Laptev, I.2
  • 4
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3d human pose annotations
    • L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In ICCV, 2009.
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 5
    • 77955993281 scopus 로고    scopus 로고
    • Learning mid-level features for recognition
    • Y. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-level features for recognition. In CVPR, 2010.
    • (2010) CVPR
    • Boureau, Y.1    Bach, F.2    Lecun, Y.3    Ponce, J.4
  • 6
    • 84856649187 scopus 로고    scopus 로고
    • Ask the locals: Multi-way local pooling for image recognition
    • Y. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun. Ask the locals: multi-way local pooling for image recognition. In ICCV, 2011.
    • (2011) ICCV
    • Boureau, Y.1    Le Roux, N.2    Bach, F.3    Ponce, J.4    Lecun, Y.5
  • 7
    • 4344598245 scopus 로고    scopus 로고
    • An experimental comparison of min-cut/maxflow algorithms for energy minimization in vision
    • Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/maxflow algorithms for energy minimization in vision. IEEE T. PAMI, 26(9):1124-1137, 2004.
    • (2004) IEEE T. PAMI , vol.26 , Issue.9 , pp. 1124-1137
    • Boykov, Y.1    Kolmogorov, V.2
  • 8
    • 84887341181 scopus 로고    scopus 로고
    • Tricos: A tri-level class-discriminative co-segmentation method for image classification
    • Y. Chai, E. Rahtu, V. Lempitsky, L. Van Gool, and A. Zisserman. Tricos: A tri-level class-discriminative co-segmentation method for image classification. In ECCV, 2012.
    • (2012) ECCV
    • Chai, Y.1    Rahtu, E.2    Lempitsky, V.3    Van Gool, L.4    Zisserman, A.5
  • 10
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 12
    • 84856655843 scopus 로고    scopus 로고
    • A graph-matching kernel for object categorization
    • O. Duchenne, A. Joulin, and J. Ponce. A graph-matching kernel for object categorization. In ICCV, 2011.
    • (2011) ICCV
    • Duchenne, O.1    Joulin, A.2    Ponce, J.3
  • 13
    • 77956549765 scopus 로고    scopus 로고
    • Efficient learning using forward-backward splitting
    • J. Duchi and Y. Singer. Efficient learning using forward-backward splitting. In NIPS, 2009.
    • (2009) NIPS
    • Duchi, J.1    Singer, Y.2
  • 14
    • 84932617705 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In CVPR workshop on generative-model based vision, 2004.
    • (2004) CVPR Workshop on Generative-model Based Vision
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 15
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part-based models
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. IEEE T. PAMI, 32(9):1627-1645, 2010.
    • (2010) IEEE T. PAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 16
    • 77955990943 scopus 로고    scopus 로고
    • Discriminative clustering for image cosegmentation
    • A. Joulin, F. Bach, and J. Ponce. Discriminative clustering for image cosegmentation. In CVPR, 2010.
    • (2010) CVPR
    • Joulin, A.1    Bach, F.2    Ponce, J.3
  • 17
  • 18
    • 84866677796 scopus 로고    scopus 로고
    • On multiple foreground cosegmentation
    • G. Kim and E. P. Xing. On multiple foreground cosegmentation. In CVPR, 2012.
    • (2012) CVPR
    • Kim, G.1    Xing, E.P.2
  • 19
    • 84856636112 scopus 로고    scopus 로고
    • Distributed cosegmentation via submodular optimization on anisotropic diffusion
    • G. Kim, E. P. Xing, L. Fei-Fei, and T. Kanade. Distributed cosegmentation via submodular optimization on anisotropic diffusion. In ICCV, 2011.
    • (2011) ICCV
    • Kim, G.1    Xing, E.P.2    Fei-Fei, L.3    Kanade, T.4
  • 20
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 21
    • 85162513516 scopus 로고    scopus 로고
    • Object bank: A high-level image representation for scene classification and semantic feature sparsification
    • L. Li, H. Su, E. Xing, and L. Fei-Fei. Object bank: A high-level image representation for scene classification and semantic feature sparsification. In NIPS, 2010.
    • (2010) NIPS
    • Li, L.1    Su, H.2    Xing, E.3    Fei-Fei, L.4
  • 22
    • 50649103674 scopus 로고    scopus 로고
    • What, where and who? Classifying events by scene and object recognition
    • L.-J. Li and L. Fei-Fei. What, where and who? classifying events by scene and object recognition. In ICCV, 2007.
    • (2007) ICCV
    • Li, L.-J.1    Fei-Fei, L.2
  • 23
    • 84863044549 scopus 로고    scopus 로고
    • In defense of soft-assignment coding
    • L. Liu, L. Wang, and X. Liu. In defense of soft-assignment coding. In ICCV, 2011.
    • (2011) ICCV
    • Liu, L.1    Wang, L.2    Liu, X.3
  • 24
    • 84887325186 scopus 로고    scopus 로고
    • Blocks that shout: Distinctive parts for scene classification
    • M.Juneja, A. Vedaldi, C. V. Jawahar, and A. Zisserman. Blocks that shout: Distinctive parts for scene classification. In CVPR, 2013.
    • (2013) CVPR
    • Juneja, M.1    Vedaldi, A.2    Jawahar, C.V.3    Zisserman, A.4
  • 25
    • 80052910929 scopus 로고    scopus 로고
    • Scale invariant cosegmentation for image groups
    • L. Mukherjee, V. Singh, and J. Peng. Scale invariant cosegmentation for image groups. In CVPR, 2011.
    • (2011) CVPR
    • Mukherjee, L.1    Singh, V.2    Peng, J.3
  • 26
    • 84856650974 scopus 로고    scopus 로고
    • Scene recognition and weakly supervised object localization with deformable part-based models
    • M. Pandey and S. Lazebnik. Scene recognition and weakly supervised object localization with deformable part-based models. In ICCV, 2011.
    • (2011) ICCV
    • Pandey, M.1    Lazebnik, S.2
  • 27
    • 70450162315 scopus 로고    scopus 로고
    • Recognizing indoor scenes
    • A. Quattoni and A.Torralba. Recognizing indoor scenes. In CVPR, 2009.
    • (2009) CVPR
    • Quattoni, A.1    Torralba, A.2
  • 28
    • 84877632511 scopus 로고    scopus 로고
    • Grabcut: Interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Interactive foreground extraction using iterated graph cuts. ACM TOG, 23(3):309-314, 2004.
    • (2004) ACM TOG , vol.23 , Issue.3 , pp. 309-314
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 29
    • 84866718894 scopus 로고    scopus 로고
    • Action bank: A high-level representation of activity in video
    • S. Sadanand and J. J. Corso. Action bank: A high-level representation of activity in video. In CVPR, 2012.
    • (2012) CVPR
    • Sadanand, S.1    Corso, J.J.2
  • 30
    • 84902249208 scopus 로고    scopus 로고
    • Latent pyramidal regions for recognizing scenes
    • F. Sadeghi and M. F. Tappen. Latent pyramidal regions for recognizing scenes. In ECCV, 2012.
    • (2012) ECCV
    • Sadeghi, F.1    Tappen, M.F.2
  • 31
    • 84866677469 scopus 로고    scopus 로고
    • Discriminative spatial saliency for image classification
    • G. Sharma, F. Jurie, and C. Schmid. Discriminative spatial saliency for image classification. In CVPR, 2012.
    • (2012) CVPR
    • Sharma, G.1    Jurie, F.2    Schmid, C.3
  • 32
    • 84884958786 scopus 로고    scopus 로고
    • Unsupervised discovery of mid-level discriminative patches
    • S. Singh, A. Gupta, and A. Efros. Unsupervised discovery of mid-level discriminative patches. In ECCV, 2012.
    • (2012) ECCV
    • Singh, S.1    Gupta, A.2    Efros, A.3
  • 33
    • 84856687353 scopus 로고    scopus 로고
    • Visual word disambiguation by semantic contexts
    • Y. Su and F. Jurie. Visual word disambiguation by semantic contexts. In ICCV, 2011.
    • (2011) ICCV
    • Su, Y.1    Jurie, F.2
  • 35
    • 77955988947 scopus 로고    scopus 로고
    • Sun database: Large-scale scene recognition from abbey to zoo
    • J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010.
    • (2010) CVPR
    • Xiao, J.1    Hays, J.2    Ehinger, K.A.3    Oliva, A.4    Torralba, A.5
  • 36
    • 84885874031 scopus 로고    scopus 로고
    • Beyond spatial pyramids: A new feature extraction framework with dense spatial sampling for image classification
    • S. Yan, X. Xu, D. Xu, S. Lin, and X. Li. Beyond spatial pyramids: A new feature extraction framework with dense spatial sampling for image classification. In ECCV, 2012.
    • (2012) ECCV
    • Yan, S.1    Xu, X.2    Xu, D.3    Lin, S.4    Li, X.5
  • 37
    • 84898800923 scopus 로고    scopus 로고
    • Group-sensitive multiple kernel learning for object categorization
    • J. Yang, Y. Li, Y. Tian, L. Duan, and W. Gao. Group-sensitive multiple kernel learning for object categorization. In CVPR, 2009.
    • (2009) CVPR
    • Yang, J.1    Li, Y.2    Tian, Y.3    Duan, L.4    Gao, W.5
  • 38
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009.
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 39
    • 84856672971 scopus 로고    scopus 로고
    • Human action recognition by learning bases of action attributes and parts
    • B. Yao, X. Jiang, A. Khosla, A. Lin, L. Guibas, and L. Fei-Fei. Human action recognition by learning bases of action attributes and parts. In ICCV, 2011.
    • (2011) ICCV
    • Yao, B.1    Jiang, X.2    Khosla, A.3    Lin, A.4    Guibas, L.5    Fei-Fei, L.6
  • 40
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B, 68(1):49-67, 2005.
    • (2005) Journal of the Royal Statistical Society: Series B , vol.68 , Issue.1 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 41
    • 84898828258 scopus 로고    scopus 로고
    • Learning hybrid part filters for scene recognition
    • Y. Zheng, Y.-G. Jiang, and X. Xue. Learning hybrid part filters for scene recognition. In ECCV, 2012.
    • (2012) ECCV
    • Zheng, Y.1    Jiang, Y.-G.2    Xue, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.