메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 5297-5307

NetVLAD: CNN architecture for weakly supervised place recognition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGE RETRIEVAL; NETWORK ARCHITECTURE; NEURAL NETWORKS;

EID: 84986296991     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.572     Document Type: Conference Paper
Times cited : (2513)

References (89)
  • 3
    • 84866678025 scopus 로고    scopus 로고
    • Three things everyone should know to improve object retrieval
    • 2, 7
    • R. Arandjelovíc and A. Zisserman. Three things everyone should know to improve object retrieval. In Proc. CVPR, 2012.
    • (2012) Proc. CVPR
    • Arandjelovíc, R.1    Zisserman, A.2
  • 5
    • 84978270010 scopus 로고    scopus 로고
    • DisLocation: Scalable descriptor distinctiveness for location recognition
    • 1, 2, 6
    • R. Arandjelovíc and A. Zisserman. DisLocation: Scalable descriptor distinctiveness for location recognition. In Proc. ACCV, 2014.
    • (2014) Proc. ACCV
    • Arandjelovíc, R.1    Zisserman, A.2
  • 6
    • 84899113050 scopus 로고    scopus 로고
    • Painting-to-3D model alignment via discriminative visual elements
    • 1
    • M. Aubry, B. C. Russell, and J. Sivic. Painting-to-3D model alignment via discriminative visual elements. ACM Transactions on Graphics (TOG), 33 (2): 14, 2014.
    • (2014) ACM Transactions on Graphics (TOG) , vol.33 , Issue.2 , pp. 14
    • Aubry, M.1    Russell, B.C.2    Sivic, J.3
  • 8
    • 84973908877 scopus 로고    scopus 로고
    • Aggregating local deep features for image retrieval
    • 2, 3, 6, 7
    • A. Babenko and V. Lempitsky. Aggregating local deep features for image retrieval. In Proc. ICCV, 2015.
    • (2015) Proc. ICCV
    • Babenko, A.1    Lempitsky, V.2
  • 10
    • 84887391775 scopus 로고    scopus 로고
    • Graph-based discriminative learning for location recognition
    • 1, 2
    • S. Cao and N. Snavely. Graph-based discriminative learning for location recognition. In Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • Cao, S.1    Snavely, N.2
  • 13
    • 50649105215 scopus 로고    scopus 로고
    • Total recall: Automatic query expansion with a generative feature model for object retrieval
    • 2
    • O. Chum, J. Philbin, J. Sivic, M. Isard, and A. Zisserman. Total recall: Automatic query expansion with a generative feature model for object retrieval. In Proc. ICCV, 2007.
    • (2007) Proc. ICCV
    • Chum, O.1    Philbin, J.2    Sivic, J.3    Isard, M.4    Zisserman, A.5
  • 14
    • 84950120533 scopus 로고    scopus 로고
    • Deep filter banks for texture recognition and segmentation
    • 3, 4
    • M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for texture recognition and segmentation. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Cimpoi, M.1    Maji, S.2    Vedaldi, A.3
  • 17
    • 70449367190 scopus 로고    scopus 로고
    • Highly scalable appearanceonly SLAM-FAB-MAP 2.
    • 1, 2
    • M. Cummins and P. Newman. Highly scalable appearanceonly SLAM-FAB-MAP 2. 0. In RSS, 2009.
    • (2009) RSS
    • Cummins, M.1    Newman, P.2
  • 21
    • 77952349835 scopus 로고    scopus 로고
    • A review of multi-instance learning assumptions
    • 6
    • J. Foulds and E. Frank. A review of multi-instance learning assumptions. The Knowledge Engineering Review, 25 (01): 1-25, 2010.
    • (2010) The Knowledge Engineering Review , vol.25 , Issue.1 , pp. 1-25
    • Foulds, J.1    Frank, E.2
  • 22
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 1
    • R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Girshick, R.B.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 23
    • 84938217896 scopus 로고    scopus 로고
    • Multi-scale orderless pooling of deep convolutional activation features
    • 2, 3, 4, 6, 7
    • Y. Gong, L. Wang, R. Guo, and S. Lazebnik. Multi-scale orderless pooling of deep convolutional activation features. In Proc. ECCV, 2014.
    • (2014) Proc. ECCV
    • Gong, Y.1    Wang, L.2    Guo, R.3    Lazebnik, S.4
  • 24
    • 84887343558 scopus 로고    scopus 로고
    • Learning and calibrating per-location classifiers for visual place recognition
    • 1, 2, 5, 6
    • P. Gronat, G. Obozinski, J. Sivic, and T. Pajdla. Learning and calibrating per-location classifiers for visual place recognition. In Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • Gronat, P.1    Obozinski, G.2    Sivic, J.3    Pajdla, T.4
  • 25
    • 84887393169 scopus 로고    scopus 로고
    • Negative evidences and cooccurrences in image retrieval: The benefit of PCA and whitening
    • 2, 7
    • H. Jégou and O. Chum. Negative evidences and cooccurrences in image retrieval: The benefit of PCA and whitening. In Proc. ECCV, 2012.
    • (2012) Proc. ECCV
    • Jégou, H.1    Chum, O.2
  • 26
    • 56749104169 scopus 로고    scopus 로고
    • Hamming embedding and weak geometric consistency for large scale image search
    • 2, 8
    • H. Jégou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency for large scale image search. In Proc. ECCV, pages 304-317, 2008.
    • (2008) Proc. ECCV , pp. 304-317
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 27
    • 70450183957 scopus 로고    scopus 로고
    • On the burstiness of visual elements
    • Jun.
    • H. Jégou, M. Douze, and C. Schmid. On the burstiness of visual elements. In Proc. CVPR, Jun 2009.
    • (2009) Proc. CVPR
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 28
    • 84875881757 scopus 로고    scopus 로고
    • Product quantization for nearest neighbor search
    • 1
    • H. Jégou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE PAMI, 2011.
    • (2011) IEEE PAMI
    • Jégou, H.1    Douze, M.2    Schmid, C.3
  • 29
    • 77956004473 scopus 로고    scopus 로고
    • Aggregating local descriptors into a compact image representation
    • 1, 2, 3, 7
    • H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local descriptors into a compact image representation. In Proc. CVPR, 2010.
    • (2010) Proc. CVPR
    • Jégou, H.1    Douze, M.2    Schmid, C.3    Pérez, P.4
  • 30
    • 34948895043 scopus 로고    scopus 로고
    • A contextual dissimilarity measure for accurate and efficient image search
    • 2
    • H. Jégou, H. Harzallah, and C. Schmid. A contextual dissimilarity measure for accurate and efficient image search. In Proc. CVPR, 2007.
    • (2007) Proc. CVPR
    • Jégou, H.1    Harzallah, H.2    Schmid, C.3
  • 32
    • 84911439181 scopus 로고    scopus 로고
    • Triangulation embedding and democratic aggregation for image search
    • 2
    • H. Jégou and A. Zisserman. Triangulation embedding and democratic aggregation for image search. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Jégou, H.1    Zisserman, A.2
  • 33
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • 8
    • A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Karpathy, A.1    Fei-Fei, L.2
  • 34
    • 84973912724 scopus 로고    scopus 로고
    • PoseNet: A convolutional network for real-time 6-DOF camera relocalization
    • 2
    • A. Kendall, M. Grimes, and R. Cipolla. PoseNet: A convolutional network for real-time 6-DOF camera relocalization. In Proc. ICCV, 2015.
    • (2015) Proc. ICCV
    • Kendall, A.1    Grimes, M.2    Cipolla, R.3
  • 35
    • 80052910015 scopus 로고    scopus 로고
    • Avoiding confusing features in place recognition
    • 1, 2, 5
    • J. Knopp, J. Sivic, and T. Pajdla. Avoiding confusing features in place recognition. In Proc. ECCV, 2010.
    • (2010) Proc. ECCV
    • Knopp, J.1    Sivic, J.2    Pajdla, T.3
  • 37
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • 1, 2, 6
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, pages 1106-1114, 2012.
    • (2012) NIPS , pp. 1106-1114
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 39
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • 1
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86 (11): 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 41
    • 84959245070 scopus 로고    scopus 로고
    • Learning deep representations for ground-to-aerial geolocalization
    • 2
    • T.-Y. Lin, Y. Cui, S. Belongie, and J. Hays. Learning deep representations for ground-to-aerial geolocalization. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Lin, T.-Y.1    Cui, Y.2    Belongie, S.3    Hays, J.4
  • 42
    • 84973863234 scopus 로고    scopus 로고
    • Bilinear CNN models for fine-grained visual recognition
    • 4
    • T.-Y. Lin, A. RoyChowdhury, and S. Maji. Bilinear CNN models for fine-grained visual recognition. In Proc. ICCV, 2015.
    • (2015) Proc. ICCV
    • Lin, T.-Y.1    RoyChowdhury, A.2    Maji, S.3
  • 43
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • 1, 3, 7
    • D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60 (2): 91-110, 2004.
    • (2004) IJCV , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.1
  • 44
    • 84977939585 scopus 로고    scopus 로고
    • Towards robust night and day place recognition using visible and thermal imaging
    • 1, 2
    • W. Maddern and S. Vidas. Towards robust night and day place recognition using visible and thermal imaging. In Proc. Intl. Conf. on Robotics and Automation, 2014.
    • (2014) Proc. Intl. Conf. on Robotics and Automation
    • Maddern, W.1    Vidas, S.2
  • 45
    • 84856685415 scopus 로고    scopus 로고
    • Feature tracking for wide-baseline image retrieval
    • 2
    • A. Makadia. Feature tracking for wide-baseline image retrieval. In Proc. ECCV, 2010.
    • (2010) Proc. ECCV
    • Makadia, A.1
  • 49
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • 1
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-level image representations using convolutional neural networks. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 51
    • 34948815101 scopus 로고    scopus 로고
    • Fisher kernels on visual vocabularies for image categorization
    • 2
    • F. Perronnin and D. Dance. Fisher kernels on visual vocabularies for image categorization. In Proc. CVPR, 2007.
    • (2007) Proc. CVPR
    • Perronnin, F.1    Dance, D.2
  • 52
    • 77955992063 scopus 로고    scopus 로고
    • Large-scale image retrieval with compressed fisher vectors
    • 1, 2
    • F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier. Large-scale image retrieval with compressed fisher vectors. In Proc. CVPR, 2010.
    • (2010) Proc. CVPR
    • Perronnin, F.1    Liu, Y.2    Sánchez, J.3    Poirier, H.4
  • 53
    • 34948903793 scopus 로고    scopus 로고
    • Object retrieval with large vocabularies and fast spatial matching
    • 1, 2, 8
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching. In Proc. CVPR, 2007.
    • (2007) Proc. CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 54
    • 51949105132 scopus 로고    scopus 로고
    • Lost in quantization: Improving particular object retrieval in large scale image databases
    • 2, 8
    • J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Lost in quantization: Improving particular object retrieval in large scale image databases. In Proc. CVPR, 2008.
    • (2008) Proc. CVPR
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 56
    • 84928227055 scopus 로고    scopus 로고
    • Quantized kernel learning for feature matching
    • 2
    • D. Qin, X. Chen, M. Guillaumin, and L. V. Gool. Quantized kernel learning for feature matching. In NIPS, 2014.
    • (2014) NIPS
    • Qin, D.1    Chen, X.2    Guillaumin, M.3    Gool, L.V.4
  • 57
    • 84919771997 scopus 로고    scopus 로고
    • Learning to rank bag-of-word histograms for large-scale object retrieval
    • 2
    • D. Qin, Y. Chen, M. Guillaumin, and L. V. Gool. Learning to rank bag-of-word histograms for large-scale object retrieval. In Proc. BMVC., 2014.
    • (2014) Proc. BMVC.
    • Qin, D.1    Chen, Y.2    Guillaumin, M.3    Gool, L.V.4
  • 58
    • 80052905439 scopus 로고    scopus 로고
    • Hello neighbor: Accurate object retrieval with k-reciprocal nearest neighbors
    • 2
    • D. Qin, S. Gammeter, L. Bossard, T. Quack, and L. Van Gool. Hello neighbor: Accurate object retrieval with k-reciprocal nearest neighbors. In Proc. CVPR, 2011.
    • (2011) Proc. CVPR
    • Qin, D.1    Gammeter, S.2    Bossard, L.3    Quack, T.4    Van Gool, L.5
  • 59
    • 84887392826 scopus 로고    scopus 로고
    • Query adaptive similarity for large scale object retrieval
    • 2
    • D. Qin, C. Wengert, and L. V. Gool. Query adaptive similarity for large scale object retrieval. In Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • Qin, D.1    Wengert, C.2    Gool, L.V.3
  • 61
    • 84947281533 scopus 로고    scopus 로고
    • A baseline for visual instance retrieval with deep convolutional networks
    • 2, 3, 5, 6, 7
    • A. S. Razavian, J. Sullivan, A. Maki, and S. Carlsson. A baseline for visual instance retrieval with deep convolutional networks. In Proc. ICLR, 2015.
    • (2015) Proc. ICLR
    • Razavian, A.S.1    Sullivan, J.2    Maki, A.3    Carlsson, S.4
  • 63
    • 84856642591 scopus 로고    scopus 로고
    • Fast image-based localization using direct 2D-to-3D matching
    • 1, 2
    • T. Sattler, B. Leibe, and L. Kobbelt. Fast image-based localization using direct 2D-to-3D matching. In Proc. ICCV, 2011.
    • (2011) Proc. ICCV
    • Sattler, T.1    Leibe, B.2    Kobbelt, L.3
  • 64
    • 84898494019 scopus 로고    scopus 로고
    • Image retrieval for image-based localization revisited
    • 1, 2, 6
    • T. Sattler, T. Weyand, B. Leibe, and L. Kobbelt. Image retrieval for image-based localization revisited. In Proc. BMVC., 2012.
    • (2012) Proc. BMVC.
    • Sattler, T.1    Weyand, T.2    Leibe, B.3    Kobbelt, L.4
  • 66
    • 84946751287 scopus 로고    scopus 로고
    • FaceNet: A unified embedding for face recognition and clustering
    • 6
    • F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified embedding for face recognition and clustering. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Schroff, F.1    Kalenichenko, D.2    Philbin, J.3
  • 67
    • 84898997673 scopus 로고    scopus 로고
    • Learning a distance metric from relative comparisons
    • 6
    • M. Schultz and T. Joachims. Learning a distance metric from relative comparisons. In NIPS, 2004.
    • (2004) NIPS
    • Schultz, M.1    Joachims, T.2
  • 71
    • 84897374881 scopus 로고    scopus 로고
    • Deep Fisher networks for large-scale image classification
    • 4
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Deep Fisher networks for large-scale image classification. In NIPS, 2013.
    • (2013) NIPS
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 72
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • 1, 6
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Proc. ICLR, 2015.
    • (2015) Proc. ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 73
    • 0345414182 scopus 로고    scopus 로고
    • Video Google: A text retrieval approach to object matching in videos
    • 1, 3
    • J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in videos. In Proc. ICCV, volume 2, pages 1470-1477, 2003.
    • (2003) Proc. ICCV , vol.2 , pp. 1470-1477
    • Sivic, J.1    Zisserman, A.2
  • 75
    • 84911395964 scopus 로고    scopus 로고
    • Deep fisher kernels-end to end learning of the fisher kernel GMM parameters
    • 4
    • V. Sydorov, M. Sakurada, and C. Lampert. Deep fisher kernels-end to end learning of the fisher kernel GMM parameters. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Sydorov, V.1    Sakurada, M.2    Lampert, C.3
  • 77
    • 84898829999 scopus 로고    scopus 로고
    • To aggregate or not to aggregate: Selective match kernels for image search
    • 2
    • G. Tolias, Y. Avrithis, and H. Jégou. To aggregate or not to aggregate: Selective match kernels for image search. In Proc. ICCV, 2013.
    • (2013) Proc. ICCV
    • Tolias, G.1    Avrithis, Y.2    Jégou, H.3
  • 78
    • 84902375912 scopus 로고    scopus 로고
    • Visual query expansion with or without geometry: Refining local descriptors by feature aggregation
    • 2
    • G. Tolias and H. Jégou. Visual query expansion with or without geometry: refining local descriptors by feature aggregation. Pattern Recognition, 2014.
    • (2014) Pattern Recognition
    • Tolias, G.1    Jégou, H.2
  • 80
    • 84887329472 scopus 로고    scopus 로고
    • Visual place recognition with repetitive structures
    • 1, 2, 5, 6
    • A. Torii, J. Sivic, T. Pajdla, and M. Okutomi. Visual place recognition with repetitive structures. In Proc. CVPR, 2013.
    • (2013) Proc. CVPR
    • Torii, A.1    Sivic, J.2    Pajdla, T.3    Okutomi, M.4
  • 83
    • 84864049528 scopus 로고    scopus 로고
    • Multiple instance boosting for object detection
    • 6
    • P. Viola, J. C. Platt, and C. Zhang. Multiple instance boosting for object detection. In NIPS, 2005.
    • (2005) NIPS
    • Viola, P.1    Platt, J.C.2    Zhang, C.3
  • 85
    • 33749550361 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • 6
    • K. Q. Weinberger, J. Blitzer, and L. Saul. Distance metric learning for large margin nearest neighbor classification. In NIPS, 2006.
    • (2006) NIPS
    • Weinberger, K.Q.1    Blitzer, J.2    Saul, L.3
  • 86
    • 70450208928 scopus 로고    scopus 로고
    • Picking the best DAISY
    • 2
    • S. Winder, G. Hua, and M. Brown. Picking the best DAISY. In Proc. CVPR, pages 178-185, 2009.
    • (2009) Proc. CVPR , pp. 178-185
    • Winder, S.1    Hua, G.2    Brown, M.3
  • 87
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • 1, 8
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In Proc. ECCV, 2014.
    • (2014) Proc. ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 88
    • 84959234195 scopus 로고    scopus 로고
    • Exemplar SVMs as visual feature encoders
    • 2
    • J. Zepeda and P. Pérez. Exemplar SVMs as visual feature encoders. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Zepeda, J.1    Pérez, P.2
  • 89
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • 1, 6
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In NIPS, 2014.
    • (2014) NIPS
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.