메뉴 건너뛰기




Volumn 2, Issue 11, 2017, Pages

Immunity against fungi

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85044188677     PISSN: None     EISSN: 23793708     Source Type: Journal    
DOI: 10.1172/jci.insight.93156     Document Type: Review
Times cited : (103)

References (200)
  • 2
    • 0142216110 scopus 로고    scopus 로고
    • Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection
    • Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryotic Cell. 2003;2(5):1053–1060.
    • (2003) Eukaryotic Cell , vol.2 , Issue.5 , pp. 1053-1060
    • Saville, SP1    Lazzell, AL2    Monteagudo, C3    Lopez-Ribot, JL.4
  • 3
    • 84886007876 scopus 로고    scopus 로고
    • Robert Remak (1815-1865): discoverer of the fungal character of dermatophytoses
    • Grzybowski A, Pietrzak K. Robert Remak (1815-1865): discoverer of the fungal character of dermatophytoses. Clin Dermatol. 2013;31(6):802–805.
    • (2013) Clin Dermatol , vol.31 , Issue.6 , pp. 802-805
    • Grzybowski, A1    Pietrzak, K.2
  • 4
    • 84859573451 scopus 로고    scopus 로고
    • Emerging fungal threats to animal, plant and ecosystem health
    • Fisher MC, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484(7393):186–194.
    • (2012) Nature , vol.484 , Issue.7393 , pp. 186-194
    • Fisher, MC1
  • 5
    • 84947441717 scopus 로고    scopus 로고
    • Immune interactions with pathogenic and commensal fungi: a two-way street
    • Underhill DM, Pearlman E. Immune interactions with pathogenic and commensal fungi: a two-way street. Immunity. 2015;43(5):845–858.
    • (2015) Immunity , vol.43 , Issue.5 , pp. 845-858
    • Underhill, DM1    Pearlman, E.2
  • 8
    • 84908502490 scopus 로고    scopus 로고
    • Overview of vertebrate animal models of fungal infection
    • Hohl TM. Overview of vertebrate animal models of fungal infection. J Immunol Methods. 2014;410:100–112.
    • (2014) J Immunol Methods , vol.410 , pp. 100-112
    • Hohl, TM.1
  • 9
    • 84958184224 scopus 로고    scopus 로고
    • Interactions of fungal pathogens with phagocytes
    • Erwig LP, Gow NA. Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol. 2016;14(3):163–176.
    • (2016) Nat Rev Microbiol , vol.14 , Issue.3 , pp. 163-176
    • Erwig, LP1    Gow, NA.2
  • 10
    • 33846573404 scopus 로고    scopus 로고
    • Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor
    • Rappleye CA, Eissenberg LG, Goldman WE. Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proc Natl Acad Sci USA. 2007;104(4):1366–1370.
    • (2007) Proc Natl Acad Sci USA , vol.104 , Issue.4 , pp. 1366-1370
    • Rappleye, CA1    Eissenberg, LG2    Goldman, WE.3
  • 11
    • 84965096452 scopus 로고    scopus 로고
    • The Eng1 β-glucanase enhances histoplasma virulence by reducing β-glucan exposure
    • Garfoot AL, Shen Q, Wüthrich M, Klein BS, Rappleye CA. The Eng1 β-glucanase enhances histoplasma virulence by reducing β-glucan exposure. MBio. 2016;7(2):e01388–e01315.
    • (2016) MBio , vol.7 , Issue.2 , pp. e01388-e01315
    • Garfoot, AL1    Shen, Q2    Wüthrich, M3    Klein, BS4    Rappleye, CA.5
  • 12
    • 69349091586 scopus 로고    scopus 로고
    • Surface hydrophobin prevents immune recognition of airborne fungal spores
    • Aimanianda V, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 2009;460(7259):1117–1121.
    • (2009) Nature , vol.460 , Issue.7259 , pp. 1117-1121
    • Aimanianda, V1
  • 13
    • 81755182989 scopus 로고    scopus 로고
    • Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus
    • Fontaine T, et al. Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog. 2011;7(11):e1002372.
    • (2011) PLoS Pathog , vol.7 , Issue.11 , pp. e1002372
    • Fontaine, T1
  • 14
    • 84883402608 scopus 로고    scopus 로고
    • Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system
    • Gravelat FN, et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog. 2013;9(8):e1003575.
    • (2013) PLoS Pathog , vol.9 , Issue.8 , pp. e1003575
    • Gravelat, FN1
  • 15
    • 33745207594 scopus 로고    scopus 로고
    • Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors
    • Netea MG, et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest. 2006;116(6):1642–1650.
    • (2006) J Clin Invest , vol.116 , Issue.6 , pp. 1642-1650
    • Netea, MG1
  • 16
    • 67650635524 scopus 로고    scopus 로고
    • How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans
    • Doering TL. How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu Rev Microbiol. 2009;63:223–247.
    • (2009) Annu Rev Microbiol , vol.63 , pp. 223-247
    • Doering, TL.1
  • 17
    • 84959211737 scopus 로고    scopus 로고
    • Recent advances in the understanding of the Aspergillus fumigatus cell wall
    • Lee MJ, Sheppard DC. Recent advances in the understanding of the Aspergillus fumigatus cell wall. J Microbiol. 2016;54(3):232–242.
    • (2016) J Microbiol , vol.54 , Issue.3 , pp. 232-242
    • Lee, MJ1    Sheppard, DC.2
  • 18
    • 37349015349 scopus 로고    scopus 로고
    • An integrated model of the recognition of Candida albicans by the innate immune system
    • Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008;6(1):67–78.
    • (2008) Nat Rev Microbiol , vol.6 , Issue.1 , pp. 67-78
    • Netea, MG1    Brown, GD2    Kullberg, BJ3    Gow, NA.4
  • 19
    • 18744372691 scopus 로고    scopus 로고
    • Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response
    • Garlanda C, et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature. 2002;420(6912):182–186.
    • (2002) Nature , vol.420 , Issue.6912 , pp. 182-186
    • Garlanda, C1
  • 20
    • 78650053568 scopus 로고    scopus 로고
    • Role of complement and Fc{gamma} receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus
    • Moalli F, et al. Role of complement and Fc{gamma} receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood. 2010;116(24):5170–5180.
    • (2010) Blood , vol.116 , Issue.24 , pp. 5170-5180
    • Moalli, F1
  • 21
    • 84893065011 scopus 로고    scopus 로고
    • Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation
    • Cunha C, et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N Engl J Med. 2014;370(5):421–432.
    • (2014) N Engl J Med , vol.370 , Issue.5 , pp. 421-432
    • Cunha, C1
  • 22
    • 33846962860 scopus 로고    scopus 로고
    • Dectin-1 is required for beta-glucan recognition and control of fungal infection
    • Taylor PR, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol. 2007;8(1):31–38.
    • (2007) Nat Immunol , vol.8 , Issue.1 , pp. 31-38
    • Taylor, PR1
  • 23
    • 33846963844 scopus 로고    scopus 로고
    • Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans
    • Saijo S, et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol. 2007;8(1):39–46.
    • (2007) Nat Immunol , vol.8 , Issue.1 , pp. 39-46
    • Saijo, S1
  • 24
    • 65249187409 scopus 로고    scopus 로고
    • Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus
    • Werner JL, et al. Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus. J Immunol. 2009;182(8):4938–4946.
    • (2009) J Immunol , vol.182 , Issue.8 , pp. 4938-4946
    • Werner, JL1
  • 25
    • 79955537225 scopus 로고    scopus 로고
    • Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’
    • Goodridge HS, et al. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature. 2011;472(7344):471–475.
    • (2011) Nature , vol.472 , Issue.7344 , pp. 471-475
    • Goodridge, HS1
  • 26
    • 84929946842 scopus 로고    scopus 로고
    • Tyrosine phosphatase SHP-2 mediates C-type lectin receptor-induced activation of the kinase Syk and anti-fungal TH17 responses
    • Deng Z, et al. Tyrosine phosphatase SHP-2 mediates C-type lectin receptor-induced activation of the kinase Syk and anti-fungal TH17 responses. Nat Immunol. 2015;16(6):642–652.
    • (2015) Nat Immunol , vol.16 , Issue.6 , pp. 642-652
    • Deng, Z1
  • 27
    • 84863393017 scopus 로고    scopus 로고
    • Syk kinase-coupled C-type lectin receptors engage protein kinase C-σ to elicit Card9 adaptor-mediated innate immunity
    • Strasser D, et al. Syk kinase-coupled C-type lectin receptors engage protein kinase C-σ to elicit Card9 adaptor-mediated innate immunity. Immunity. 2012;36(1):32–42.
    • (2012) Immunity , vol.36 , Issue.1 , pp. 32-42
    • Strasser, D1
  • 28
    • 85003011978 scopus 로고    scopus 로고
    • Vav proteins are key regulators of Card9 signaling for innate antifungal immunity
    • Roth S, et al. Vav proteins are key regulators of Card9 signaling for innate antifungal immunity. Cell Rep. 2016;17(10):2572–2583.
    • (2016) Cell Rep , vol.17 , Issue.10 , pp. 2572-2583
    • Roth, S1
  • 29
    • 33747036397 scopus 로고    scopus 로고
    • Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity
    • Gross O, et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature. 2006;442(7103):651–656.
    • (2006) Nature , vol.442 , Issue.7103 , pp. 651-656
    • Gross, O1
  • 30
    • 20244363662 scopus 로고    scopus 로고
    • Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins
    • Rogers NC, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity. 2005;22(4):507–517.
    • (2005) Immunity , vol.22 , Issue.4 , pp. 507-517
    • Rogers, NC1
  • 31
    • 58549115247 scopus 로고    scopus 로고
    • Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk
    • Gringhuis SI, et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol. 2009;10(2):203–213.
    • (2009) Nat Immunol , vol.10 , Issue.2 , pp. 203-213
    • Gringhuis, SI1
  • 32
    • 67349271142 scopus 로고    scopus 로고
    • Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence
    • Gross O, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature. 2009;459(7245):433–436.
    • (2009) Nature , vol.459 , Issue.7245 , pp. 433-436
    • Gross, O1
  • 33
    • 84857175933 scopus 로고    scopus 로고
    • Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome
    • Gringhuis SI, et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat Immunol. 2012;13(3):246–254.
    • (2012) Nat Immunol , vol.13 , Issue.3 , pp. 246-254
    • Gringhuis, SI1
  • 34
    • 84926164932 scopus 로고    scopus 로고
    • Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection
    • Karki R, et al. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe. 2015;17(3):357–368.
    • (2015) Cell Host Microbe , vol.17 , Issue.3 , pp. 357-368
    • Karki, R1
  • 35
    • 84863354715 scopus 로고    scopus 로고
    • The autophagy regulator Rubicon is a feedback inhibitor of CARD9-mediated host innate immunity
    • Yang CS, et al. The autophagy regulator Rubicon is a feedback inhibitor of CARD9-mediated host innate immunity. Cell Host Microbe. 2012;11(3):277–289.
    • (2012) Cell Host Microbe , vol.11 , Issue.3 , pp. 277-289
    • Yang, CS1
  • 36
    • 34249026701 scopus 로고    scopus 로고
    • Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17
    • LeibundGut-Landmann S, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8(6):630–638.
    • (2007) Nat Immunol , vol.8 , Issue.6 , pp. 630-638
    • LeibundGut-Landmann, S1
  • 37
    • 84879602096 scopus 로고    scopus 로고
    • Interferon-β production via Dectin-1-Syk-IRF5 signaling in dendritic cells is crucial for immunity to C. albicans
    • del Fresno C, et al. Interferon-β production via Dectin-1-Syk-IRF5 signaling in dendritic cells is crucial for immunity to C. albicans. Immunity. 2013;38(6):1176–1186.
    • (2013) Immunity , vol.38 , Issue.6 , pp. 1176-1186
    • del Fresno, C1
  • 38
    • 84864608067 scopus 로고    scopus 로고
    • Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections
    • Majer O, et al. Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS Pathog. 2012;8(7):e1002811.
    • (2012) PLoS Pathog , vol.8 , Issue.7 , pp. e1002811
    • Majer, O1
  • 39
    • 84908229513 scopus 로고    scopus 로고
    • CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity
    • Jia XM, et al. CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J Exp Med. 2014;211(11):2307–2321.
    • (2014) J Exp Med , vol.211 , Issue.11 , pp. 2307-2321
    • Jia, XM1
  • 40
    • 85010908789 scopus 로고    scopus 로고
    • JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression
    • Zhao X, et al. JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression. Nat Med. 2017;23(3):337–346.
    • (2017) Nat Med , vol.23 , Issue.3 , pp. 337-346
    • Zhao, X1
  • 41
    • 84879532977 scopus 로고    scopus 로고
    • Bruton’s tyrosine kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages
    • Strijbis K, et al. Bruton’s tyrosine kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages. PLoS Pathog. 2013;9(6):e1003446.
    • (2013) PLoS Pathog , vol.9 , Issue.6 , pp. e1003446
    • Strijbis, K1
  • 42
    • 79952750885 scopus 로고    scopus 로고
    • Class IA phosphoinositide 3-kinase β and δ regulate neutrophil oxidase activation in response to Aspergillus fumigatus hyphae
    • Boyle KB, et al. Class IA phosphoinositide 3-kinase β and δ regulate neutrophil oxidase activation in response to Aspergillus fumigatus hyphae. J Immunol. 2011;186(5):2978–2989.
    • (2011) J Immunol , vol.186 , Issue.5 , pp. 2978-2989
    • Boyle, KB1
  • 43
    • 84871674529 scopus 로고    scopus 로고
    • Tracing conidial fate and measuring host cell antifungal activity using a reporter of microbial viability in the lung
    • Jhingran A, et al. Tracing conidial fate and measuring host cell antifungal activity using a reporter of microbial viability in the lung. Cell Rep. 2012;2(6):1762–1773.
    • (2012) Cell Rep , vol.2 , Issue.6 , pp. 1762-1773
    • Jhingran, A1
  • 44
    • 84938818192 scopus 로고    scopus 로고
    • CR3 and Dectin-1 collaborate in macrophage cytokine response through association on lipid rafts and activation of Syk-JNK-AP-1 pathway
    • Huang JH, et al. CR3 and Dectin-1 collaborate in macrophage cytokine response through association on lipid rafts and activation of Syk-JNK-AP-1 pathway. PLoS Pathog. 2015;11(7):e1004985.
    • (2015) PLoS Pathog , vol.11 , Issue.7 , pp. e1004985
    • Huang, JH1
  • 45
    • 83655164570 scopus 로고    scopus 로고
    • The β-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance
    • Li X, et al. The β-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance. Cell Host Microbe. 2011;10(6):603–615.
    • (2011) Cell Host Microbe , vol.10 , Issue.6 , pp. 603-615
    • Li, X1
  • 46
    • 77953289487 scopus 로고    scopus 로고
    • Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans
    • Saijo S, et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity. 2010;32(5):681–691.
    • (2010) Immunity , vol.32 , Issue.5 , pp. 681-691
    • Saijo, S1
  • 47
    • 84882714745 scopus 로고    scopus 로고
    • C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection
    • Zhu LL, et al. C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity. 2013;39(2):324–334.
    • (2013) Immunity , vol.39 , Issue.2 , pp. 324-334
    • Zhu, LL1
  • 48
    • 84876354592 scopus 로고    scopus 로고
    • Identification of distinct ligands for the C-type lectin receptors Mincle and Dectin-2 in the pathogenic fungus Malassezia
    • Ishikawa T, et al. Identification of distinct ligands for the C-type lectin receptors Mincle and Dectin-2 in the pathogenic fungus Malassezia. Cell Host Microbe. 2013;13(4):477–488.
    • (2013) Cell Host Microbe , vol.13 , Issue.4 , pp. 477-488
    • Ishikawa, T1
  • 49
    • 84893367610 scopus 로고    scopus 로고
    • C-type lectin receptors differentially induce Th17 cells and vaccine immunity to the endemic mycosis of North America
    • Wang H, et al. C-type lectin receptors differentially induce Th17 cells and vaccine immunity to the endemic mycosis of North America. J Immunol. 2014;192(3):1107–1119.
    • (2014) J Immunol , vol.192 , Issue.3 , pp. 1107-1119
    • Wang, H1
  • 50
    • 84978741609 scopus 로고    scopus 로고
    • Inhibition of CBLB protects from lethal Candida albicans sepsis
    • Wirnsberger G, et al. Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat Med. 2016;22(8):915–923.
    • (2016) Nat Med , vol.22 , Issue.8 , pp. 915-923
    • Wirnsberger, G1
  • 51
    • 84978650005 scopus 로고    scopus 로고
    • Targeting CBLB as a potential therapeutic approach for disseminated candidiasis
    • Xiao Y, et al. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat Med. 2016;22(8):906–914.
    • (2016) Nat Med , vol.22 , Issue.8 , pp. 906-914
    • Xiao, Y1
  • 52
    • 84982938776 scopus 로고    scopus 로고
    • E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor-mediated antifungal innate immunity
    • Zhu LL, et al. E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor-mediated antifungal innate immunity. J Exp Med. 2016;213(8):1555–1570.
    • (2016) J Exp Med , vol.213 , Issue.8 , pp. 1555-1570
    • Zhu, LL1
  • 53
    • 84944684568 scopus 로고    scopus 로고
    • Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation
    • Cao Z, et al. Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. Immunity. 2015;43(4):715–726.
    • (2015) Immunity , vol.43 , Issue.4 , pp. 715-726
    • Cao, Z1
  • 54
    • 79956066252 scopus 로고    scopus 로고
    • Restoration of pattern recognition receptor costimulation to treat chromoblastomycosis, a chronic fungal infection of the skin
    • Sousa Mda G, et al. Restoration of pattern recognition receptor costimulation to treat chromoblastomycosis, a chronic fungal infection of the skin. Cell Host Microbe. 2011;9(5):436–443.
    • (2011) Cell Host Microbe , vol.9 , Issue.5 , pp. 436-443
    • Sousa Mda, G1
  • 55
    • 84901753820 scopus 로고    scopus 로고
    • Topical application of imiquimod as a treatment for chromoblastomycosis
    • de Sousa Mda G, et al. Topical application of imiquimod as a treatment for chromoblastomycosis. Clin Infect Dis. 2014;58(12):1734–1737.
    • (2014) Clin Infect Dis , vol.58 , Issue.12 , pp. 1734-1737
    • de Sousa Mda, G1
  • 56
    • 84898627160 scopus 로고    scopus 로고
    • Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity
    • Wevers BA, et al. Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity. Cell Host Microbe. 2014;15(4):494–505.
    • (2014) Cell Host Microbe , vol.15 , Issue.4 , pp. 494-505
    • Wevers, BA1
  • 57
    • 85018480316 scopus 로고    scopus 로고
    • The interaction of pneumocystis with the C-type lectin receptor mincle exerts a significant role in host defense against infection
    • Kottom TJ, et al. The interaction of pneumocystis with the C-type lectin receptor mincle exerts a significant role in host defense against infection. J Immunol. 2017;198(9):3515–3525.
    • (2017) J Immunol , vol.198 , Issue.9 , pp. 3515-3525
    • Kottom, TJ1
  • 58
    • 47249089542 scopus 로고    scopus 로고
    • The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans
    • Wells CA, et al. The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol. 2008;180(11):7404–7413.
    • (2008) J Immunol , vol.180 , Issue.11 , pp. 7404-7413
    • Wells, CA1
  • 59
    • 84876848564 scopus 로고    scopus 로고
    • Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1
    • Marakalala MJ, et al. Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLoS Pathog. 2013;9(4):e1003315.
    • (2013) PLoS Pathog , vol.9 , Issue.4 , pp. e1003315
    • Marakalala, MJ1
  • 60
    • 84905403506 scopus 로고    scopus 로고
    • Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal infection
    • Whitney PG, et al. Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal infection. PLoS Pathog. 2014;10(7):e1004276.
    • (2014) PLoS Pathog , vol.10 , Issue.7 , pp. e1004276
    • Whitney, PG1
  • 61
    • 84892479849 scopus 로고    scopus 로고
    • IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells
    • Bär E, Whitney PG, Moor K, Reis e Sousa C, LeibundGut-Landmann S. IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells. Immunity. 2014;40(1):117–127.
    • (2014) Immunity , vol.40 , Issue.1 , pp. 117-127
    • Bär, E1    Whitney, PG2    Moor, K3    Reis e Sousa, C4    LeibundGut-Landmann, S.5
  • 62
    • 84907026947 scopus 로고    scopus 로고
    • PTX3 binds MD-2 and promotes TRIF-dependent immune protection in aspergillosis
    • Bozza S, et al. PTX3 binds MD-2 and promotes TRIF-dependent immune protection in aspergillosis. J Immunol. 2014;193(5):2340–2348.
    • (2014) J Immunol , vol.193 , Issue.5 , pp. 2340-2348
    • Bozza, S1
  • 63
    • 84929843950 scopus 로고    scopus 로고
    • Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus
    • Herbst S, et al. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015;7(3):240–258.
    • (2015) EMBO Mol Med , vol.7 , Issue.3 , pp. 240-258
    • Herbst, S1
  • 64
    • 84888128171 scopus 로고    scopus 로고
    • Primary immunodeficiencies underlying fungal infections
    • Lanternier F, et al. Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr. 2013;25(6):736–747.
    • (2013) Curr Opin Pediatr , vol.25 , Issue.6 , pp. 736-747
    • Lanternier, F1
  • 65
    • 84920646924 scopus 로고    scopus 로고
    • Mendelian genetics of human susceptibility to fungal infection
    • Lionakis MS, Netea MG, Holland SM. Mendelian genetics of human susceptibility to fungal infection. Cold Spring Harb Perspect Med. 2014;4(6):a019638.
    • (2014) Cold Spring Harb Perspect Med , vol.4 , Issue.6 , pp. a019638
    • Lionakis, MS1    Netea, MG2    Holland, SM.3
  • 66
    • 85015808309 scopus 로고    scopus 로고
    • Reactive oxygen species localization programs inflammation to clear microbes of different size
    • Warnatsch A, et al. Reactive oxygen species localization programs inflammation to clear microbes of different size. Immunity. 2017;46(3):421–432.
    • (2017) Immunity , vol.46 , Issue.3 , pp. 421-432
    • Warnatsch, A1
  • 67
    • 84959477976 scopus 로고    scopus 로고
    • Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity
    • Akoumianaki T, et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe. 2016;19(1):79–90.
    • (2016) Cell Host Microbe , vol.19 , Issue.1 , pp. 79-90
    • Akoumianaki, T1
  • 68
    • 85006129670 scopus 로고    scopus 로고
    • Noncanonical fungal autophagy inhibits inflammation in response to IFN-γ via DAPK1
    • Oikonomou V, et al. Noncanonical fungal autophagy inhibits inflammation in response to IFN-γ via DAPK1. Cell Host Microbe. 2016;20(6):744–757.
    • (2016) Cell Host Microbe , vol.20 , Issue.6 , pp. 744-757
    • Oikonomou, V1
  • 69
    • 84885706533 scopus 로고    scopus 로고
    • Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival
    • Subramanian Vignesh K, Landero Figueroa JA, Porollo A, Caruso JA, Deepe GS. Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival. Immunity. 2013;39(4):697–710.
    • (2013) Immunity , vol.39 , Issue.4 , pp. 697-710
    • Subramanian Vignesh, K1    Landero Figueroa, JA2    Porollo, A3    Caruso, JA4    Deepe, GS.5
  • 70
    • 84884740645 scopus 로고    scopus 로고
    • Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum
    • Leal SM, et al. Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum. PLoS Pathog. 2013;9(7):e1003436.
    • (2013) PLoS Pathog , vol.9 , Issue.7 , pp. e1003436
    • Leal, SM1
  • 71
    • 34248188692 scopus 로고    scopus 로고
    • Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion
    • Zarember KA, Sugui JA, Chang YC, Kwon-Chung KJ, Gallin JI. Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion. J Immunol. 2007;178(10):6367–6373.
    • (2007) J Immunol , vol.178 , Issue.10 , pp. 6367-6373
    • Zarember, KA1    Sugui, JA2    Chang, YC3    Kwon-Chung, KJ4    Gallin, JI.5
  • 72
    • 84904910793 scopus 로고    scopus 로고
    • Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects
    • Gazendam RP, et al. Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood. 2014;124(4):590–597.
    • (2014) Blood , vol.124 , Issue.4 , pp. 590-597
    • Gazendam, RP1
  • 73
    • 84957687669 scopus 로고    scopus 로고
    • Human neutrophils use different mechanisms to kill Aspergillus fumigatus conidia and hyphae: evidence from phagocyte defects
    • Gazendam RP, et al. Human neutrophils use different mechanisms to kill Aspergillus fumigatus conidia and hyphae: evidence from phagocyte defects. J Immunol. 2016;196(3):1272–1283.
    • (2016) J Immunol , vol.196 , Issue.3 , pp. 1272-1283
    • Gazendam, RP1
  • 74
    • 84908135568 scopus 로고    scopus 로고
    • Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens
    • Branzk N, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 2014;15(11):1017–1025.
    • (2014) Nat Immunol , vol.15 , Issue.11 , pp. 1017-1025
    • Branzk, N1
  • 75
    • 34247357725 scopus 로고    scopus 로고
    • The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps
    • Jaillon S, et al. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. J Exp Med. 2007;204(4):793–804.
    • (2007) J Exp Med , vol.204 , Issue.4 , pp. 793-804
    • Jaillon, S1
  • 76
    • 73649099522 scopus 로고    scopus 로고
    • Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans
    • Urban CF, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009;5(10):e1000639.
    • (2009) PLoS Pathog , vol.5 , Issue.10 , pp. e1000639
    • Urban, CF1
  • 77
    • 84947459880 scopus 로고    scopus 로고
    • Zinc and manganese chelation by neutrophil S100A8/A9 (calprotectin) limits extracellular Aspergillus fumigatus hyphal growth and corneal infection
    • Clark HL, et al. Zinc and manganese chelation by neutrophil S100A8/A9 (calprotectin) limits extracellular Aspergillus fumigatus hyphal growth and corneal infection. J Immunol. 2016;196(1):336–344.
    • (2016) J Immunol , vol.196 , Issue.1 , pp. 336-344
    • Clark, HL1
  • 78
    • 77954161132 scopus 로고    scopus 로고
    • Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA
    • Bruns S, et al. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog. 2010;6(4):e1000873.
    • (2010) PLoS Pathog , vol.6 , Issue.4 , pp. e1000873
    • Bruns, S1
  • 79
    • 84946100702 scopus 로고    scopus 로고
    • The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps
    • Lee MJ, et al. The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog. 2015;11(10):e1005187.
    • (2015) PLoS Pathog , vol.11 , Issue.10 , pp. e1005187
    • Lee, MJ1
  • 80
    • 84872171847 scopus 로고    scopus 로고
    • Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection
    • Gladiator A, Wangler N, Trautwein-Weidner K, LeibundGut-Landmann S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol. 2013;190(2):521–525.
    • (2013) J Immunol , vol.190 , Issue.2 , pp. 521-525
    • Gladiator, A1    Wangler, N2    Trautwein-Weidner, K3    LeibundGut-Landmann, S.4
  • 81
    • 84907202739 scopus 로고    scopus 로고
    • Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections
    • Conti HR, et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. J Exp Med. 2014;211(10):2075–2084.
    • (2014) J Exp Med , vol.211 , Issue.10 , pp. 2075-2084
    • Conti, HR1
  • 82
    • 84941645578 scopus 로고    scopus 로고
    • Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity
    • Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity. 2015;43(3):515–526.
    • (2015) Immunity , vol.43 , Issue.3 , pp. 515-526
    • Kashem, SW1    Riedl, MS2    Yao, C3    Honda, CN4    Vulchanova, L5    Kaplan, DH.6
  • 83
    • 84994719165 scopus 로고    scopus 로고
    • IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis
    • Conti HR, et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe. 2016;20(5):606–617.
    • (2016) Cell Host Microbe , vol.20 , Issue.5 , pp. 606-617
    • Conti, HR1
  • 84
    • 85002189001 scopus 로고    scopus 로고
    • The kallikrein-kinin system: a novel mediator of IL-17-driven anti-Candida immunity in the kidney
    • Ramani K, et al. The kallikrein-kinin system: a novel mediator of IL-17-driven anti-Candida immunity in the kidney. PLoS Pathog. 2016;12(11):e1005952.
    • (2016) PLoS Pathog , vol.12 , Issue.11 , pp. e1005952
    • Ramani, K1
  • 88
    • 77953223063 scopus 로고    scopus 로고
    • The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice
    • Liu M, et al. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. J Clin Invest. 2010;120(6):1914–1924.
    • (2010) J Clin Invest , vol.120 , Issue.6 , pp. 1914-1924
    • Liu, M1
  • 89
    • 84974601930 scopus 로고    scopus 로고
    • Bicarbonate correction of ketoacidosis alters host-pathogen interactions and alleviates mucormycosis
    • Gebremariam T, et al. Bicarbonate correction of ketoacidosis alters host-pathogen interactions and alleviates mucormycosis. J Clin Invest. 2016;126(6):2280–2294.
    • (2016) J Clin Invest , vol.126 , Issue.6 , pp. 2280-2294
    • Gebremariam, T1
  • 90
    • 84892935987 scopus 로고    scopus 로고
    • CotH3 mediates fungal invasion of host cells during mucormycosis
    • Gebremariam T, et al. CotH3 mediates fungal invasion of host cells during mucormycosis. J Clin Invest. 2014;124(1):237–250.
    • (2014) J Clin Invest , vol.124 , Issue.1 , pp. 237-250
    • Gebremariam, T1
  • 91
    • 33947273030 scopus 로고    scopus 로고
    • Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells
    • Phan QT, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007;5(3):e64.
    • (2007) PLoS Biol , vol.5 , Issue.3 , pp. e64
    • Phan, QT1
  • 92
    • 84964698501 scopus 로고    scopus 로고
    • Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features
    • Modrzewska B, Kurnatowski P. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann Parasitol. 2015;61(1):3–9.
    • (2015) Ann Parasitol , vol.61 , Issue.1 , pp. 3-9
    • Modrzewska, B1    Kurnatowski, P.2
  • 93
    • 84870505993 scopus 로고    scopus 로고
    • NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults
    • Schmidt CS, et al. NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine. 2012;30(52):7594–7600.
    • (2012) Vaccine , vol.30 , Issue.52 , pp. 7594-7600
    • Schmidt, CS1
  • 94
    • 84963537211 scopus 로고    scopus 로고
    • Candidalysin is a fungal peptide toxin critical for mucosal infection
    • Moyes DL, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532(7597):64–68.
    • (2016) Nature , vol.532 , Issue.7597 , pp. 64-68
    • Moyes, DL1
  • 95
    • 84964862371 scopus 로고    scopus 로고
    • FleA expression in Aspergillus fumigatus is recognized by fucosylated structures on mucins and macrophages to prevent lung infection
    • Kerr SC, et al. FleA expression in Aspergillus fumigatus is recognized by fucosylated structures on mucins and macrophages to prevent lung infection. PLoS Pathog. 2016;12(4):e1005555.
    • (2016) PLoS Pathog , vol.12 , Issue.4 , pp. e1005555
    • Kerr, SC1
  • 96
    • 84995489293 scopus 로고    scopus 로고
    • Aspergillus fumigatus CalA binds to integrin α5β1 and mediates host cell invasion
    • Liu H, et al. Aspergillus fumigatus CalA binds to integrin α5β1 and mediates host cell invasion. Nat Microbiol. 2016;2:16211.
    • (2016) Nat Microbiol , vol.2 , pp. 16211
    • Liu, H1
  • 97
    • 84892827750 scopus 로고    scopus 로고
    • Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2
    • Taylor PR, et al. Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat Immunol. 2014;15(2):143–151.
    • (2014) Nat Immunol , vol.15 , Issue.2 , pp. 143-151
    • Taylor, PR1
  • 98
    • 84963973876 scopus 로고    scopus 로고
    • Infection-mediated priming of phagocytes protects against lethal secondary Aspergillus fumigatus challenge
    • Savers A, et al. Infection-mediated priming of phagocytes protects against lethal secondary Aspergillus fumigatus challenge. PLoS One. 2016;11(4):e0153829.
    • (2016) PLoS One , vol.11 , Issue.4 , pp. e0153829
    • Savers, A1
  • 99
    • 84891365225 scopus 로고    scopus 로고
    • Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis
    • Ngo LY, Kasahara S, Kumasaka DK, Knoblaugh SE, Jhingran A, Hohl TM. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J Infect Dis. 2014;209(1):109–119.
    • (2014) J Infect Dis , vol.209 , Issue.1 , pp. 109-119
    • Ngo, LY1    Kasahara, S2    Kumasaka, DK3    Knoblaugh, SE4    Jhingran, A5    Hohl, TM.6
  • 100
    • 84895754889 scopus 로고    scopus 로고
    • Inflammatory monocytes orchestrate innate antifungal immunity in the lung
    • Espinosa V, et al. Inflammatory monocytes orchestrate innate antifungal immunity in the lung. PLoS Pathog. 2014;10(2):e1003940.
    • (2014) PLoS Pathog , vol.10 , Issue.2 , pp. e1003940
    • Espinosa, V1
  • 101
    • 84959176762 scopus 로고    scopus 로고
    • Fungal mimicry of a mammalian aminopeptidase disables innate immunity and promotes pathogenicity
    • Sterkel AK, et al. Fungal mimicry of a mammalian aminopeptidase disables innate immunity and promotes pathogenicity. Cell Host Microbe. 2016;19(3):361–374.
    • (2016) Cell Host Microbe , vol.19 , Issue.3 , pp. 361-374
    • Sterkel, AK1
  • 102
    • 84865119423 scopus 로고    scopus 로고
    • Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes
    • Quintin J, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012;12(2):223–232.
    • (2012) Cell Host Microbe , vol.12 , Issue.2 , pp. 223-232
    • Quintin, J1
  • 103
    • 84907543940 scopus 로고    scopus 로고
    • mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity
    • Cheng SC, et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345(6204):1250684.
    • (2014) Science , vol.345 , Issue.6204 , pp. 1250684
    • Cheng, SC1
  • 104
    • 85002577534 scopus 로고    scopus 로고
    • Immunometabolic pathways in BCG-induced trained immunity
    • Arts RJ, et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep. 2016;17(10):2562–2571.
    • (2016) Cell Rep , vol.17 , Issue.10 , pp. 2562-2571
    • Arts, RJ1
  • 105
    • 84995793039 scopus 로고    scopus 로고
    • β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance
    • e14
    • Novakovic B, et al. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell. 2016;167(5):1354–1368.e14.
    • (2016) Cell , vol.167 , Issue.5 , pp. 1354-1368
    • Novakovic, B1
  • 106
    • 84939262767 scopus 로고    scopus 로고
    • Defective trained immunity in patients with STAT-1-dependent chronic mucocutaneaous candidiasis
    • Ifrim DC, et al. Defective trained immunity in patients with STAT-1-dependent chronic mucocutaneaous candidiasis. Clin Exp Immunol. 2015;181(3):434–440.
    • (2015) Clin Exp Immunol , vol.181 , Issue.3 , pp. 434-440
    • Ifrim, DC1
  • 107
    • 84861168204 scopus 로고    scopus 로고
    • Immunoglobulins in defense, pathogenesis, and therapy of fungal diseases
    • Casadevall A, Pirofski LA. Immunoglobulins in defense, pathogenesis, and therapy of fungal diseases. Cell Host Microbe. 2012;11(5):447–456.
    • (2012) Cell Host Microbe , vol.11 , Issue.5 , pp. 447-456
    • Casadevall, A1    Pirofski, LA.2
  • 108
    • 78650396484 scopus 로고    scopus 로고
    • Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina
    • Rapaka RR, et al. Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina. J Exp Med. 2010;207(13):2907–2919.
    • (2010) J Exp Med , vol.207 , Issue.13 , pp. 2907-2919
    • Rapaka, RR1
  • 109
    • 84883337331 scopus 로고    scopus 로고
    • X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans Infection
    • Szymczak WA, Davis MJ, Lundy SK, Dufaud C, Olszewski M, Pirofski LA. X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans Infection. MBio. 2013;4(4):e00265.
    • (2013) MBio , vol.4 , Issue.4 , pp. e00265
    • Szymczak, WA1    Davis, MJ2    Lundy, SK3    Dufaud, C4    Olszewski, M5    Pirofski, LA.6
  • 110
    • 24344454393 scopus 로고    scopus 로고
    • A novel glyco-conjugate vaccine against fungal pathogens
    • Torosantucci A, et al. A novel glyco-conjugate vaccine against fungal pathogens. J Exp Med. 2005;202(5):597–606.
    • (2005) J Exp Med , vol.202 , Issue.5 , pp. 597-606
    • Torosantucci, A1
  • 111
    • 65449157222 scopus 로고    scopus 로고
    • Protection by anti-beta-glucan antibodies is associated with restricted beta-1,3 glucan binding specificity and inhibition of fungal growth and adherence
    • Torosantucci A, et al. Protection by anti-beta-glucan antibodies is associated with restricted beta-1,3 glucan binding specificity and inhibition of fungal growth and adherence. PLoS One. 2009;4(4):e5392.
    • (2009) PLoS One , vol.4 , Issue.4 , pp. e5392
    • Torosantucci, A1
  • 112
    • 84928501304 scopus 로고    scopus 로고
    • Antibodies generated against Streptococci protect in a mouse model of disseminated aspergillosis
    • Wharton RE, Stefanov EK, King RG, Kearney JF. Antibodies generated against Streptococci protect in a mouse model of disseminated aspergillosis. J Immunol. 2015;194(9):4387–4396.
    • (2015) J Immunol , vol.194 , Issue.9 , pp. 4387-4396
    • Wharton, RE1    Stefanov, EK2    King, RG3    Kearney, JF.4
  • 113
    • 79958817918 scopus 로고    scopus 로고
    • A highly immunogenic recombinant and truncated protein of the secreted aspartic proteases family (rSap2t) of Candida albicans as a mucosal anticandidal vaccine
    • Sandini S, La Valle R, Deaglio S, Malavasi F, Cassone A, De Bernardis F. A highly immunogenic recombinant and truncated protein of the secreted aspartic proteases family (rSap2t) of Candida albicans as a mucosal anticandidal vaccine. FEMS Immunol Med Microbiol. 2011;62(2):215–224.
    • (2011) FEMS Immunol Med Microbiol , vol.62 , Issue.2 , pp. 215-224
    • Sandini, S1    La Valle, R2    Deaglio, S3    Malavasi, F4    Cassone, A5    De Bernardis, F.6
  • 114
    • 33749528392 scopus 로고    scopus 로고
    • Innate immune activation and CD4+ T cell priming during respiratory fungal infection
    • Rivera A, et al. Innate immune activation and CD4+ T cell priming during respiratory fungal infection. Immunity. 2006;25(4):665–675.
    • (2006) Immunity , vol.25 , Issue.4 , pp. 665-675
    • Rivera, A1
  • 115
    • 80051608614 scopus 로고    scopus 로고
    • A TCR transgenic mouse reactive with multiple systemic dimorphic fungi
    • Wüthrich M, et al. A TCR transgenic mouse reactive with multiple systemic dimorphic fungi. J Immunol. 2011;187(3):1421–1431.
    • (2011) J Immunol , vol.187 , Issue.3 , pp. 1421-1431
    • Wüthrich, M1
  • 116
    • 84946023036 scopus 로고    scopus 로고
    • Antigen-specific Th17 cells are primed by distinct and complementary dendritic cell subsets in oropharyngeal candidiasis
    • Trautwein-Weidner K, et al. Antigen-specific Th17 cells are primed by distinct and complementary dendritic cell subsets in oropharyngeal candidiasis. PLoS Pathog. 2015;11(10):e1005164.
    • (2015) PLoS Pathog , vol.11 , Issue.10 , pp. e1005164
    • Trautwein-Weidner, K1
  • 117
    • 84862094444 scopus 로고    scopus 로고
    • A novel Th cell epitope of Candida albicans mediates protection from fungal infection
    • Bär E, et al. A novel Th cell epitope of Candida albicans mediates protection from fungal infection. J Immunol. 2012;188(11):5636–5643.
    • (2012) J Immunol , vol.188 , Issue.11 , pp. 5636-5643
    • Bär, E1
  • 118
    • 84926615323 scopus 로고    scopus 로고
    • Calnexin induces expansion of antigen-specific CD4(+) T cells that confer immunity to fungal ascomycetes via conserved epitopes
    • Wüthrich M, et al. Calnexin induces expansion of antigen-specific CD4(+) T cells that confer immunity to fungal ascomycetes via conserved epitopes. Cell Host Microbe. 2015;17(4):452–465.
    • (2015) Cell Host Microbe , vol.17 , Issue.4 , pp. 452-465
    • Wüthrich, M1
  • 119
    • 85013719052 scopus 로고    scopus 로고
    • Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection
    • Wiesner DL, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11(3):e1004701.
    • (2015) PLoS Pathog , vol.11 , Issue.3 , pp. e1004701
    • Wiesner, DL1
  • 121
    • 71749100858 scopus 로고    scopus 로고
    • Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection
    • Hohl TM, et al. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe. 2009;6(5):470–481.
    • (2009) Cell Host Microbe , vol.6 , Issue.5 , pp. 470-481
    • Hohl, TM1
  • 122
    • 77956527196 scopus 로고    scopus 로고
    • Dynamic interplay among monocyte-derived, dermal, and resident lymph node dendritic cells during the generation of vaccine immunity to fungi
    • Ersland K, Wüthrich M, Klein BS. Dynamic interplay among monocyte-derived, dermal, and resident lymph node dendritic cells during the generation of vaccine immunity to fungi. Cell Host Microbe. 2010;7(6):474–487.
    • (2010) Cell Host Microbe , vol.7 , Issue.6 , pp. 474-487
    • Ersland, K1    Wüthrich, M2    Klein, BS.3
  • 123
    • 84859944388 scopus 로고    scopus 로고
    • Fungi subvert vaccine T cell priming at the respiratory mucosa by preventing chemokine-induced influx of inflammatory monocytes
    • Wüthrich M, Ersland K, Sullivan T, Galles K, Klein BS. Fungi subvert vaccine T cell priming at the respiratory mucosa by preventing chemokine-induced influx of inflammatory monocytes. Immunity. 2012;36(4):680–692.
    • (2012) Immunity , vol.36 , Issue.4 , pp. 680-692
    • Wüthrich, M1    Ersland, K2    Sullivan, T3    Galles, K4    Klein, BS.5
  • 124
    • 79951707725 scopus 로고    scopus 로고
    • Dectin-1 diversifies Aspergillus fumigatus-specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation
    • Rivera A, et al. Dectin-1 diversifies Aspergillus fumigatus-specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation. J Exp Med. 2011;208(2):369–381.
    • (2011) J Exp Med , vol.208 , Issue.2 , pp. 369-381
    • Rivera, A1
  • 125
    • 84878191150 scopus 로고    scopus 로고
    • IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses
    • Schlitzer A, et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity. 2013;38(5):970–983.
    • (2013) Immunity , vol.38 , Issue.5 , pp. 970-983
    • Schlitzer, A1
  • 126
    • 84923000491 scopus 로고    scopus 로고
    • Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation
    • Kashem SW, et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity. 2015;42(2):356–366.
    • (2015) Immunity , vol.42 , Issue.2 , pp. 356-366
    • Kashem, SW1
  • 127
    • 79251491762 scopus 로고    scopus 로고
    • Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice
    • Wüthrich M, et al. Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. J Clin Invest. 2011;121(2):554–568.
    • (2011) J Clin Invest , vol.121 , Issue.2 , pp. 554-568
    • Wüthrich, M1
  • 128
    • 80855157180 scopus 로고    scopus 로고
    • Vaccine immunity to coccidioidomycosis occurs by early activation of three signal pathways of T helper cell response (Th1, Th2, and Th17)
    • Hung CY, Gonzalez A, Wüthrich M, Klein BS, Cole GT. Vaccine immunity to coccidioidomycosis occurs by early activation of three signal pathways of T helper cell response (Th1, Th2, and Th17). Infect Immun. 2011;79(11):4511–4522.
    • (2011) Infect Immun , vol.79 , Issue.11 , pp. 4511-4522
    • Hung, CY1    Gonzalez, A2    Wüthrich, M3    Klein, BS4    Cole, GT.5
  • 129
    • 79952769679 scopus 로고    scopus 로고
    • CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model
    • Pandiyan P, et al. CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity. 2011;34(3):422–434.
    • (2011) Immunity , vol.34 , Issue.3 , pp. 422-434
    • Pandiyan, P1
  • 130
    • 84896056674 scopus 로고    scopus 로고
    • Expansion of Foxp3(+) T-cell populations by Candida albicans enhances both Th17-cell responses and fungal dissemination after intravenous challenge
    • Whibley N, et al. Expansion of Foxp3(+) T-cell populations by Candida albicans enhances both Th17-cell responses and fungal dissemination after intravenous challenge. Eur J Immunol. 2014;44(4):1069–1083.
    • (2014) Eur J Immunol , vol.44 , Issue.4 , pp. 1069-1083
    • Whibley, N1
  • 131
    • 84866182725 scopus 로고    scopus 로고
    • Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis
    • Lionakis MS, et al. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis. PLoS Pathog. 2012;8(8):e1002865.
    • (2012) PLoS Pathog , vol.8 , Issue.8 , pp. e1002865
    • Lionakis, MS1
  • 132
    • 84979021134 scopus 로고    scopus 로고
    • Induction of protective immunity to cryptococcal infection in mice by a heat-killed, chitosan-deficient strain of Cryptococcus neoformans
    • Upadhya R, Lam WC, Maybruck B, Specht CA, Levitz SM, Lodge JK. Induction of protective immunity to cryptococcal infection in mice by a heat-killed, chitosan-deficient strain of Cryptococcus neoformans. MBio. 2016;7(3):e00547.
    • (2016) MBio , vol.7 , Issue.3 , pp. e00547
    • Upadhya, R1    Lam, WC2    Maybruck, B3    Specht, CA4    Levitz, SM5    Lodge, JK.6
  • 133
    • 84904756877 scopus 로고    scopus 로고
    • Eosinophils are recruited in response to chitin exposure and enhance Th2-mediated immune pathology in Aspergillus fumigatus infection
    • O’Dea EM, et al. Eosinophils are recruited in response to chitin exposure and enhance Th2-mediated immune pathology in Aspergillus fumigatus infection. Infect Immun. 2014;82(8):3199–3205.
    • (2014) Infect Immun , vol.82 , Issue.8 , pp. 3199-3205
    • O’Dea, EM1
  • 134
    • 84894284666 scopus 로고    scopus 로고
    • Eosinophil deficiency compromises lung defense against Aspergillus fumigatus
    • Lilly LM, Scopel M, Nelson MP, Burg AR, Dunaway CW, Steele C. Eosinophil deficiency compromises lung defense against Aspergillus fumigatus. Infect Immun. 2014;82(3):1315–1325.
    • (2014) Infect Immun , vol.82 , Issue.3 , pp. 1315-1325
    • Lilly, LM1    Scopel, M2    Nelson, MP3    Burg, AR4    Dunaway, CW5    Steele, C.6
  • 135
    • 85010977551 scopus 로고    scopus 로고
    • Central role of IL-23 and IL-17 producing eosinophils as immunomodulatory effector cells in acute pulmonary aspergillosis and allergic asthma
    • Guerra ES, et al. Central role of IL-23 and IL-17 producing eosinophils as immunomodulatory effector cells in acute pulmonary aspergillosis and allergic asthma. PLoS Pathog. 2017;13(1):e1006175.
    • (2017) PLoS Pathog , vol.13 , Issue.1 , pp. e1006175
    • Guerra, ES1
  • 136
    • 84932174476 scopus 로고    scopus 로고
    • Eosinophils contribute to early clearance of Pneumocystis murina infection
    • Eddens T, et al. Eosinophils contribute to early clearance of Pneumocystis murina infection. J Immunol. 2015;195(1):185–193.
    • (2015) J Immunol , vol.195 , Issue.1 , pp. 185-193
    • Eddens, T1
  • 137
    • 0034128751 scopus 로고    scopus 로고
    • Genetic, biochemical, and clinical features of chronic granulomatous disease
    • Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore). 2000;79(3):170–200.
    • (2000) Medicine (Baltimore) , vol.79 , Issue.3 , pp. 170-200
    • Segal, BH1    Leto, TL2    Gallin, JI3    Malech, HL4    Holland, SM.5
  • 138
    • 0020533077 scopus 로고
    • Biochemical and immunologic analysis of hereditary myeloperoxidase deficiency
    • Nauseef WM, Root RK, Malech HL. Biochemical and immunologic analysis of hereditary myeloperoxidase deficiency. J Clin Invest. 1983;71(5):1297–1307.
    • (1983) J Clin Invest , vol.71 , Issue.5 , pp. 1297-1307
    • Nauseef, WM1    Root, RK2    Malech, HL.3
  • 139
    • 77952311527 scopus 로고    scopus 로고
    • Calcineurin regulates innate antifungal immunity in neutrophils
    • Greenblatt MB, Aliprantis A, Hu B, Glimcher LH. Calcineurin regulates innate antifungal immunity in neutrophils. J Exp Med. 2010;207(5):923–931.
    • (2010) J Exp Med , vol.207 , Issue.5 , pp. 923-931
    • Greenblatt, MB1    Aliprantis, A2    Hu, B3    Glimcher, LH.4
  • 140
    • 84873585627 scopus 로고    scopus 로고
    • Invasive fungal infections in patients with chronic granulomatous disease
    • Henriet S, Verweij PE, Holland SM, Warris A. Invasive fungal infections in patients with chronic granulomatous disease. Adv Exp Med Biol. 2013;764:27–55.
    • (2013) Adv Exp Med Biol , vol.764 , pp. 27-55
    • Henriet, S1    Verweij, PE2    Holland, SM3    Warris, A.4
  • 141
    • 0037149510 scopus 로고    scopus 로고
    • Killing activity of neutrophils is mediated through activation of proteases by K+ flux
    • Reeves EP, et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature. 2002;416(6878):291–297.
    • (2002) Nature , vol.416 , Issue.6878 , pp. 291-297
    • Reeves, EP1
  • 142
    • 84879232444 scopus 로고    scopus 로고
    • Interferon alpha treatment of patients with impaired interferon gamma signaling
    • Bax HI, et al. Interferon alpha treatment of patients with impaired interferon gamma signaling. J Clin Immunol. 2013;33(5):991–1001.
    • (2013) J Clin Immunol , vol.33 , Issue.5 , pp. 991-1001
    • Bax, HI1
  • 143
    • 84865300679 scopus 로고    scopus 로고
    • Adult-onset immunodeficiency in Thailand and Taiwan
    • Browne SK, et al. Adult-onset immunodeficiency in Thailand and Taiwan. N Engl J Med. 2012;367(8):725–734.
    • (2012) N Engl J Med , vol.367 , Issue.8 , pp. 725-734
    • Browne, SK1
  • 144
    • 84875976539 scopus 로고    scopus 로고
    • Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis
    • Rosen LB, et al. Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. J Immunol. 2013;190(8):3959–3966.
    • (2013) J Immunol , vol.190 , Issue.8 , pp. 3959-3966
    • Rosen, LB1
  • 145
    • 84862998056 scopus 로고    scopus 로고
    • Opportunistic infections in patients with pulmonary alveolar proteinosis
    • Punatar AD, Kusne S, Blair JE, Seville MT, Vikram HR. Opportunistic infections in patients with pulmonary alveolar proteinosis. J Infect. 2012;65(2):173–179.
    • (2012) J Infect , vol.65 , Issue.2 , pp. 173-179
    • Punatar, AD1    Kusne, S2    Blair, JE3    Seville, MT4    Vikram, HR.5
  • 146
    • 84965117748 scopus 로고    scopus 로고
    • Role of granulocyte-macrophage colony-stimulating factor signaling in regulating neutrophil antifungal activity and the oxidative burst during respiratory fungal challenge
    • Kasahara S, Jhingran A, Dhingra S, Salem A, Cramer RA, Hohl TM. Role of granulocyte-macrophage colony-stimulating factor signaling in regulating neutrophil antifungal activity and the oxidative burst during respiratory fungal challenge. J Infect Dis. 2016;213(8):1289–1298.
    • (2016) J Infect Dis , vol.213 , Issue.8 , pp. 1289-1298
    • Kasahara, S1    Jhingran, A2    Dhingra, S3    Salem, A4    Cramer, RA5    Hohl, TM.6
  • 147
    • 84872065897 scopus 로고    scopus 로고
    • JAKs and STATs in immunity, immunodeficiency, and cancer
    • O’Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med. 2013;368(2):161–170.
    • (2013) N Engl J Med , vol.368 , Issue.2 , pp. 161-170
    • O’Shea, JJ1    Holland, SM2    Staudt, LM.3
  • 148
    • 84977482520 scopus 로고    scopus 로고
    • Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype
    • Toubiana J, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127(25):3154–3164.
    • (2016) Blood , vol.127 , Issue.25 , pp. 3154-3164
    • Toubiana, J1
  • 149
    • 84956572958 scopus 로고    scopus 로고
    • Endemic mycoses in patients with STAT3-mutated hyper-IgE (Job) syndrome
    • e1
    • Odio CD, et al. Endemic mycoses in patients with STAT3-mutated hyper-IgE (Job) syndrome. J Allergy Clin Immunol. 2015;136(5):1411–3.e1.
    • (2015) J Allergy Clin Immunol , vol.136 , Issue.5 , pp. 1411-1413
    • Odio, CD1
  • 150
    • 84894095710 scopus 로고    scopus 로고
    • GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity
    • Spinner MA, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123(6):809–821.
    • (2014) Blood , vol.123 , Issue.6 , pp. 809-821
    • Spinner, MA1
  • 151
    • 84937713659 scopus 로고    scopus 로고
    • Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis
    • Ling Y, et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med. 2015;212(5):619–631.
    • (2015) J Exp Med , vol.212 , Issue.5 , pp. 619-631
    • Ling, Y1
  • 152
    • 79953284685 scopus 로고    scopus 로고
    • Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity
    • Puel A, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332(6025):65–68.
    • (2011) Science , vol.332 , Issue.6025 , pp. 65-68
    • Puel, A1
  • 153
    • 85100040012 scopus 로고    scopus 로고
    • Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy
    • Ferre EM, et al. Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. JCI Insight. 2016;1(13):e88782.
    • (2016) JCI Insight , vol.1 , Issue.13 , pp. e88782
    • Ferre, EM1
  • 154
    • 84897417058 scopus 로고    scopus 로고
    • Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience
    • Shearer WT, et al. Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol. 2014;133(4):1092–1098.
    • (2014) J Allergy Clin Immunol , vol.133 , Issue.4 , pp. 1092-1098
    • Shearer, WT1
  • 155
    • 84939154723 scopus 로고    scopus 로고
    • IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations
    • Okada S, et al. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science. 2015;349(6248):606–613.
    • (2015) Science , vol.349 , Issue.6248 , pp. 606-613
    • Okada, S1
  • 156
    • 77958450338 scopus 로고    scopus 로고
    • Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity
    • Cunha C, et al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood. 2010;116(24):5394–5402.
    • (2010) Blood , vol.116 , Issue.24 , pp. 5394-5402
    • Cunha, C1
  • 157
    • 85006192489 scopus 로고    scopus 로고
    • Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity
    • Drummond RA, Lionakis MS. Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity. Front Cell Infect Microbiol. 2016;6:39.
    • (2016) Front Cell Infect Microbiol , vol.6 , pp. 39
    • Drummond, RA1    Lionakis, MS.2
  • 158
    • 84938918195 scopus 로고    scopus 로고
    • Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species-induced meningoencephalitis, colitis, or both
    • e2
    • Lanternier F, et al. Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species-induced meningoencephalitis, colitis, or both. J Allergy Clin Immunol. 2015;135(6):1558–68.e2.
    • (2015) J Allergy Clin Immunol , vol.135 , Issue.6 , pp. 1558-1568
    • Lanternier, F1
  • 159
    • 84953220467 scopus 로고    scopus 로고
    • CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system
    • Drummond RA, et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLoS Pathog. 2015;11(12):e1005293.
    • (2015) PLoS Pathog , vol.11 , Issue.12 , pp. e1005293
    • Drummond, RA1
  • 160
    • 84878400790 scopus 로고    scopus 로고
    • Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency
    • Drewniak A, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. 2013;121(13):2385–2392.
    • (2013) Blood , vol.121 , Issue.13 , pp. 2385-2392
    • Drewniak, A1
  • 161
    • 84923842067 scopus 로고    scopus 로고
    • Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection
    • Jhingran A, et al. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLoS Pathog. 2015;11(1):e1004589.
    • (2015) PLoS Pathog , vol.11 , Issue.1 , pp. e1004589
    • Jhingran, A1
  • 162
    • 85071781760 scopus 로고    scopus 로고
    • Extrapulmonary Aspergillus infection in patients with CARD9 deficiency
    • Rieber N, et al. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight. 2016;1(17):e89890.
    • (2016) JCI Insight , vol.1 , Issue.17 , pp. e89890
    • Rieber, N1
  • 163
    • 84923842529 scopus 로고    scopus 로고
    • IL-1α signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge
    • Caffrey AK, et al. IL-1α signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge. PLoS Pathog. 2015;11(1):e1004625.
    • (2015) PLoS Pathog , vol.11 , Issue.1 , pp. e1004625
    • Caffrey, AK1
  • 164
    • 84903971425 scopus 로고    scopus 로고
    • CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy
    • Gavino C, et al. CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin Infect Dis. 2014;59(1):81–84.
    • (2014) Clin Infect Dis , vol.59 , Issue.1 , pp. 81-84
    • Gavino, C1
  • 165
    • 84951320697 scopus 로고    scopus 로고
    • Impaired RASGRF1/ERK-mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians
    • e1
    • Gavino C, et al. Impaired RASGRF1/ERK-mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians. J Allergy Clin Immunol. 2016;137(4):1178–1188.e1.
    • (2016) J Allergy Clin Immunol , vol.137 , Issue.4 , pp. 1178-1188
    • Gavino, C1
  • 167
    • 84901296354 scopus 로고    scopus 로고
    • The mycobiota: interactions between commensal fungi and the host immune system
    • Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol. 2014;14(6):405–416.
    • (2014) Nat Rev Immunol , vol.14 , Issue.6 , pp. 405-416
    • Underhill, DM1    Iliev, ID.2
  • 168
    • 84861964286 scopus 로고    scopus 로고
    • Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis
    • Iliev ID, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336(6086):1314–1317.
    • (2012) Science , vol.336 , Issue.6086 , pp. 1314-1317
    • Iliev, ID1
  • 169
    • 84879414990 scopus 로고    scopus 로고
    • Topographic diversity of fungal and bacterial communities in human skin
    • Findley K, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367–370.
    • (2013) Nature , vol.498 , Issue.7454 , pp. 367-370
    • Findley, K1
  • 170
    • 84897545954 scopus 로고    scopus 로고
    • Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal
    • Dupuy AK, et al. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS ONE. 2014;9(3):e90899.
    • (2014) PLoS ONE , vol.9 , Issue.3 , pp. e90899
    • Dupuy, AK1
  • 171
    • 84929500746 scopus 로고    scopus 로고
    • Characterization of bacterial and fungal microbiome in children with Hirschsprung disease with and without a history of enterocolitis: a multicenter study
    • Frykman PK, et al. Characterization of bacterial and fungal microbiome in children with Hirschsprung disease with and without a history of enterocolitis: a multicenter study. PLoS ONE. 2015;10(4):e0124172.
    • (2015) PLoS ONE , vol.10 , Issue.4 , pp. e0124172
    • Frykman, PK1
  • 172
    • 84927562663 scopus 로고    scopus 로고
    • The lung mycobiome: an emerging field of the human respiratory microbiome
    • Nguyen LD, Viscogliosi E, Delhaes L. The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol. 2015;6:89.
    • (2015) Front Microbiol , vol.6 , pp. 89
    • Nguyen, LD1    Viscogliosi, E2    Delhaes, L.3
  • 173
    • 84936891126 scopus 로고    scopus 로고
    • Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization
    • Fan D, et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med. 2015;21(7):808–814.
    • (2015) Nat Med , vol.21 , Issue.7 , pp. 808-814
    • Fan, D1
  • 174
    • 84868680312 scopus 로고    scopus 로고
    • Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial
    • Hueber W, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61(12):1693–1700.
    • (2012) Gut , vol.61 , Issue.12 , pp. 1693-1700
    • Hueber, W1
  • 175
    • 84954452665 scopus 로고    scopus 로고
    • Inhibition of Dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine
    • Tang C, et al. Inhibition of Dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe. 2015;18(2):183–197.
    • (2015) Cell Host Microbe , vol.18 , Issue.2 , pp. 183-197
    • Tang, C1
  • 176
    • 84958087463 scopus 로고    scopus 로고
    • Fungal microbiota dysbiosis in IBD [published online ahead of print February 3, 2016]
    • Sokol H, et al. Fungal microbiota dysbiosis in IBD [published online ahead of print February 3, 2016]. Gut. https://doi.org/10.1136/gutjnl-2015-310746.
    • Gut
    • Sokol, H1
  • 177
    • 84978897601 scopus 로고    scopus 로고
    • Dectin-3 deficiency promotes colitis development due to impaired antifungal innate immune responses in the gut
    • Wang T, et al. Dectin-3 deficiency promotes colitis development due to impaired antifungal innate immune responses in the gut. PLoS Pathog. 2016;12(6):e1005662.
    • (2016) PLoS Pathog , vol.12 , Issue.6 , pp. e1005662
    • Wang, T1
  • 178
    • 79959216005 scopus 로고    scopus 로고
    • Genetics and pathogenesis of inflammatory bowel disease
    • Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307–317.
    • (2011) Nature , vol.474 , Issue.7351 , pp. 307-317
    • Khor, B1    Gardet, A2    Xavier, RJ.3
  • 179
    • 84883144028 scopus 로고    scopus 로고
    • Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice
    • e3
    • Sokol H, et al. Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice. Gastroenterology. 2013;145(3):591–601.e3.
    • (2013) Gastroenterology , vol.145 , Issue.3 , pp. 591-601
    • Sokol, H1
  • 180
    • 84966526506 scopus 로고    scopus 로고
    • CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands
    • Lamas B, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598–605.
    • (2016) Nat Med , vol.22 , Issue.6 , pp. 598-605
    • Lamas, B1
  • 181
    • 84969983677 scopus 로고    scopus 로고
    • Immunological consequences of intestinal fungal dysbiosis
    • Wheeler ML, et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe. 2016;19(6):865–873.
    • (2016) Cell Host Microbe , vol.19 , Issue.6 , pp. 865-873
    • Wheeler, ML1
  • 183
    • 4544256857 scopus 로고    scopus 로고
    • Role of antibiotics and fungal microbiota in driving pulmonary allergic responses
    • Noverr MC, Noggle RM, Toews GB, Huffnagle GB. Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun. 2004;72(9):4996–5003.
    • (2004) Infect Immun , vol.72 , Issue.9 , pp. 4996-5003
    • Noverr, MC1    Noggle, RM2    Toews, GB3    Huffnagle, GB.4
  • 184
    • 84905018507 scopus 로고    scopus 로고
    • Dectin-1 induces M1 macrophages and prominent expansion of CD8+IL-17+ cells in pulmonary Paracoccidioidomycosis
    • Loures FV, et al. Dectin-1 induces M1 macrophages and prominent expansion of CD8+IL-17+ cells in pulmonary Paracoccidioidomycosis. J Infect Dis. 2014;210(5):762–773.
    • (2014) J Infect Dis , vol.210 , Issue.5 , pp. 762-773
    • Loures, FV1
  • 185
    • 84894245468 scopus 로고    scopus 로고
    • Role of Dectin-2 for host defense against systemic infection with Candida glabrata
    • Ifrim DC, et al. Role of Dectin-2 for host defense against systemic infection with Candida glabrata. Infect Immun. 2014;82(3):1064–1073.
    • (2014) Infect Immun , vol.82 , Issue.3 , pp. 1064-1073
    • Ifrim, DC1
  • 186
    • 84962148521 scopus 로고    scopus 로고
    • The C-type lectin receptor mcl mediates vaccine-induced immunity against infection with Blastomyces dermatitidis
    • Wang H, Li M, Lerksuthirat T, Klein B, Wüthrich M. The C-type lectin receptor mcl mediates vaccine-induced immunity against infection with Blastomyces dermatitidis. Infect Immun. 2015;84(3):635–642.
    • (2015) Infect Immun , vol.84 , Issue.3 , pp. 635-642
    • Wang, H1    Li, M2    Lerksuthirat, T3    Klein, B4    Wüthrich, M.5
  • 187
    • 6344268943 scopus 로고    scopus 로고
    • Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages
    • Serrano-Gómez D, Domínguez-Soto A, Ancochea J, Jimenez-Heffernan JA, Leal JA, Corbí AL. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J Immunol. 2004;173(9):5635–5643.
    • (2004) J Immunol , vol.173 , Issue.9 , pp. 5635-5643
    • Serrano-Gómez, D1    Domínguez-Soto, A2    Ancochea, J3    Jimenez-Heffernan, JA4    Leal, JA5    Corbí, AL.6
  • 188
    • 0037218327 scopus 로고    scopus 로고
    • Normal host defense during systemic candidiasis in mannose receptor-deficient mice
    • Lee SJ, Zheng NY, Clavijo M, Nussenzweig MC. Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect Immun. 2003;71(1):437–445.
    • (2003) Infect Immun , vol.71 , Issue.1 , pp. 437-445
    • Lee, SJ1    Zheng, NY2    Clavijo, M3    Nussenzweig, MC.4
  • 189
    • 0037094116 scopus 로고    scopus 로고
    • The role of Toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis
    • Netea MG, Van Der Graaf CA, Vonk AG, Verschueren I, Van Der Meer JW, Kullberg BJ. The role of Toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis. 2002;185(10):1483–1489.
    • (2002) J Infect Dis , vol.185 , Issue.10 , pp. 1483-1489
    • Netea, MG1    Van Der Graaf, CA2    Vonk, AG3    Verschueren, I4    Van Der Meer, JW5    Kullberg, BJ.6
  • 190
    • 4544298888 scopus 로고    scopus 로고
    • Involvement of CD14, Toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo
    • Yauch LE, Mansour MK, Shoham S, Rottman JB, Levitz SM. Involvement of CD14, Toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun. 2004;72(9):5373–5382.
    • (2004) Infect Immun , vol.72 , Issue.9 , pp. 5373-5382
    • Yauch, LE1    Mansour, MK2    Shoham, S3    Rottman, JB4    Levitz, SM.5
  • 191
    • 0037560071 scopus 로고    scopus 로고
    • Candida albicans phospholipomannan is sensed through Toll-like receptors
    • Jouault T, et al. Candida albicans phospholipomannan is sensed through Toll-like receptors. J Infect Dis. 2003;188(1):165–172.
    • (2003) J Infect Dis , vol.188 , Issue.1 , pp. 165-172
    • Jouault, T1
  • 192
    • 78650351442 scopus 로고    scopus 로고
    • TLR4 recognizes Pseudallescheria boydii conidia and purified rhamnomannans
    • Figueiredo RT, et al. TLR4 recognizes Pseudallescheria boydii conidia and purified rhamnomannans. J Biol Chem. 2010;285(52):40714–40723.
    • (2010) J Biol Chem , vol.285 , Issue.52 , pp. 40714-40723
    • Figueiredo, RT1
  • 193
    • 84907306721 scopus 로고    scopus 로고
    • Aspergillus fumigatus triggers innate immune response via NOD1 signaling in human corneal epithelial cells
    • Zhang Y, Wu J, Xin Z, Wu X. Aspergillus fumigatus triggers innate immune response via NOD1 signaling in human corneal epithelial cells. Exp Eye Res. 2014;127:170–178.
    • (2014) Exp Eye Res , vol.127 , pp. 170-178
    • Zhang, Y1    Wu, J2    Xin, Z3    Wu, X.4
  • 194
    • 84901313667 scopus 로고    scopus 로고
    • Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation
    • Wagener J, et al. Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog. 2014;10(4):e1004050.
    • (2014) PLoS Pathog , vol.10 , Issue.4 , pp. e1004050
    • Wagener, J1
  • 195
    • 84855296038 scopus 로고    scopus 로고
    • A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans
    • Tomalka J, et al. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog. 2011;7(12):e1002379.
    • (2011) PLoS Pathog , vol.7 , Issue.12 , pp. e1002379
    • Tomalka, J1
  • 196
    • 65549154784 scopus 로고    scopus 로고
    • An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans
    • Hise AG, et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. 2009;5(5):487–497.
    • (2009) Cell Host Microbe , vol.5 , Issue.5 , pp. 487-497
    • Hise, AG1
  • 197
    • 0036021109 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner
    • Tada H, et al. Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol Immunol. 2002;46(7):503–512.
    • (2002) Microbiol Immunol , vol.46 , Issue.7 , pp. 503-512
    • Tada, H1
  • 198
    • 63449138494 scopus 로고    scopus 로고
    • Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36
    • Means TK, et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med. 2009;206(3):637–653.
    • (2009) J Exp Med , vol.206 , Issue.3 , pp. 637-653
    • Means, TK1
  • 199
    • 84880308194 scopus 로고    scopus 로고
    • Galectin-3 plays an important role in protection against disseminated candidiasis
    • Linden JR, De Paepe ME, Laforce-Nesbitt SS, Bliss JM. Galectin-3 plays an important role in protection against disseminated candidiasis. Med Mycol. 2013;51(6):641–651.
    • (2013) Med Mycol , vol.51 , Issue.6 , pp. 641-651
    • Linden, JR1    De Paepe, ME2    Laforce-Nesbitt, SS3    Bliss, JM.4
  • 200
    • 0037449795 scopus 로고    scopus 로고
    • Pneumocystis carinii cell wall beta-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism
    • Hahn PY, Evans SE, Kottom TJ, Standing JE, Pagano RE, Limper AH. Pneumocystis carinii cell wall beta-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism. J Biol Chem. 2003;278(3):2043–2050.
    • (2003) J Biol Chem , vol.278 , Issue.3 , pp. 2043-2050
    • Hahn, PY1    Evans, SE2    Kottom, TJ3    Standing, JE4    Pagano, RE5    Limper, AH.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.