-
1
-
-
84871502341
-
Hidden killers: human fungal infections
-
Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4(165):165rv13.
-
(2012)
Sci Transl Med
, vol.4
, Issue.165
, pp. 165rv13
-
-
Brown, GD1
Denning, DW2
Gow, NA3
Levitz, SM4
Netea, MG5
White, TC.6
-
2
-
-
0142216110
-
Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection
-
Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL. Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryotic Cell. 2003;2(5):1053–1060.
-
(2003)
Eukaryotic Cell
, vol.2
, Issue.5
, pp. 1053-1060
-
-
Saville, SP1
Lazzell, AL2
Monteagudo, C3
Lopez-Ribot, JL.4
-
3
-
-
84886007876
-
Robert Remak (1815-1865): discoverer of the fungal character of dermatophytoses
-
Grzybowski A, Pietrzak K. Robert Remak (1815-1865): discoverer of the fungal character of dermatophytoses. Clin Dermatol. 2013;31(6):802–805.
-
(2013)
Clin Dermatol
, vol.31
, Issue.6
, pp. 802-805
-
-
Grzybowski, A1
Pietrzak, K.2
-
4
-
-
84859573451
-
Emerging fungal threats to animal, plant and ecosystem health
-
Fisher MC, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012;484(7393):186–194.
-
(2012)
Nature
, vol.484
, Issue.7393
, pp. 186-194
-
-
Fisher, MC1
-
5
-
-
84947441717
-
Immune interactions with pathogenic and commensal fungi: a two-way street
-
Underhill DM, Pearlman E. Immune interactions with pathogenic and commensal fungi: a two-way street. Immunity. 2015;43(5):845–858.
-
(2015)
Immunity
, vol.43
, Issue.5
, pp. 845-858
-
-
Underhill, DM1
Pearlman, E.2
-
6
-
-
85006699895
-
Allergic fungal airway disease
-
Rick EM, Woolnough K, Pashley CH, Wardlaw AJ. Allergic fungal airway disease. J Investig Allergol Clin Immunol. 2016;26(6):344–354.
-
(2016)
J Investig Allergol Clin Immunol
, vol.26
, Issue.6
, pp. 344-354
-
-
Rick, EM1
Woolnough, K2
Pashley, CH3
Wardlaw, AJ.4
-
8
-
-
84908502490
-
Overview of vertebrate animal models of fungal infection
-
Hohl TM. Overview of vertebrate animal models of fungal infection. J Immunol Methods. 2014;410:100–112.
-
(2014)
J Immunol Methods
, vol.410
, pp. 100-112
-
-
Hohl, TM.1
-
9
-
-
84958184224
-
Interactions of fungal pathogens with phagocytes
-
Erwig LP, Gow NA. Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol. 2016;14(3):163–176.
-
(2016)
Nat Rev Microbiol
, vol.14
, Issue.3
, pp. 163-176
-
-
Erwig, LP1
Gow, NA.2
-
10
-
-
33846573404
-
Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor
-
Rappleye CA, Eissenberg LG, Goldman WE. Histoplasma capsulatum alpha-(1,3)-glucan blocks innate immune recognition by the beta-glucan receptor. Proc Natl Acad Sci USA. 2007;104(4):1366–1370.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, Issue.4
, pp. 1366-1370
-
-
Rappleye, CA1
Eissenberg, LG2
Goldman, WE.3
-
11
-
-
84965096452
-
The Eng1 β-glucanase enhances histoplasma virulence by reducing β-glucan exposure
-
Garfoot AL, Shen Q, Wüthrich M, Klein BS, Rappleye CA. The Eng1 β-glucanase enhances histoplasma virulence by reducing β-glucan exposure. MBio. 2016;7(2):e01388–e01315.
-
(2016)
MBio
, vol.7
, Issue.2
, pp. e01388-e01315
-
-
Garfoot, AL1
Shen, Q2
Wüthrich, M3
Klein, BS4
Rappleye, CA.5
-
12
-
-
69349091586
-
Surface hydrophobin prevents immune recognition of airborne fungal spores
-
Aimanianda V, et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 2009;460(7259):1117–1121.
-
(2009)
Nature
, vol.460
, Issue.7259
, pp. 1117-1121
-
-
Aimanianda, V1
-
13
-
-
81755182989
-
Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus
-
Fontaine T, et al. Galactosaminogalactan, a new immunosuppressive polysaccharide of Aspergillus fumigatus. PLoS Pathog. 2011;7(11):e1002372.
-
(2011)
PLoS Pathog
, vol.7
, Issue.11
, pp. e1002372
-
-
Fontaine, T1
-
14
-
-
84883402608
-
Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system
-
Gravelat FN, et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog. 2013;9(8):e1003575.
-
(2013)
PLoS Pathog
, vol.9
, Issue.8
, pp. e1003575
-
-
Gravelat, FN1
-
15
-
-
33745207594
-
Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors
-
Netea MG, et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J Clin Invest. 2006;116(6):1642–1650.
-
(2006)
J Clin Invest
, vol.116
, Issue.6
, pp. 1642-1650
-
-
Netea, MG1
-
16
-
-
67650635524
-
How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans
-
Doering TL. How sweet it is! Cell wall biogenesis and polysaccharide capsule formation in Cryptococcus neoformans. Annu Rev Microbiol. 2009;63:223–247.
-
(2009)
Annu Rev Microbiol
, vol.63
, pp. 223-247
-
-
Doering, TL.1
-
17
-
-
84959211737
-
Recent advances in the understanding of the Aspergillus fumigatus cell wall
-
Lee MJ, Sheppard DC. Recent advances in the understanding of the Aspergillus fumigatus cell wall. J Microbiol. 2016;54(3):232–242.
-
(2016)
J Microbiol
, vol.54
, Issue.3
, pp. 232-242
-
-
Lee, MJ1
Sheppard, DC.2
-
18
-
-
37349015349
-
An integrated model of the recognition of Candida albicans by the innate immune system
-
Netea MG, Brown GD, Kullberg BJ, Gow NA. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008;6(1):67–78.
-
(2008)
Nat Rev Microbiol
, vol.6
, Issue.1
, pp. 67-78
-
-
Netea, MG1
Brown, GD2
Kullberg, BJ3
Gow, NA.4
-
19
-
-
18744372691
-
Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response
-
Garlanda C, et al. Non-redundant role of the long pentraxin PTX3 in anti-fungal innate immune response. Nature. 2002;420(6912):182–186.
-
(2002)
Nature
, vol.420
, Issue.6912
, pp. 182-186
-
-
Garlanda, C1
-
20
-
-
78650053568
-
Role of complement and Fc{gamma} receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus
-
Moalli F, et al. Role of complement and Fc{gamma} receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood. 2010;116(24):5170–5180.
-
(2010)
Blood
, vol.116
, Issue.24
, pp. 5170-5180
-
-
Moalli, F1
-
21
-
-
84893065011
-
Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation
-
Cunha C, et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N Engl J Med. 2014;370(5):421–432.
-
(2014)
N Engl J Med
, vol.370
, Issue.5
, pp. 421-432
-
-
Cunha, C1
-
22
-
-
33846962860
-
Dectin-1 is required for beta-glucan recognition and control of fungal infection
-
Taylor PR, et al. Dectin-1 is required for beta-glucan recognition and control of fungal infection. Nat Immunol. 2007;8(1):31–38.
-
(2007)
Nat Immunol
, vol.8
, Issue.1
, pp. 31-38
-
-
Taylor, PR1
-
23
-
-
33846963844
-
Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans
-
Saijo S, et al. Dectin-1 is required for host defense against Pneumocystis carinii but not against Candida albicans. Nat Immunol. 2007;8(1):39–46.
-
(2007)
Nat Immunol
, vol.8
, Issue.1
, pp. 39-46
-
-
Saijo, S1
-
24
-
-
65249187409
-
Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus
-
Werner JL, et al. Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus. J Immunol. 2009;182(8):4938–4946.
-
(2009)
J Immunol
, vol.182
, Issue.8
, pp. 4938-4946
-
-
Werner, JL1
-
25
-
-
79955537225
-
Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’
-
Goodridge HS, et al. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature. 2011;472(7344):471–475.
-
(2011)
Nature
, vol.472
, Issue.7344
, pp. 471-475
-
-
Goodridge, HS1
-
26
-
-
84929946842
-
Tyrosine phosphatase SHP-2 mediates C-type lectin receptor-induced activation of the kinase Syk and anti-fungal TH17 responses
-
Deng Z, et al. Tyrosine phosphatase SHP-2 mediates C-type lectin receptor-induced activation of the kinase Syk and anti-fungal TH17 responses. Nat Immunol. 2015;16(6):642–652.
-
(2015)
Nat Immunol
, vol.16
, Issue.6
, pp. 642-652
-
-
Deng, Z1
-
27
-
-
84863393017
-
Syk kinase-coupled C-type lectin receptors engage protein kinase C-σ to elicit Card9 adaptor-mediated innate immunity
-
Strasser D, et al. Syk kinase-coupled C-type lectin receptors engage protein kinase C-σ to elicit Card9 adaptor-mediated innate immunity. Immunity. 2012;36(1):32–42.
-
(2012)
Immunity
, vol.36
, Issue.1
, pp. 32-42
-
-
Strasser, D1
-
28
-
-
85003011978
-
Vav proteins are key regulators of Card9 signaling for innate antifungal immunity
-
Roth S, et al. Vav proteins are key regulators of Card9 signaling for innate antifungal immunity. Cell Rep. 2016;17(10):2572–2583.
-
(2016)
Cell Rep
, vol.17
, Issue.10
, pp. 2572-2583
-
-
Roth, S1
-
29
-
-
33747036397
-
Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity
-
Gross O, et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature. 2006;442(7103):651–656.
-
(2006)
Nature
, vol.442
, Issue.7103
, pp. 651-656
-
-
Gross, O1
-
30
-
-
20244363662
-
Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins
-
Rogers NC, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity. 2005;22(4):507–517.
-
(2005)
Immunity
, vol.22
, Issue.4
, pp. 507-517
-
-
Rogers, NC1
-
31
-
-
58549115247
-
Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk
-
Gringhuis SI, et al. Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol. 2009;10(2):203–213.
-
(2009)
Nat Immunol
, vol.10
, Issue.2
, pp. 203-213
-
-
Gringhuis, SI1
-
32
-
-
67349271142
-
Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence
-
Gross O, et al. Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature. 2009;459(7245):433–436.
-
(2009)
Nature
, vol.459
, Issue.7245
, pp. 433-436
-
-
Gross, O1
-
33
-
-
84857175933
-
Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome
-
Gringhuis SI, et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat Immunol. 2012;13(3):246–254.
-
(2012)
Nat Immunol
, vol.13
, Issue.3
, pp. 246-254
-
-
Gringhuis, SI1
-
34
-
-
84926164932
-
Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection
-
Karki R, et al. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe. 2015;17(3):357–368.
-
(2015)
Cell Host Microbe
, vol.17
, Issue.3
, pp. 357-368
-
-
Karki, R1
-
35
-
-
84863354715
-
The autophagy regulator Rubicon is a feedback inhibitor of CARD9-mediated host innate immunity
-
Yang CS, et al. The autophagy regulator Rubicon is a feedback inhibitor of CARD9-mediated host innate immunity. Cell Host Microbe. 2012;11(3):277–289.
-
(2012)
Cell Host Microbe
, vol.11
, Issue.3
, pp. 277-289
-
-
Yang, CS1
-
36
-
-
34249026701
-
Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17
-
LeibundGut-Landmann S, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8(6):630–638.
-
(2007)
Nat Immunol
, vol.8
, Issue.6
, pp. 630-638
-
-
LeibundGut-Landmann, S1
-
37
-
-
84879602096
-
Interferon-β production via Dectin-1-Syk-IRF5 signaling in dendritic cells is crucial for immunity to C. albicans
-
del Fresno C, et al. Interferon-β production via Dectin-1-Syk-IRF5 signaling in dendritic cells is crucial for immunity to C. albicans. Immunity. 2013;38(6):1176–1186.
-
(2013)
Immunity
, vol.38
, Issue.6
, pp. 1176-1186
-
-
del Fresno, C1
-
38
-
-
84864608067
-
Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections
-
Majer O, et al. Type I interferons promote fatal immunopathology by regulating inflammatory monocytes and neutrophils during Candida infections. PLoS Pathog. 2012;8(7):e1002811.
-
(2012)
PLoS Pathog
, vol.8
, Issue.7
, pp. e1002811
-
-
Majer, O1
-
39
-
-
84908229513
-
CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity
-
Jia XM, et al. CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J Exp Med. 2014;211(11):2307–2321.
-
(2014)
J Exp Med
, vol.211
, Issue.11
, pp. 2307-2321
-
-
Jia, XM1
-
40
-
-
85010908789
-
JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression
-
Zhao X, et al. JNK1 negatively controls antifungal innate immunity by suppressing CD23 expression. Nat Med. 2017;23(3):337–346.
-
(2017)
Nat Med
, vol.23
, Issue.3
, pp. 337-346
-
-
Zhao, X1
-
41
-
-
84879532977
-
Bruton’s tyrosine kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages
-
Strijbis K, et al. Bruton’s tyrosine kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages. PLoS Pathog. 2013;9(6):e1003446.
-
(2013)
PLoS Pathog
, vol.9
, Issue.6
, pp. e1003446
-
-
Strijbis, K1
-
42
-
-
79952750885
-
Class IA phosphoinositide 3-kinase β and δ regulate neutrophil oxidase activation in response to Aspergillus fumigatus hyphae
-
Boyle KB, et al. Class IA phosphoinositide 3-kinase β and δ regulate neutrophil oxidase activation in response to Aspergillus fumigatus hyphae. J Immunol. 2011;186(5):2978–2989.
-
(2011)
J Immunol
, vol.186
, Issue.5
, pp. 2978-2989
-
-
Boyle, KB1
-
43
-
-
84871674529
-
Tracing conidial fate and measuring host cell antifungal activity using a reporter of microbial viability in the lung
-
Jhingran A, et al. Tracing conidial fate and measuring host cell antifungal activity using a reporter of microbial viability in the lung. Cell Rep. 2012;2(6):1762–1773.
-
(2012)
Cell Rep
, vol.2
, Issue.6
, pp. 1762-1773
-
-
Jhingran, A1
-
44
-
-
84938818192
-
CR3 and Dectin-1 collaborate in macrophage cytokine response through association on lipid rafts and activation of Syk-JNK-AP-1 pathway
-
Huang JH, et al. CR3 and Dectin-1 collaborate in macrophage cytokine response through association on lipid rafts and activation of Syk-JNK-AP-1 pathway. PLoS Pathog. 2015;11(7):e1004985.
-
(2015)
PLoS Pathog
, vol.11
, Issue.7
, pp. e1004985
-
-
Huang, JH1
-
45
-
-
83655164570
-
The β-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance
-
Li X, et al. The β-glucan receptor Dectin-1 activates the integrin Mac-1 in neutrophils via Vav protein signaling to promote Candida albicans clearance. Cell Host Microbe. 2011;10(6):603–615.
-
(2011)
Cell Host Microbe
, vol.10
, Issue.6
, pp. 603-615
-
-
Li, X1
-
46
-
-
77953289487
-
Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans
-
Saijo S, et al. Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicans. Immunity. 2010;32(5):681–691.
-
(2010)
Immunity
, vol.32
, Issue.5
, pp. 681-691
-
-
Saijo, S1
-
47
-
-
84882714745
-
C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection
-
Zhu LL, et al. C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity. 2013;39(2):324–334.
-
(2013)
Immunity
, vol.39
, Issue.2
, pp. 324-334
-
-
Zhu, LL1
-
48
-
-
84876354592
-
Identification of distinct ligands for the C-type lectin receptors Mincle and Dectin-2 in the pathogenic fungus Malassezia
-
Ishikawa T, et al. Identification of distinct ligands for the C-type lectin receptors Mincle and Dectin-2 in the pathogenic fungus Malassezia. Cell Host Microbe. 2013;13(4):477–488.
-
(2013)
Cell Host Microbe
, vol.13
, Issue.4
, pp. 477-488
-
-
Ishikawa, T1
-
49
-
-
84893367610
-
C-type lectin receptors differentially induce Th17 cells and vaccine immunity to the endemic mycosis of North America
-
Wang H, et al. C-type lectin receptors differentially induce Th17 cells and vaccine immunity to the endemic mycosis of North America. J Immunol. 2014;192(3):1107–1119.
-
(2014)
J Immunol
, vol.192
, Issue.3
, pp. 1107-1119
-
-
Wang, H1
-
50
-
-
84978741609
-
Inhibition of CBLB protects from lethal Candida albicans sepsis
-
Wirnsberger G, et al. Inhibition of CBLB protects from lethal Candida albicans sepsis. Nat Med. 2016;22(8):915–923.
-
(2016)
Nat Med
, vol.22
, Issue.8
, pp. 915-923
-
-
Wirnsberger, G1
-
51
-
-
84978650005
-
Targeting CBLB as a potential therapeutic approach for disseminated candidiasis
-
Xiao Y, et al. Targeting CBLB as a potential therapeutic approach for disseminated candidiasis. Nat Med. 2016;22(8):906–914.
-
(2016)
Nat Med
, vol.22
, Issue.8
, pp. 906-914
-
-
Xiao, Y1
-
52
-
-
84982938776
-
E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor-mediated antifungal innate immunity
-
Zhu LL, et al. E3 ubiquitin ligase Cbl-b negatively regulates C-type lectin receptor-mediated antifungal innate immunity. J Exp Med. 2016;213(8):1555–1570.
-
(2016)
J Exp Med
, vol.213
, Issue.8
, pp. 1555-1570
-
-
Zhu, LL1
-
53
-
-
84944684568
-
Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation
-
Cao Z, et al. Ubiquitin ligase TRIM62 regulates CARD9-mediated anti-fungal immunity and intestinal inflammation. Immunity. 2015;43(4):715–726.
-
(2015)
Immunity
, vol.43
, Issue.4
, pp. 715-726
-
-
Cao, Z1
-
54
-
-
79956066252
-
Restoration of pattern recognition receptor costimulation to treat chromoblastomycosis, a chronic fungal infection of the skin
-
Sousa Mda G, et al. Restoration of pattern recognition receptor costimulation to treat chromoblastomycosis, a chronic fungal infection of the skin. Cell Host Microbe. 2011;9(5):436–443.
-
(2011)
Cell Host Microbe
, vol.9
, Issue.5
, pp. 436-443
-
-
Sousa Mda, G1
-
55
-
-
84901753820
-
Topical application of imiquimod as a treatment for chromoblastomycosis
-
de Sousa Mda G, et al. Topical application of imiquimod as a treatment for chromoblastomycosis. Clin Infect Dis. 2014;58(12):1734–1737.
-
(2014)
Clin Infect Dis
, vol.58
, Issue.12
, pp. 1734-1737
-
-
de Sousa Mda, G1
-
56
-
-
84898627160
-
Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity
-
Wevers BA, et al. Fungal engagement of the C-type lectin mincle suppresses dectin-1-induced antifungal immunity. Cell Host Microbe. 2014;15(4):494–505.
-
(2014)
Cell Host Microbe
, vol.15
, Issue.4
, pp. 494-505
-
-
Wevers, BA1
-
57
-
-
85018480316
-
The interaction of pneumocystis with the C-type lectin receptor mincle exerts a significant role in host defense against infection
-
Kottom TJ, et al. The interaction of pneumocystis with the C-type lectin receptor mincle exerts a significant role in host defense against infection. J Immunol. 2017;198(9):3515–3525.
-
(2017)
J Immunol
, vol.198
, Issue.9
, pp. 3515-3525
-
-
Kottom, TJ1
-
58
-
-
47249089542
-
The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans
-
Wells CA, et al. The macrophage-inducible C-type lectin, mincle, is an essential component of the innate immune response to Candida albicans. J Immunol. 2008;180(11):7404–7413.
-
(2008)
J Immunol
, vol.180
, Issue.11
, pp. 7404-7413
-
-
Wells, CA1
-
59
-
-
84876848564
-
Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1
-
Marakalala MJ, et al. Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1. PLoS Pathog. 2013;9(4):e1003315.
-
(2013)
PLoS Pathog
, vol.9
, Issue.4
, pp. e1003315
-
-
Marakalala, MJ1
-
60
-
-
84905403506
-
Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal infection
-
Whitney PG, et al. Syk signaling in dendritic cells orchestrates innate resistance to systemic fungal infection. PLoS Pathog. 2014;10(7):e1004276.
-
(2014)
PLoS Pathog
, vol.10
, Issue.7
, pp. e1004276
-
-
Whitney, PG1
-
61
-
-
84892479849
-
IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells
-
Bär E, Whitney PG, Moor K, Reis e Sousa C, LeibundGut-Landmann S. IL-17 regulates systemic fungal immunity by controlling the functional competence of NK cells. Immunity. 2014;40(1):117–127.
-
(2014)
Immunity
, vol.40
, Issue.1
, pp. 117-127
-
-
Bär, E1
Whitney, PG2
Moor, K3
Reis e Sousa, C4
LeibundGut-Landmann, S.5
-
62
-
-
84907026947
-
PTX3 binds MD-2 and promotes TRIF-dependent immune protection in aspergillosis
-
Bozza S, et al. PTX3 binds MD-2 and promotes TRIF-dependent immune protection in aspergillosis. J Immunol. 2014;193(5):2340–2348.
-
(2014)
J Immunol
, vol.193
, Issue.5
, pp. 2340-2348
-
-
Bozza, S1
-
63
-
-
84929843950
-
Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus
-
Herbst S, et al. Phagocytosis-dependent activation of a TLR9-BTK-calcineurin-NFAT pathway co-ordinates innate immunity to Aspergillus fumigatus. EMBO Mol Med. 2015;7(3):240–258.
-
(2015)
EMBO Mol Med
, vol.7
, Issue.3
, pp. 240-258
-
-
Herbst, S1
-
64
-
-
84888128171
-
Primary immunodeficiencies underlying fungal infections
-
Lanternier F, et al. Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr. 2013;25(6):736–747.
-
(2013)
Curr Opin Pediatr
, vol.25
, Issue.6
, pp. 736-747
-
-
Lanternier, F1
-
65
-
-
84920646924
-
Mendelian genetics of human susceptibility to fungal infection
-
Lionakis MS, Netea MG, Holland SM. Mendelian genetics of human susceptibility to fungal infection. Cold Spring Harb Perspect Med. 2014;4(6):a019638.
-
(2014)
Cold Spring Harb Perspect Med
, vol.4
, Issue.6
, pp. a019638
-
-
Lionakis, MS1
Netea, MG2
Holland, SM.3
-
66
-
-
85015808309
-
Reactive oxygen species localization programs inflammation to clear microbes of different size
-
Warnatsch A, et al. Reactive oxygen species localization programs inflammation to clear microbes of different size. Immunity. 2017;46(3):421–432.
-
(2017)
Immunity
, vol.46
, Issue.3
, pp. 421-432
-
-
Warnatsch, A1
-
67
-
-
84959477976
-
Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity
-
Akoumianaki T, et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe. 2016;19(1):79–90.
-
(2016)
Cell Host Microbe
, vol.19
, Issue.1
, pp. 79-90
-
-
Akoumianaki, T1
-
68
-
-
85006129670
-
Noncanonical fungal autophagy inhibits inflammation in response to IFN-γ via DAPK1
-
Oikonomou V, et al. Noncanonical fungal autophagy inhibits inflammation in response to IFN-γ via DAPK1. Cell Host Microbe. 2016;20(6):744–757.
-
(2016)
Cell Host Microbe
, vol.20
, Issue.6
, pp. 744-757
-
-
Oikonomou, V1
-
69
-
-
84885706533
-
Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival
-
Subramanian Vignesh K, Landero Figueroa JA, Porollo A, Caruso JA, Deepe GS. Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival. Immunity. 2013;39(4):697–710.
-
(2013)
Immunity
, vol.39
, Issue.4
, pp. 697-710
-
-
Subramanian Vignesh, K1
Landero Figueroa, JA2
Porollo, A3
Caruso, JA4
Deepe, GS.5
-
70
-
-
84884740645
-
Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum
-
Leal SM, et al. Targeting iron acquisition blocks infection with the fungal pathogens Aspergillus fumigatus and Fusarium oxysporum. PLoS Pathog. 2013;9(7):e1003436.
-
(2013)
PLoS Pathog
, vol.9
, Issue.7
, pp. e1003436
-
-
Leal, SM1
-
71
-
-
34248188692
-
Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion
-
Zarember KA, Sugui JA, Chang YC, Kwon-Chung KJ, Gallin JI. Human polymorphonuclear leukocytes inhibit Aspergillus fumigatus conidial growth by lactoferrin-mediated iron depletion. J Immunol. 2007;178(10):6367–6373.
-
(2007)
J Immunol
, vol.178
, Issue.10
, pp. 6367-6373
-
-
Zarember, KA1
Sugui, JA2
Chang, YC3
Kwon-Chung, KJ4
Gallin, JI.5
-
72
-
-
84904910793
-
Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects
-
Gazendam RP, et al. Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood. 2014;124(4):590–597.
-
(2014)
Blood
, vol.124
, Issue.4
, pp. 590-597
-
-
Gazendam, RP1
-
73
-
-
84957687669
-
Human neutrophils use different mechanisms to kill Aspergillus fumigatus conidia and hyphae: evidence from phagocyte defects
-
Gazendam RP, et al. Human neutrophils use different mechanisms to kill Aspergillus fumigatus conidia and hyphae: evidence from phagocyte defects. J Immunol. 2016;196(3):1272–1283.
-
(2016)
J Immunol
, vol.196
, Issue.3
, pp. 1272-1283
-
-
Gazendam, RP1
-
74
-
-
84908135568
-
Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens
-
Branzk N, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol. 2014;15(11):1017–1025.
-
(2014)
Nat Immunol
, vol.15
, Issue.11
, pp. 1017-1025
-
-
Branzk, N1
-
75
-
-
34247357725
-
The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps
-
Jaillon S, et al. The humoral pattern recognition receptor PTX3 is stored in neutrophil granules and localizes in extracellular traps. J Exp Med. 2007;204(4):793–804.
-
(2007)
J Exp Med
, vol.204
, Issue.4
, pp. 793-804
-
-
Jaillon, S1
-
76
-
-
73649099522
-
Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans
-
Urban CF, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009;5(10):e1000639.
-
(2009)
PLoS Pathog
, vol.5
, Issue.10
, pp. e1000639
-
-
Urban, CF1
-
77
-
-
84947459880
-
Zinc and manganese chelation by neutrophil S100A8/A9 (calprotectin) limits extracellular Aspergillus fumigatus hyphal growth and corneal infection
-
Clark HL, et al. Zinc and manganese chelation by neutrophil S100A8/A9 (calprotectin) limits extracellular Aspergillus fumigatus hyphal growth and corneal infection. J Immunol. 2016;196(1):336–344.
-
(2016)
J Immunol
, vol.196
, Issue.1
, pp. 336-344
-
-
Clark, HL1
-
78
-
-
77954161132
-
Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA
-
Bruns S, et al. Production of extracellular traps against Aspergillus fumigatus in vitro and in infected lung tissue is dependent on invading neutrophils and influenced by hydrophobin RodA. PLoS Pathog. 2010;6(4):e1000873.
-
(2010)
PLoS Pathog
, vol.6
, Issue.4
, pp. e1000873
-
-
Bruns, S1
-
79
-
-
84946100702
-
The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps
-
Lee MJ, et al. The fungal exopolysaccharide galactosaminogalactan mediates virulence by enhancing resistance to neutrophil extracellular traps. PLoS Pathog. 2015;11(10):e1005187.
-
(2015)
PLoS Pathog
, vol.11
, Issue.10
, pp. e1005187
-
-
Lee, MJ1
-
80
-
-
84872171847
-
Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection
-
Gladiator A, Wangler N, Trautwein-Weidner K, LeibundGut-Landmann S. Cutting edge: IL-17-secreting innate lymphoid cells are essential for host defense against fungal infection. J Immunol. 2013;190(2):521–525.
-
(2013)
J Immunol
, vol.190
, Issue.2
, pp. 521-525
-
-
Gladiator, A1
Wangler, N2
Trautwein-Weidner, K3
LeibundGut-Landmann, S.4
-
81
-
-
84907202739
-
Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections
-
Conti HR, et al. Oral-resident natural Th17 cells and γδ T cells control opportunistic Candida albicans infections. J Exp Med. 2014;211(10):2075–2084.
-
(2014)
J Exp Med
, vol.211
, Issue.10
, pp. 2075-2084
-
-
Conti, HR1
-
82
-
-
84941645578
-
Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity
-
Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. Nociceptive sensory fibers drive interleukin-23 production from CD301b+ dermal dendritic cells and drive protective cutaneous immunity. Immunity. 2015;43(3):515–526.
-
(2015)
Immunity
, vol.43
, Issue.3
, pp. 515-526
-
-
Kashem, SW1
Riedl, MS2
Yao, C3
Honda, CN4
Vulchanova, L5
Kaplan, DH.6
-
83
-
-
84994719165
-
IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis
-
Conti HR, et al. IL-17 receptor signaling in oral epithelial cells is critical for protection against oropharyngeal candidiasis. Cell Host Microbe. 2016;20(5):606–617.
-
(2016)
Cell Host Microbe
, vol.20
, Issue.5
, pp. 606-617
-
-
Conti, HR1
-
84
-
-
85002189001
-
The kallikrein-kinin system: a novel mediator of IL-17-driven anti-Candida immunity in the kidney
-
Ramani K, et al. The kallikrein-kinin system: a novel mediator of IL-17-driven anti-Candida immunity in the kidney. PLoS Pathog. 2016;12(11):e1005952.
-
(2016)
PLoS Pathog
, vol.12
, Issue.11
, pp. e1005952
-
-
Ramani, K1
-
85
-
-
84894270649
-
Role of neutrophils in IL-17-dependent immunity to mucosal candidiasis
-
Huppler AR, Conti HR, Hernández-Santos N, Darville T, Biswas PS, Gaffen SL. Role of neutrophils in IL-17-dependent immunity to mucosal candidiasis. J Immunol. 2014;192(4):1745–1752.
-
(2014)
J Immunol
, vol.192
, Issue.4
, pp. 1745-1752
-
-
Huppler, AR1
Conti, HR2
Hernández-Santos, N3
Darville, T4
Biswas, PS5
Gaffen, SL.6
-
86
-
-
84922759318
-
IL-17-mediated antifungal defense in the oral mucosa is independent of neutrophils
-
Trautwein-Weidner K, Gladiator A, Nur S, Diethelm P, LeibundGut-Landmann S. IL-17-mediated antifungal defense in the oral mucosa is independent of neutrophils. Mucosal Immunol. 2015;8(2):221–231.
-
(2015)
Mucosal Immunol
, vol.8
, Issue.2
, pp. 221-231
-
-
Trautwein-Weidner, K1
Gladiator, A2
Nur, S3
Diethelm, P4
LeibundGut-Landmann, S.5
-
87
-
-
84989936668
-
IL-1 coordinates the neutrophil response to C. albicans in the oral mucosa
-
Altmeier S, Toska A, Sparber F, Teijeira A, Halin C, LeibundGut-Landmann S. IL-1 coordinates the neutrophil response to C. albicans in the oral mucosa. PLoS Pathog. 2016;12(9):e1005882.
-
(2016)
PLoS Pathog
, vol.12
, Issue.9
, pp. e1005882
-
-
Altmeier, S1
Toska, A2
Sparber, F3
Teijeira, A4
Halin, C5
LeibundGut-Landmann, S.6
-
88
-
-
77953223063
-
The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice
-
Liu M, et al. The endothelial cell receptor GRP78 is required for mucormycosis pathogenesis in diabetic mice. J Clin Invest. 2010;120(6):1914–1924.
-
(2010)
J Clin Invest
, vol.120
, Issue.6
, pp. 1914-1924
-
-
Liu, M1
-
89
-
-
84974601930
-
Bicarbonate correction of ketoacidosis alters host-pathogen interactions and alleviates mucormycosis
-
Gebremariam T, et al. Bicarbonate correction of ketoacidosis alters host-pathogen interactions and alleviates mucormycosis. J Clin Invest. 2016;126(6):2280–2294.
-
(2016)
J Clin Invest
, vol.126
, Issue.6
, pp. 2280-2294
-
-
Gebremariam, T1
-
90
-
-
84892935987
-
CotH3 mediates fungal invasion of host cells during mucormycosis
-
Gebremariam T, et al. CotH3 mediates fungal invasion of host cells during mucormycosis. J Clin Invest. 2014;124(1):237–250.
-
(2014)
J Clin Invest
, vol.124
, Issue.1
, pp. 237-250
-
-
Gebremariam, T1
-
91
-
-
33947273030
-
Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells
-
Phan QT, et al. Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007;5(3):e64.
-
(2007)
PLoS Biol
, vol.5
, Issue.3
, pp. e64
-
-
Phan, QT1
-
92
-
-
84964698501
-
Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features
-
Modrzewska B, Kurnatowski P. Adherence of Candida sp. to host tissues and cells as one of its pathogenicity features. Ann Parasitol. 2015;61(1):3–9.
-
(2015)
Ann Parasitol
, vol.61
, Issue.1
, pp. 3-9
-
-
Modrzewska, B1
Kurnatowski, P.2
-
93
-
-
84870505993
-
NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults
-
Schmidt CS, et al. NDV-3, a recombinant alum-adjuvanted vaccine for Candida and Staphylococcus aureus, is safe and immunogenic in healthy adults. Vaccine. 2012;30(52):7594–7600.
-
(2012)
Vaccine
, vol.30
, Issue.52
, pp. 7594-7600
-
-
Schmidt, CS1
-
94
-
-
84963537211
-
Candidalysin is a fungal peptide toxin critical for mucosal infection
-
Moyes DL, et al. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature. 2016;532(7597):64–68.
-
(2016)
Nature
, vol.532
, Issue.7597
, pp. 64-68
-
-
Moyes, DL1
-
95
-
-
84964862371
-
FleA expression in Aspergillus fumigatus is recognized by fucosylated structures on mucins and macrophages to prevent lung infection
-
Kerr SC, et al. FleA expression in Aspergillus fumigatus is recognized by fucosylated structures on mucins and macrophages to prevent lung infection. PLoS Pathog. 2016;12(4):e1005555.
-
(2016)
PLoS Pathog
, vol.12
, Issue.4
, pp. e1005555
-
-
Kerr, SC1
-
96
-
-
84995489293
-
Aspergillus fumigatus CalA binds to integrin α5β1 and mediates host cell invasion
-
Liu H, et al. Aspergillus fumigatus CalA binds to integrin α5β1 and mediates host cell invasion. Nat Microbiol. 2016;2:16211.
-
(2016)
Nat Microbiol
, vol.2
, pp. 16211
-
-
Liu, H1
-
97
-
-
84892827750
-
Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2
-
Taylor PR, et al. Activation of neutrophils by autocrine IL-17A-IL-17RC interactions during fungal infection is regulated by IL-6, IL-23, RORγt and dectin-2. Nat Immunol. 2014;15(2):143–151.
-
(2014)
Nat Immunol
, vol.15
, Issue.2
, pp. 143-151
-
-
Taylor, PR1
-
98
-
-
84963973876
-
Infection-mediated priming of phagocytes protects against lethal secondary Aspergillus fumigatus challenge
-
Savers A, et al. Infection-mediated priming of phagocytes protects against lethal secondary Aspergillus fumigatus challenge. PLoS One. 2016;11(4):e0153829.
-
(2016)
PLoS One
, vol.11
, Issue.4
, pp. e0153829
-
-
Savers, A1
-
99
-
-
84891365225
-
Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis
-
Ngo LY, Kasahara S, Kumasaka DK, Knoblaugh SE, Jhingran A, Hohl TM. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J Infect Dis. 2014;209(1):109–119.
-
(2014)
J Infect Dis
, vol.209
, Issue.1
, pp. 109-119
-
-
Ngo, LY1
Kasahara, S2
Kumasaka, DK3
Knoblaugh, SE4
Jhingran, A5
Hohl, TM.6
-
100
-
-
84895754889
-
Inflammatory monocytes orchestrate innate antifungal immunity in the lung
-
Espinosa V, et al. Inflammatory monocytes orchestrate innate antifungal immunity in the lung. PLoS Pathog. 2014;10(2):e1003940.
-
(2014)
PLoS Pathog
, vol.10
, Issue.2
, pp. e1003940
-
-
Espinosa, V1
-
101
-
-
84959176762
-
Fungal mimicry of a mammalian aminopeptidase disables innate immunity and promotes pathogenicity
-
Sterkel AK, et al. Fungal mimicry of a mammalian aminopeptidase disables innate immunity and promotes pathogenicity. Cell Host Microbe. 2016;19(3):361–374.
-
(2016)
Cell Host Microbe
, vol.19
, Issue.3
, pp. 361-374
-
-
Sterkel, AK1
-
102
-
-
84865119423
-
Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes
-
Quintin J, et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe. 2012;12(2):223–232.
-
(2012)
Cell Host Microbe
, vol.12
, Issue.2
, pp. 223-232
-
-
Quintin, J1
-
103
-
-
84907543940
-
mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity
-
Cheng SC, et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science. 2014;345(6204):1250684.
-
(2014)
Science
, vol.345
, Issue.6204
, pp. 1250684
-
-
Cheng, SC1
-
104
-
-
85002577534
-
Immunometabolic pathways in BCG-induced trained immunity
-
Arts RJ, et al. Immunometabolic pathways in BCG-induced trained immunity. Cell Rep. 2016;17(10):2562–2571.
-
(2016)
Cell Rep
, vol.17
, Issue.10
, pp. 2562-2571
-
-
Arts, RJ1
-
105
-
-
84995793039
-
β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance
-
e14
-
Novakovic B, et al. β-Glucan reverses the epigenetic state of LPS-induced immunological tolerance. Cell. 2016;167(5):1354–1368.e14.
-
(2016)
Cell
, vol.167
, Issue.5
, pp. 1354-1368
-
-
Novakovic, B1
-
106
-
-
84939262767
-
Defective trained immunity in patients with STAT-1-dependent chronic mucocutaneaous candidiasis
-
Ifrim DC, et al. Defective trained immunity in patients with STAT-1-dependent chronic mucocutaneaous candidiasis. Clin Exp Immunol. 2015;181(3):434–440.
-
(2015)
Clin Exp Immunol
, vol.181
, Issue.3
, pp. 434-440
-
-
Ifrim, DC1
-
107
-
-
84861168204
-
Immunoglobulins in defense, pathogenesis, and therapy of fungal diseases
-
Casadevall A, Pirofski LA. Immunoglobulins in defense, pathogenesis, and therapy of fungal diseases. Cell Host Microbe. 2012;11(5):447–456.
-
(2012)
Cell Host Microbe
, vol.11
, Issue.5
, pp. 447-456
-
-
Casadevall, A1
Pirofski, LA.2
-
108
-
-
78650396484
-
Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina
-
Rapaka RR, et al. Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus Pneumocystis murina. J Exp Med. 2010;207(13):2907–2919.
-
(2010)
J Exp Med
, vol.207
, Issue.13
, pp. 2907-2919
-
-
Rapaka, RR1
-
109
-
-
84883337331
-
X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans Infection
-
Szymczak WA, Davis MJ, Lundy SK, Dufaud C, Olszewski M, Pirofski LA. X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans Infection. MBio. 2013;4(4):e00265.
-
(2013)
MBio
, vol.4
, Issue.4
, pp. e00265
-
-
Szymczak, WA1
Davis, MJ2
Lundy, SK3
Dufaud, C4
Olszewski, M5
Pirofski, LA.6
-
110
-
-
24344454393
-
A novel glyco-conjugate vaccine against fungal pathogens
-
Torosantucci A, et al. A novel glyco-conjugate vaccine against fungal pathogens. J Exp Med. 2005;202(5):597–606.
-
(2005)
J Exp Med
, vol.202
, Issue.5
, pp. 597-606
-
-
Torosantucci, A1
-
111
-
-
65449157222
-
Protection by anti-beta-glucan antibodies is associated with restricted beta-1,3 glucan binding specificity and inhibition of fungal growth and adherence
-
Torosantucci A, et al. Protection by anti-beta-glucan antibodies is associated with restricted beta-1,3 glucan binding specificity and inhibition of fungal growth and adherence. PLoS One. 2009;4(4):e5392.
-
(2009)
PLoS One
, vol.4
, Issue.4
, pp. e5392
-
-
Torosantucci, A1
-
112
-
-
84928501304
-
Antibodies generated against Streptococci protect in a mouse model of disseminated aspergillosis
-
Wharton RE, Stefanov EK, King RG, Kearney JF. Antibodies generated against Streptococci protect in a mouse model of disseminated aspergillosis. J Immunol. 2015;194(9):4387–4396.
-
(2015)
J Immunol
, vol.194
, Issue.9
, pp. 4387-4396
-
-
Wharton, RE1
Stefanov, EK2
King, RG3
Kearney, JF.4
-
113
-
-
79958817918
-
A highly immunogenic recombinant and truncated protein of the secreted aspartic proteases family (rSap2t) of Candida albicans as a mucosal anticandidal vaccine
-
Sandini S, La Valle R, Deaglio S, Malavasi F, Cassone A, De Bernardis F. A highly immunogenic recombinant and truncated protein of the secreted aspartic proteases family (rSap2t) of Candida albicans as a mucosal anticandidal vaccine. FEMS Immunol Med Microbiol. 2011;62(2):215–224.
-
(2011)
FEMS Immunol Med Microbiol
, vol.62
, Issue.2
, pp. 215-224
-
-
Sandini, S1
La Valle, R2
Deaglio, S3
Malavasi, F4
Cassone, A5
De Bernardis, F.6
-
114
-
-
33749528392
-
Innate immune activation and CD4+ T cell priming during respiratory fungal infection
-
Rivera A, et al. Innate immune activation and CD4+ T cell priming during respiratory fungal infection. Immunity. 2006;25(4):665–675.
-
(2006)
Immunity
, vol.25
, Issue.4
, pp. 665-675
-
-
Rivera, A1
-
115
-
-
80051608614
-
A TCR transgenic mouse reactive with multiple systemic dimorphic fungi
-
Wüthrich M, et al. A TCR transgenic mouse reactive with multiple systemic dimorphic fungi. J Immunol. 2011;187(3):1421–1431.
-
(2011)
J Immunol
, vol.187
, Issue.3
, pp. 1421-1431
-
-
Wüthrich, M1
-
116
-
-
84946023036
-
Antigen-specific Th17 cells are primed by distinct and complementary dendritic cell subsets in oropharyngeal candidiasis
-
Trautwein-Weidner K, et al. Antigen-specific Th17 cells are primed by distinct and complementary dendritic cell subsets in oropharyngeal candidiasis. PLoS Pathog. 2015;11(10):e1005164.
-
(2015)
PLoS Pathog
, vol.11
, Issue.10
, pp. e1005164
-
-
Trautwein-Weidner, K1
-
117
-
-
84862094444
-
A novel Th cell epitope of Candida albicans mediates protection from fungal infection
-
Bär E, et al. A novel Th cell epitope of Candida albicans mediates protection from fungal infection. J Immunol. 2012;188(11):5636–5643.
-
(2012)
J Immunol
, vol.188
, Issue.11
, pp. 5636-5643
-
-
Bär, E1
-
118
-
-
84926615323
-
Calnexin induces expansion of antigen-specific CD4(+) T cells that confer immunity to fungal ascomycetes via conserved epitopes
-
Wüthrich M, et al. Calnexin induces expansion of antigen-specific CD4(+) T cells that confer immunity to fungal ascomycetes via conserved epitopes. Cell Host Microbe. 2015;17(4):452–465.
-
(2015)
Cell Host Microbe
, vol.17
, Issue.4
, pp. 452-465
-
-
Wüthrich, M1
-
119
-
-
85013719052
-
Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection
-
Wiesner DL, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T cell responses to cryptococcal infection. PLoS Pathog. 2015;11(3):e1004701.
-
(2015)
PLoS Pathog
, vol.11
, Issue.3
, pp. e1004701
-
-
Wiesner, DL1
-
120
-
-
84923862356
-
Adaptive immunity to fungi
-
Verma A, Wüthrich M, Deepe G, Klein B. Adaptive immunity to fungi. Cold Spring Harb Perspect Med. 2014;5(3):a019612.
-
(2014)
Cold Spring Harb Perspect Med
, vol.5
, Issue.3
, pp. a019612
-
-
Verma, A1
Wüthrich, M2
Deepe, G3
Klein, B.4
-
121
-
-
71749100858
-
Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection
-
Hohl TM, et al. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe. 2009;6(5):470–481.
-
(2009)
Cell Host Microbe
, vol.6
, Issue.5
, pp. 470-481
-
-
Hohl, TM1
-
122
-
-
77956527196
-
Dynamic interplay among monocyte-derived, dermal, and resident lymph node dendritic cells during the generation of vaccine immunity to fungi
-
Ersland K, Wüthrich M, Klein BS. Dynamic interplay among monocyte-derived, dermal, and resident lymph node dendritic cells during the generation of vaccine immunity to fungi. Cell Host Microbe. 2010;7(6):474–487.
-
(2010)
Cell Host Microbe
, vol.7
, Issue.6
, pp. 474-487
-
-
Ersland, K1
Wüthrich, M2
Klein, BS.3
-
123
-
-
84859944388
-
Fungi subvert vaccine T cell priming at the respiratory mucosa by preventing chemokine-induced influx of inflammatory monocytes
-
Wüthrich M, Ersland K, Sullivan T, Galles K, Klein BS. Fungi subvert vaccine T cell priming at the respiratory mucosa by preventing chemokine-induced influx of inflammatory monocytes. Immunity. 2012;36(4):680–692.
-
(2012)
Immunity
, vol.36
, Issue.4
, pp. 680-692
-
-
Wüthrich, M1
Ersland, K2
Sullivan, T3
Galles, K4
Klein, BS.5
-
124
-
-
79951707725
-
Dectin-1 diversifies Aspergillus fumigatus-specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation
-
Rivera A, et al. Dectin-1 diversifies Aspergillus fumigatus-specific T cell responses by inhibiting T helper type 1 CD4 T cell differentiation. J Exp Med. 2011;208(2):369–381.
-
(2011)
J Exp Med
, vol.208
, Issue.2
, pp. 369-381
-
-
Rivera, A1
-
125
-
-
84878191150
-
IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses
-
Schlitzer A, et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity. 2013;38(5):970–983.
-
(2013)
Immunity
, vol.38
, Issue.5
, pp. 970-983
-
-
Schlitzer, A1
-
126
-
-
84923000491
-
Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation
-
Kashem SW, et al. Candida albicans morphology and dendritic cell subsets determine T helper cell differentiation. Immunity. 2015;42(2):356–366.
-
(2015)
Immunity
, vol.42
, Issue.2
, pp. 356-366
-
-
Kashem, SW1
-
127
-
-
79251491762
-
Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice
-
Wüthrich M, et al. Vaccine-induced protection against 3 systemic mycoses endemic to North America requires Th17 cells in mice. J Clin Invest. 2011;121(2):554–568.
-
(2011)
J Clin Invest
, vol.121
, Issue.2
, pp. 554-568
-
-
Wüthrich, M1
-
128
-
-
80855157180
-
Vaccine immunity to coccidioidomycosis occurs by early activation of three signal pathways of T helper cell response (Th1, Th2, and Th17)
-
Hung CY, Gonzalez A, Wüthrich M, Klein BS, Cole GT. Vaccine immunity to coccidioidomycosis occurs by early activation of three signal pathways of T helper cell response (Th1, Th2, and Th17). Infect Immun. 2011;79(11):4511–4522.
-
(2011)
Infect Immun
, vol.79
, Issue.11
, pp. 4511-4522
-
-
Hung, CY1
Gonzalez, A2
Wüthrich, M3
Klein, BS4
Cole, GT.5
-
129
-
-
79952769679
-
CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model
-
Pandiyan P, et al. CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and enhance host resistance in mouse Candida albicans Th17 cell infection model. Immunity. 2011;34(3):422–434.
-
(2011)
Immunity
, vol.34
, Issue.3
, pp. 422-434
-
-
Pandiyan, P1
-
130
-
-
84896056674
-
Expansion of Foxp3(+) T-cell populations by Candida albicans enhances both Th17-cell responses and fungal dissemination after intravenous challenge
-
Whibley N, et al. Expansion of Foxp3(+) T-cell populations by Candida albicans enhances both Th17-cell responses and fungal dissemination after intravenous challenge. Eur J Immunol. 2014;44(4):1069–1083.
-
(2014)
Eur J Immunol
, vol.44
, Issue.4
, pp. 1069-1083
-
-
Whibley, N1
-
131
-
-
84866182725
-
Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis
-
Lionakis MS, et al. Chemokine receptor Ccr1 drives neutrophil-mediated kidney immunopathology and mortality in invasive candidiasis. PLoS Pathog. 2012;8(8):e1002865.
-
(2012)
PLoS Pathog
, vol.8
, Issue.8
, pp. e1002865
-
-
Lionakis, MS1
-
132
-
-
84979021134
-
Induction of protective immunity to cryptococcal infection in mice by a heat-killed, chitosan-deficient strain of Cryptococcus neoformans
-
Upadhya R, Lam WC, Maybruck B, Specht CA, Levitz SM, Lodge JK. Induction of protective immunity to cryptococcal infection in mice by a heat-killed, chitosan-deficient strain of Cryptococcus neoformans. MBio. 2016;7(3):e00547.
-
(2016)
MBio
, vol.7
, Issue.3
, pp. e00547
-
-
Upadhya, R1
Lam, WC2
Maybruck, B3
Specht, CA4
Levitz, SM5
Lodge, JK.6
-
133
-
-
84904756877
-
Eosinophils are recruited in response to chitin exposure and enhance Th2-mediated immune pathology in Aspergillus fumigatus infection
-
O’Dea EM, et al. Eosinophils are recruited in response to chitin exposure and enhance Th2-mediated immune pathology in Aspergillus fumigatus infection. Infect Immun. 2014;82(8):3199–3205.
-
(2014)
Infect Immun
, vol.82
, Issue.8
, pp. 3199-3205
-
-
O’Dea, EM1
-
134
-
-
84894284666
-
Eosinophil deficiency compromises lung defense against Aspergillus fumigatus
-
Lilly LM, Scopel M, Nelson MP, Burg AR, Dunaway CW, Steele C. Eosinophil deficiency compromises lung defense against Aspergillus fumigatus. Infect Immun. 2014;82(3):1315–1325.
-
(2014)
Infect Immun
, vol.82
, Issue.3
, pp. 1315-1325
-
-
Lilly, LM1
Scopel, M2
Nelson, MP3
Burg, AR4
Dunaway, CW5
Steele, C.6
-
135
-
-
85010977551
-
Central role of IL-23 and IL-17 producing eosinophils as immunomodulatory effector cells in acute pulmonary aspergillosis and allergic asthma
-
Guerra ES, et al. Central role of IL-23 and IL-17 producing eosinophils as immunomodulatory effector cells in acute pulmonary aspergillosis and allergic asthma. PLoS Pathog. 2017;13(1):e1006175.
-
(2017)
PLoS Pathog
, vol.13
, Issue.1
, pp. e1006175
-
-
Guerra, ES1
-
136
-
-
84932174476
-
Eosinophils contribute to early clearance of Pneumocystis murina infection
-
Eddens T, et al. Eosinophils contribute to early clearance of Pneumocystis murina infection. J Immunol. 2015;195(1):185–193.
-
(2015)
J Immunol
, vol.195
, Issue.1
, pp. 185-193
-
-
Eddens, T1
-
137
-
-
0034128751
-
Genetic, biochemical, and clinical features of chronic granulomatous disease
-
Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore). 2000;79(3):170–200.
-
(2000)
Medicine (Baltimore)
, vol.79
, Issue.3
, pp. 170-200
-
-
Segal, BH1
Leto, TL2
Gallin, JI3
Malech, HL4
Holland, SM.5
-
138
-
-
0020533077
-
Biochemical and immunologic analysis of hereditary myeloperoxidase deficiency
-
Nauseef WM, Root RK, Malech HL. Biochemical and immunologic analysis of hereditary myeloperoxidase deficiency. J Clin Invest. 1983;71(5):1297–1307.
-
(1983)
J Clin Invest
, vol.71
, Issue.5
, pp. 1297-1307
-
-
Nauseef, WM1
Root, RK2
Malech, HL.3
-
139
-
-
77952311527
-
Calcineurin regulates innate antifungal immunity in neutrophils
-
Greenblatt MB, Aliprantis A, Hu B, Glimcher LH. Calcineurin regulates innate antifungal immunity in neutrophils. J Exp Med. 2010;207(5):923–931.
-
(2010)
J Exp Med
, vol.207
, Issue.5
, pp. 923-931
-
-
Greenblatt, MB1
Aliprantis, A2
Hu, B3
Glimcher, LH.4
-
140
-
-
84873585627
-
Invasive fungal infections in patients with chronic granulomatous disease
-
Henriet S, Verweij PE, Holland SM, Warris A. Invasive fungal infections in patients with chronic granulomatous disease. Adv Exp Med Biol. 2013;764:27–55.
-
(2013)
Adv Exp Med Biol
, vol.764
, pp. 27-55
-
-
Henriet, S1
Verweij, PE2
Holland, SM3
Warris, A.4
-
141
-
-
0037149510
-
Killing activity of neutrophils is mediated through activation of proteases by K+ flux
-
Reeves EP, et al. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature. 2002;416(6878):291–297.
-
(2002)
Nature
, vol.416
, Issue.6878
, pp. 291-297
-
-
Reeves, EP1
-
142
-
-
84879232444
-
Interferon alpha treatment of patients with impaired interferon gamma signaling
-
Bax HI, et al. Interferon alpha treatment of patients with impaired interferon gamma signaling. J Clin Immunol. 2013;33(5):991–1001.
-
(2013)
J Clin Immunol
, vol.33
, Issue.5
, pp. 991-1001
-
-
Bax, HI1
-
143
-
-
84865300679
-
Adult-onset immunodeficiency in Thailand and Taiwan
-
Browne SK, et al. Adult-onset immunodeficiency in Thailand and Taiwan. N Engl J Med. 2012;367(8):725–734.
-
(2012)
N Engl J Med
, vol.367
, Issue.8
, pp. 725-734
-
-
Browne, SK1
-
144
-
-
84875976539
-
Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis
-
Rosen LB, et al. Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. J Immunol. 2013;190(8):3959–3966.
-
(2013)
J Immunol
, vol.190
, Issue.8
, pp. 3959-3966
-
-
Rosen, LB1
-
145
-
-
84862998056
-
Opportunistic infections in patients with pulmonary alveolar proteinosis
-
Punatar AD, Kusne S, Blair JE, Seville MT, Vikram HR. Opportunistic infections in patients with pulmonary alveolar proteinosis. J Infect. 2012;65(2):173–179.
-
(2012)
J Infect
, vol.65
, Issue.2
, pp. 173-179
-
-
Punatar, AD1
Kusne, S2
Blair, JE3
Seville, MT4
Vikram, HR.5
-
146
-
-
84965117748
-
Role of granulocyte-macrophage colony-stimulating factor signaling in regulating neutrophil antifungal activity and the oxidative burst during respiratory fungal challenge
-
Kasahara S, Jhingran A, Dhingra S, Salem A, Cramer RA, Hohl TM. Role of granulocyte-macrophage colony-stimulating factor signaling in regulating neutrophil antifungal activity and the oxidative burst during respiratory fungal challenge. J Infect Dis. 2016;213(8):1289–1298.
-
(2016)
J Infect Dis
, vol.213
, Issue.8
, pp. 1289-1298
-
-
Kasahara, S1
Jhingran, A2
Dhingra, S3
Salem, A4
Cramer, RA5
Hohl, TM.6
-
147
-
-
84872065897
-
JAKs and STATs in immunity, immunodeficiency, and cancer
-
O’Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med. 2013;368(2):161–170.
-
(2013)
N Engl J Med
, vol.368
, Issue.2
, pp. 161-170
-
-
O’Shea, JJ1
Holland, SM2
Staudt, LM.3
-
148
-
-
84977482520
-
Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype
-
Toubiana J, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127(25):3154–3164.
-
(2016)
Blood
, vol.127
, Issue.25
, pp. 3154-3164
-
-
Toubiana, J1
-
149
-
-
84956572958
-
Endemic mycoses in patients with STAT3-mutated hyper-IgE (Job) syndrome
-
e1
-
Odio CD, et al. Endemic mycoses in patients with STAT3-mutated hyper-IgE (Job) syndrome. J Allergy Clin Immunol. 2015;136(5):1411–3.e1.
-
(2015)
J Allergy Clin Immunol
, vol.136
, Issue.5
, pp. 1411-1413
-
-
Odio, CD1
-
150
-
-
84894095710
-
GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity
-
Spinner MA, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123(6):809–821.
-
(2014)
Blood
, vol.123
, Issue.6
, pp. 809-821
-
-
Spinner, MA1
-
151
-
-
84937713659
-
Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis
-
Ling Y, et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med. 2015;212(5):619–631.
-
(2015)
J Exp Med
, vol.212
, Issue.5
, pp. 619-631
-
-
Ling, Y1
-
152
-
-
79953284685
-
Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity
-
Puel A, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332(6025):65–68.
-
(2011)
Science
, vol.332
, Issue.6025
, pp. 65-68
-
-
Puel, A1
-
153
-
-
85100040012
-
Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy
-
Ferre EM, et al. Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. JCI Insight. 2016;1(13):e88782.
-
(2016)
JCI Insight
, vol.1
, Issue.13
, pp. e88782
-
-
Ferre, EM1
-
154
-
-
84897417058
-
Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience
-
Shearer WT, et al. Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol. 2014;133(4):1092–1098.
-
(2014)
J Allergy Clin Immunol
, vol.133
, Issue.4
, pp. 1092-1098
-
-
Shearer, WT1
-
155
-
-
84939154723
-
IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations
-
Okada S, et al. IMMUNODEFICIENCIES. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science. 2015;349(6248):606–613.
-
(2015)
Science
, vol.349
, Issue.6248
, pp. 606-613
-
-
Okada, S1
-
156
-
-
77958450338
-
Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity
-
Cunha C, et al. Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood. 2010;116(24):5394–5402.
-
(2010)
Blood
, vol.116
, Issue.24
, pp. 5394-5402
-
-
Cunha, C1
-
157
-
-
85006192489
-
Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity
-
Drummond RA, Lionakis MS. Mechanistic insights into the role of C-type lectin receptor/CARD9 signaling in human antifungal immunity. Front Cell Infect Microbiol. 2016;6:39.
-
(2016)
Front Cell Infect Microbiol
, vol.6
, pp. 39
-
-
Drummond, RA1
Lionakis, MS.2
-
158
-
-
84938918195
-
Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species-induced meningoencephalitis, colitis, or both
-
e2
-
Lanternier F, et al. Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species-induced meningoencephalitis, colitis, or both. J Allergy Clin Immunol. 2015;135(6):1558–68.e2.
-
(2015)
J Allergy Clin Immunol
, vol.135
, Issue.6
, pp. 1558-1568
-
-
Lanternier, F1
-
159
-
-
84953220467
-
CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system
-
Drummond RA, et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLoS Pathog. 2015;11(12):e1005293.
-
(2015)
PLoS Pathog
, vol.11
, Issue.12
, pp. e1005293
-
-
Drummond, RA1
-
160
-
-
84878400790
-
Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency
-
Drewniak A, et al. Invasive fungal infection and impaired neutrophil killing in human CARD9 deficiency. Blood. 2013;121(13):2385–2392.
-
(2013)
Blood
, vol.121
, Issue.13
, pp. 2385-2392
-
-
Drewniak, A1
-
161
-
-
84923842067
-
Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection
-
Jhingran A, et al. Compartment-specific and sequential role of MyD88 and CARD9 in chemokine induction and innate defense during respiratory fungal infection. PLoS Pathog. 2015;11(1):e1004589.
-
(2015)
PLoS Pathog
, vol.11
, Issue.1
, pp. e1004589
-
-
Jhingran, A1
-
162
-
-
85071781760
-
Extrapulmonary Aspergillus infection in patients with CARD9 deficiency
-
Rieber N, et al. Extrapulmonary Aspergillus infection in patients with CARD9 deficiency. JCI Insight. 2016;1(17):e89890.
-
(2016)
JCI Insight
, vol.1
, Issue.17
, pp. e89890
-
-
Rieber, N1
-
163
-
-
84923842529
-
IL-1α signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge
-
Caffrey AK, et al. IL-1α signaling is critical for leukocyte recruitment after pulmonary Aspergillus fumigatus challenge. PLoS Pathog. 2015;11(1):e1004625.
-
(2015)
PLoS Pathog
, vol.11
, Issue.1
, pp. e1004625
-
-
Caffrey, AK1
-
164
-
-
84903971425
-
CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy
-
Gavino C, et al. CARD9 deficiency and spontaneous central nervous system candidiasis: complete clinical remission with GM-CSF therapy. Clin Infect Dis. 2014;59(1):81–84.
-
(2014)
Clin Infect Dis
, vol.59
, Issue.1
, pp. 81-84
-
-
Gavino, C1
-
165
-
-
84951320697
-
Impaired RASGRF1/ERK-mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians
-
e1
-
Gavino C, et al. Impaired RASGRF1/ERK-mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians. J Allergy Clin Immunol. 2016;137(4):1178–1188.e1.
-
(2016)
J Allergy Clin Immunol
, vol.137
, Issue.4
, pp. 1178-1188
-
-
Gavino, C1
-
166
-
-
84929952886
-
Mycobiome: approaches to analysis of intestinal fungi
-
Tang J, Iliev ID, Brown J, Underhill DM, Funari VA. Mycobiome: approaches to analysis of intestinal fungi. J Immunol Methods. 2015;421:112–121.
-
(2015)
J Immunol Methods
, vol.421
, pp. 112-121
-
-
Tang, J1
Iliev, ID2
Brown, J3
Underhill, DM4
Funari, VA.5
-
167
-
-
84901296354
-
The mycobiota: interactions between commensal fungi and the host immune system
-
Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol. 2014;14(6):405–416.
-
(2014)
Nat Rev Immunol
, vol.14
, Issue.6
, pp. 405-416
-
-
Underhill, DM1
Iliev, ID.2
-
168
-
-
84861964286
-
Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis
-
Iliev ID, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336(6086):1314–1317.
-
(2012)
Science
, vol.336
, Issue.6086
, pp. 1314-1317
-
-
Iliev, ID1
-
169
-
-
84879414990
-
Topographic diversity of fungal and bacterial communities in human skin
-
Findley K, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367–370.
-
(2013)
Nature
, vol.498
, Issue.7454
, pp. 367-370
-
-
Findley, K1
-
170
-
-
84897545954
-
Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal
-
Dupuy AK, et al. Redefining the human oral mycobiome with improved practices in amplicon-based taxonomy: discovery of Malassezia as a prominent commensal. PLoS ONE. 2014;9(3):e90899.
-
(2014)
PLoS ONE
, vol.9
, Issue.3
, pp. e90899
-
-
Dupuy, AK1
-
171
-
-
84929500746
-
Characterization of bacterial and fungal microbiome in children with Hirschsprung disease with and without a history of enterocolitis: a multicenter study
-
Frykman PK, et al. Characterization of bacterial and fungal microbiome in children with Hirschsprung disease with and without a history of enterocolitis: a multicenter study. PLoS ONE. 2015;10(4):e0124172.
-
(2015)
PLoS ONE
, vol.10
, Issue.4
, pp. e0124172
-
-
Frykman, PK1
-
172
-
-
84927562663
-
The lung mycobiome: an emerging field of the human respiratory microbiome
-
Nguyen LD, Viscogliosi E, Delhaes L. The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol. 2015;6:89.
-
(2015)
Front Microbiol
, vol.6
, pp. 89
-
-
Nguyen, LD1
Viscogliosi, E2
Delhaes, L.3
-
173
-
-
84936891126
-
Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization
-
Fan D, et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med. 2015;21(7):808–814.
-
(2015)
Nat Med
, vol.21
, Issue.7
, pp. 808-814
-
-
Fan, D1
-
174
-
-
84868680312
-
Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial
-
Hueber W, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61(12):1693–1700.
-
(2012)
Gut
, vol.61
, Issue.12
, pp. 1693-1700
-
-
Hueber, W1
-
175
-
-
84954452665
-
Inhibition of Dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine
-
Tang C, et al. Inhibition of Dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe. 2015;18(2):183–197.
-
(2015)
Cell Host Microbe
, vol.18
, Issue.2
, pp. 183-197
-
-
Tang, C1
-
176
-
-
84958087463
-
Fungal microbiota dysbiosis in IBD [published online ahead of print February 3, 2016]
-
Sokol H, et al. Fungal microbiota dysbiosis in IBD [published online ahead of print February 3, 2016]. Gut. https://doi.org/10.1136/gutjnl-2015-310746.
-
Gut
-
-
Sokol, H1
-
177
-
-
84978897601
-
Dectin-3 deficiency promotes colitis development due to impaired antifungal innate immune responses in the gut
-
Wang T, et al. Dectin-3 deficiency promotes colitis development due to impaired antifungal innate immune responses in the gut. PLoS Pathog. 2016;12(6):e1005662.
-
(2016)
PLoS Pathog
, vol.12
, Issue.6
, pp. e1005662
-
-
Wang, T1
-
178
-
-
79959216005
-
Genetics and pathogenesis of inflammatory bowel disease
-
Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474(7351):307–317.
-
(2011)
Nature
, vol.474
, Issue.7351
, pp. 307-317
-
-
Khor, B1
Gardet, A2
Xavier, RJ.3
-
179
-
-
84883144028
-
Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice
-
e3
-
Sokol H, et al. Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice. Gastroenterology. 2013;145(3):591–601.e3.
-
(2013)
Gastroenterology
, vol.145
, Issue.3
, pp. 591-601
-
-
Sokol, H1
-
180
-
-
84966526506
-
CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands
-
Lamas B, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598–605.
-
(2016)
Nat Med
, vol.22
, Issue.6
, pp. 598-605
-
-
Lamas, B1
-
181
-
-
84969983677
-
Immunological consequences of intestinal fungal dysbiosis
-
Wheeler ML, et al. Immunological consequences of intestinal fungal dysbiosis. Cell Host Microbe. 2016;19(6):865–873.
-
(2016)
Cell Host Microbe
, vol.19
, Issue.6
, pp. 865-873
-
-
Wheeler, ML1
-
183
-
-
4544256857
-
Role of antibiotics and fungal microbiota in driving pulmonary allergic responses
-
Noverr MC, Noggle RM, Toews GB, Huffnagle GB. Role of antibiotics and fungal microbiota in driving pulmonary allergic responses. Infect Immun. 2004;72(9):4996–5003.
-
(2004)
Infect Immun
, vol.72
, Issue.9
, pp. 4996-5003
-
-
Noverr, MC1
Noggle, RM2
Toews, GB3
Huffnagle, GB.4
-
184
-
-
84905018507
-
Dectin-1 induces M1 macrophages and prominent expansion of CD8+IL-17+ cells in pulmonary Paracoccidioidomycosis
-
Loures FV, et al. Dectin-1 induces M1 macrophages and prominent expansion of CD8+IL-17+ cells in pulmonary Paracoccidioidomycosis. J Infect Dis. 2014;210(5):762–773.
-
(2014)
J Infect Dis
, vol.210
, Issue.5
, pp. 762-773
-
-
Loures, FV1
-
185
-
-
84894245468
-
Role of Dectin-2 for host defense against systemic infection with Candida glabrata
-
Ifrim DC, et al. Role of Dectin-2 for host defense against systemic infection with Candida glabrata. Infect Immun. 2014;82(3):1064–1073.
-
(2014)
Infect Immun
, vol.82
, Issue.3
, pp. 1064-1073
-
-
Ifrim, DC1
-
186
-
-
84962148521
-
The C-type lectin receptor mcl mediates vaccine-induced immunity against infection with Blastomyces dermatitidis
-
Wang H, Li M, Lerksuthirat T, Klein B, Wüthrich M. The C-type lectin receptor mcl mediates vaccine-induced immunity against infection with Blastomyces dermatitidis. Infect Immun. 2015;84(3):635–642.
-
(2015)
Infect Immun
, vol.84
, Issue.3
, pp. 635-642
-
-
Wang, H1
Li, M2
Lerksuthirat, T3
Klein, B4
Wüthrich, M.5
-
187
-
-
6344268943
-
Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages
-
Serrano-Gómez D, Domínguez-Soto A, Ancochea J, Jimenez-Heffernan JA, Leal JA, Corbí AL. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J Immunol. 2004;173(9):5635–5643.
-
(2004)
J Immunol
, vol.173
, Issue.9
, pp. 5635-5643
-
-
Serrano-Gómez, D1
Domínguez-Soto, A2
Ancochea, J3
Jimenez-Heffernan, JA4
Leal, JA5
Corbí, AL.6
-
188
-
-
0037218327
-
Normal host defense during systemic candidiasis in mannose receptor-deficient mice
-
Lee SJ, Zheng NY, Clavijo M, Nussenzweig MC. Normal host defense during systemic candidiasis in mannose receptor-deficient mice. Infect Immun. 2003;71(1):437–445.
-
(2003)
Infect Immun
, vol.71
, Issue.1
, pp. 437-445
-
-
Lee, SJ1
Zheng, NY2
Clavijo, M3
Nussenzweig, MC.4
-
189
-
-
0037094116
-
The role of Toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis
-
Netea MG, Van Der Graaf CA, Vonk AG, Verschueren I, Van Der Meer JW, Kullberg BJ. The role of Toll-like receptor (TLR) 2 and TLR4 in the host defense against disseminated candidiasis. J Infect Dis. 2002;185(10):1483–1489.
-
(2002)
J Infect Dis
, vol.185
, Issue.10
, pp. 1483-1489
-
-
Netea, MG1
Van Der Graaf, CA2
Vonk, AG3
Verschueren, I4
Van Der Meer, JW5
Kullberg, BJ.6
-
190
-
-
4544298888
-
Involvement of CD14, Toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo
-
Yauch LE, Mansour MK, Shoham S, Rottman JB, Levitz SM. Involvement of CD14, Toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen Cryptococcus neoformans in vivo. Infect Immun. 2004;72(9):5373–5382.
-
(2004)
Infect Immun
, vol.72
, Issue.9
, pp. 5373-5382
-
-
Yauch, LE1
Mansour, MK2
Shoham, S3
Rottman, JB4
Levitz, SM.5
-
191
-
-
0037560071
-
Candida albicans phospholipomannan is sensed through Toll-like receptors
-
Jouault T, et al. Candida albicans phospholipomannan is sensed through Toll-like receptors. J Infect Dis. 2003;188(1):165–172.
-
(2003)
J Infect Dis
, vol.188
, Issue.1
, pp. 165-172
-
-
Jouault, T1
-
192
-
-
78650351442
-
TLR4 recognizes Pseudallescheria boydii conidia and purified rhamnomannans
-
Figueiredo RT, et al. TLR4 recognizes Pseudallescheria boydii conidia and purified rhamnomannans. J Biol Chem. 2010;285(52):40714–40723.
-
(2010)
J Biol Chem
, vol.285
, Issue.52
, pp. 40714-40723
-
-
Figueiredo, RT1
-
193
-
-
84907306721
-
Aspergillus fumigatus triggers innate immune response via NOD1 signaling in human corneal epithelial cells
-
Zhang Y, Wu J, Xin Z, Wu X. Aspergillus fumigatus triggers innate immune response via NOD1 signaling in human corneal epithelial cells. Exp Eye Res. 2014;127:170–178.
-
(2014)
Exp Eye Res
, vol.127
, pp. 170-178
-
-
Zhang, Y1
Wu, J2
Xin, Z3
Wu, X.4
-
194
-
-
84901313667
-
Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation
-
Wagener J, et al. Fungal chitin dampens inflammation through IL-10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog. 2014;10(4):e1004050.
-
(2014)
PLoS Pathog
, vol.10
, Issue.4
, pp. e1004050
-
-
Wagener, J1
-
195
-
-
84855296038
-
A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans
-
Tomalka J, et al. A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog. 2011;7(12):e1002379.
-
(2011)
PLoS Pathog
, vol.7
, Issue.12
, pp. e1002379
-
-
Tomalka, J1
-
196
-
-
65549154784
-
An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans
-
Hise AG, et al. An essential role for the NLRP3 inflammasome in host defense against the human fungal pathogen Candida albicans. Cell Host Microbe. 2009;5(5):487–497.
-
(2009)
Cell Host Microbe
, vol.5
, Issue.5
, pp. 487-497
-
-
Hise, AG1
-
197
-
-
0036021109
-
Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner
-
Tada H, et al. Saccharomyces cerevisiae- and Candida albicans-derived mannan induced production of tumor necrosis factor alpha by human monocytes in a CD14- and Toll-like receptor 4-dependent manner. Microbiol Immunol. 2002;46(7):503–512.
-
(2002)
Microbiol Immunol
, vol.46
, Issue.7
, pp. 503-512
-
-
Tada, H1
-
198
-
-
63449138494
-
Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36
-
Means TK, et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med. 2009;206(3):637–653.
-
(2009)
J Exp Med
, vol.206
, Issue.3
, pp. 637-653
-
-
Means, TK1
-
199
-
-
84880308194
-
Galectin-3 plays an important role in protection against disseminated candidiasis
-
Linden JR, De Paepe ME, Laforce-Nesbitt SS, Bliss JM. Galectin-3 plays an important role in protection against disseminated candidiasis. Med Mycol. 2013;51(6):641–651.
-
(2013)
Med Mycol
, vol.51
, Issue.6
, pp. 641-651
-
-
Linden, JR1
De Paepe, ME2
Laforce-Nesbitt, SS3
Bliss, JM.4
-
200
-
-
0037449795
-
Pneumocystis carinii cell wall beta-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism
-
Hahn PY, Evans SE, Kottom TJ, Standing JE, Pagano RE, Limper AH. Pneumocystis carinii cell wall beta-glucan induces release of macrophage inflammatory protein-2 from alveolar epithelial cells via a lactosylceramide-mediated mechanism. J Biol Chem. 2003;278(3):2043–2050.
-
(2003)
J Biol Chem
, vol.278
, Issue.3
, pp. 2043-2050
-
-
Hahn, PY1
Evans, SE2
Kottom, TJ3
Standing, JE4
Pagano, RE5
Limper, AH.6
|