메뉴 건너뛰기




Volumn 14, Issue 3, 2016, Pages 163-176

Interactions of fungal pathogens with phagocytes

Author keywords

[No Author keywords available]

Indexed keywords

ANTIGEN RECOGNITION; CANDIDA ALBICANS; CELL MATURATION; CELL MIGRATION; CELL SIZE; FUNGAL CELL; FUNGAL CELL WALL; FUNGUS; IMMUNE EVASION; LYSIS; MACROPHAGE; NEUTROPHIL; NONHUMAN; PHAGOCYTE; PHAGOCYTOSIS; PHAGOLYSOSOME; PHAGOSOME; PRIORITY JOURNAL; REVIEW; HOST PATHOGEN INTERACTION; HUMAN; IMMUNOLOGY; INNATE IMMUNITY; MICROBIOLOGY; PATHOGENICITY;

EID: 84958184224     PISSN: 17401526     EISSN: 17401534     Source Type: Journal    
DOI: 10.1038/nrmicro.2015.21     Document Type: Review
Times cited : (489)

References (136)
  • 1
    • 84871502341 scopus 로고    scopus 로고
    • Hidden killers: Human fungal infections
    • 165rv13
    • Brown, G. D., et al. Hidden killers: human fungal infections. Sci. Transl. Med. 4, 165rv13 (2012).
    • (2012) Sci. Transl. Med. , vol.4
    • Brown, G.D.1
  • 2
    • 84896707227 scopus 로고    scopus 로고
    • A neglected epidemic: Fungal infections in HIV/AIDS
    • Armstrong-James, D., Meintjes, G., & Brown, G. D. A neglected epidemic: fungal infections in HIV/AIDS. Trends Microbiol. 22, 120-127 (2014).
    • (2014) Trends Microbiol , vol.22 , pp. 120-127
    • Armstrong-James, D.1    Meintjes, G.2    Brown, G.D.3
  • 3
    • 84860244125 scopus 로고    scopus 로고
    • Interplay between Candida albicans and the mammalian innate host defense
    • Cheng, S. C., Joosten, L. A. B., Kullberg, B. J., & Netea, M. G. Interplay between Candida albicans and the mammalian innate host defense. Infect. Immun. 80, 1304-1313 (2012).
    • (2012) Infect. Immun. , vol.80 , pp. 1304-1313
    • Cheng, S.C.1    Joosten, L.A.B.2    Kullberg, B.J.3    Netea, M.G.4
  • 4
    • 0027742037 scopus 로고
    • Interactions of phagocytic cells with Candida and other opportunistic fungi
    • Diamond, R. D. Interactions of phagocytic cells with Candida and other opportunistic fungi. Arch. Med. Res. 24, 361-369 (1993).
    • (1993) Arch. Med. Res. , vol.24 , pp. 361-369
    • Diamond, R.D.1
  • 5
    • 0024457954 scopus 로고
    • Candida colonization and systemic infection in neutropenic patients A retrospective study
    • Martino, P., et al. Candida colonization and systemic infection in neutropenic patients. A retrospective study. Cancer. 64, 2030-2034 (1989).
    • (1989) Cancer. , vol.64 , pp. 2030-2034
    • Martino, P.1
  • 6
    • 0014559249 scopus 로고
    • Leukocyte myeloperoxidase deficiency and disseminated candidiasis: The role of myeloperoxidase in resistance to Candida infection
    • Lehrer, R. I., & Cline, M. J. Leukocyte myeloperoxidase deficiency and disseminated candidiasis: the role of myeloperoxidase in resistance to Candida infection. J. Clin. Invest. 48, 1478-1488 (1969).
    • (1969) J. Clin. Invest. , vol.48 , pp. 1478-1488
    • Lehrer, R.I.1    Cline, M.J.2
  • 7
    • 0028223193 scopus 로고
    • Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis
    • Qian, Q., Jutila, M. A., Van Rooijen, N., & Cutler, J. E. Elimination of mouse splenic macrophages correlates with increased susceptibility to experimental disseminated candidiasis. J. Immunol. 152, 5000-5008 (1994).
    • (1994) J. Immunol. , vol.152 , pp. 5000-5008
    • Qian, Q.1    Jutila, M.A.2    Van Rooijen, N.3    Cutler, J.E.4
  • 8
    • 0031093565 scopus 로고    scopus 로고
    • An immunoregulatory role for neutrophils in CD4+ T helper subset selection in mice with candidiasis
    • Romani, L., et al. An immunoregulatory role for neutrophils in CD4+ T helper subset selection in mice with candidiasis. J. Immunol. 158, 2356-2362 (1997).
    • (1997) J. Immunol. , vol.158 , pp. 2356-2362
    • Romani, L.1
  • 9
    • 1542674589 scopus 로고    scopus 로고
    • Immunity to fungal infections
    • Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 1, 1-23 (2004).
    • (2004) Nat. Rev. Immunol. , vol.1 , pp. 1-23
    • Romani, L.1
  • 10
    • 79953163170 scopus 로고    scopus 로고
    • Immunity to fungal infections
    • Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 4, 275-288 (2011).
    • (2011) Nat. Rev. Immunol. , vol.4 , pp. 275-288
    • Romani, L.1
  • 11
    • 0026545368 scopus 로고
    • The macrophage capacity for phagocytosis
    • Cannon, G. J., & Swanson, J. A. The macrophage capacity for phagocytosis. J. Cell Sci. 101, 907-913 (1992).
    • (1992) J. Cell Sci. , vol.101 , pp. 907-913
    • Cannon, G.J.1    Swanson, J.A.2
  • 12
    • 0020447802 scopus 로고
    • Growth kinetics and morphology of colonies of the filamentous form of Candida albicans
    • Gow, N. A. R., & Gooday, G. W. Growth kinetics and morphology of colonies of the filamentous form of Candida albicans. J. Gen. Microbiol. 128, 2187-2194 (1982).
    • (1982) J. Gen. Microbiol. , vol.128 , pp. 2187-2194
    • Gow, N.A.R.1    Gooday, G.W.2
  • 13
    • 84861211194 scopus 로고    scopus 로고
    • Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants
    • Lewis, L. E., et al. Stage specific assessment of Candida albicans phagocytosis by macrophages identifies cell wall composition and morphogenesis as key determinants. PLoS Pathog.8, e1002578 (2012).
    • (2012) PLoS Pathog. , vol.8 , pp. e1002578
    • Lewis, L.E.1
  • 14
    • 84859866535 scopus 로고    scopus 로고
    • Microcolony imaging of Aspergillus fumigatus treated with echinocandins reveals both fungistatic and fungicidal activities
    • Ingham, C. J., & Schneeberger, P. M. Microcolony imaging of Aspergillus fumigatus treated with echinocandins reveals both fungistatic and fungicidal activities. PLoS ONE. 7, e35478 (2012).
    • (2012) PLoS ONE. , vol.7 , pp. e35478
    • Ingham, C.J.1    Schneeberger, P.M.2
  • 15
    • 84882918753 scopus 로고    scopus 로고
    • Titan cells in Cryptococcus neoformans: Cells with a giant impact
    • Zaragoza, O., & Nielsen, K. Titan cells in Cryptococcus neoformans: cells with a giant impact. Curr. Opin. Microbiol. 16, 409-413 (2013).
    • (2013) Curr. Opin. Microbiol. , vol.16 , pp. 409-413
    • Zaragoza, O.1    Nielsen, K.2
  • 16
    • 84926988356 scopus 로고    scopus 로고
    • Metabolism impacts Candida immunogenicity and pathogenicity at multiple levels
    • Brown, A. J. P., Brown, G. D., Netea, M. G., & Gow, N. A. R. Metabolism impacts Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol. 22, 614-622 (2014).
    • (2014) Trends Microbiol. , vol.22 , pp. 614-622
    • Brown, A.J.P.1    Brown, G.D.2    Netea, M.G.3    Gow, N.A.R.4
  • 17
    • 27744517840 scopus 로고    scopus 로고
    • Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae
    • Van der Graaf, C. A. A., Netea, M. G., Verschueren, I., van der Meer, J. W. M., & Kullberg, B. J. Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect. Immun. 73, 7458-7464 (2005).
    • (2005) Infect. Immun. , vol.73 , pp. 7458-7464
    • Van Der Graaf, C.A.A.1    Netea, M.G.2    Verschueren, I.3    Van Der Meer, J.W.M.4    Kullberg, B.J.5
  • 18
    • 70349317039 scopus 로고    scopus 로고
    • Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome
    • Joly, S., et al. Candida albicans hyphae formation triggers activation of the Nlrp3 inflammasome. J. Immunol. 183, 3578-3581 (2009).
    • (2009) J. Immunol. , vol.183 , pp. 3578-3581
    • Joly, S.1
  • 19
    • 70350020265 scopus 로고    scopus 로고
    • Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence
    • Klis, F. M. Sosinska, G. J. de Groot, P. W. J., & Brul, S. Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res. 9, 1013-1028 (2009).
    • (2009) FEMS Yeast Res. , vol.9 , pp. 1013-1028
    • Klis, F.M.1    Sosinska, G.J.2    De Groot, P.W.J.3    Brul, S.4
  • 20
    • 34347329218 scopus 로고    scopus 로고
    • Phagocytosis by human neutrophils is stimulated by a unique fungal cell wall component
    • Rubin-Bejerano, I., Abeijon, C., Magnelli, P., Grisafi, P., & Fink, G. R. Phagocytosis by human neutrophils is stimulated by a unique fungal cell wall component. Cell Host Microbe 2, 55-67 (2007).
    • (2007) Cell Host Microbe , vol.2 , pp. 55-67
    • Rubin-Bejerano, I.1    Abeijon, C.2    Magnelli, P.3    Grisafi, P.4    Fink, G.R.5
  • 21
    • 84855872990 scopus 로고    scopus 로고
    • Candida albicans morphogenesis and host defence: Discriminating invasion from colonization
    • Gow, N. A. R., van de Veerdonk, F. L., Brown, A. J., & Netea, M. G. Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat. Rev. Microbiol. 10, 112-122 (2011).
    • (2011) Nat. Rev. Microbiol. , vol.10 , pp. 112-122
    • Gow, N.A.R.1    Van De Veerdonk, F.L.2    Brown, A.J.3    Netea, M.G.4
  • 22
    • 17144370549 scopus 로고    scopus 로고
    • Dectin 1 mediates macrophage recognition of Candida albicans yeast but not filaments
    • Gantner, B. N., Simmons, R. M., & Underhill, D. M. Dectin 1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J. 24, 1277-1286 (2005).
    • (2005) EMBO J. , vol.24 , pp. 1277-1286
    • Gantner, B.N.1    Simmons, R.M.2    Underhill, D.M.3
  • 23
    • 58149269544 scopus 로고    scopus 로고
    • Dynamic, morphotype-specific Candida albicans β-glucan exposure during infection and drug treatment
    • Wheeler, R. T., Kombe, D., Agarwala, S. D., & Fink, G. R. Dynamic, morphotype-specific Candida albicans β-glucan exposure during infection and drug treatment. PLoS Pathog. 4, e1000227 (2008).
    • (2008) PLoS Pathog. , vol.4 , pp. e1000227
    • Wheeler, R.T.1    Kombe, D.2    Agarwala, S.D.3    Fink, G.R.4
  • 24
    • 84901313667 scopus 로고    scopus 로고
    • Fungal chitin dampens inflammation through IL 10 induction mediated by NOD2 and TLR9 activation
    • Wagener, J., et al. Fungal chitin dampens inflammation through IL 10 induction mediated by NOD2 and TLR9 activation. PLoS Pathog. 10, e1004050 (2014).
    • (2014) PLoS Pathog. , vol.10 , pp. e1004050
    • Wagener, J.1
  • 25
    • 84876849076 scopus 로고    scopus 로고
    • The Mnn2 mannosyltransferase family modulates mannoprotein fibril length, immune recognition and virulence of Candida albicans
    • Hall, R. A., et al. The Mnn2 mannosyltransferase family modulates mannoprotein fibril length, immune recognition and virulence of Candida albicans. PLoS Pathog. 9, e1003276 (2013).
    • (2013) PLoS Pathog. , vol.9 , pp. e1003276
    • Hall, R.A.1
  • 26
    • 84890116565 scopus 로고    scopus 로고
    • Mannosylation in Candida albicans: Role in cell wall function and immune recognition
    • Hall, R. A., & Gow, N. A. R. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol. Microbiol. 90, 1147-1161 (2013).
    • (2013) Mol. Microbiol. , vol.90 , pp. 1147-1161
    • Hall, R.A.1    Gow, N.A.R.2
  • 27
    • 33745207594 scopus 로고    scopus 로고
    • Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors
    • Netea, M. G., et al. Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors. J. Clin. Invest. 6, 1642-1650 (2006).
    • (2006) J. Clin. Invest. , vol.6 , pp. 1642-1650
    • Netea, M.G.1
  • 28
    • 42249083091 scopus 로고    scopus 로고
    • Syk kinase is required for collaborative cytokine production induced through Dectin 1 and Toll-like receptors
    • Dennehy, K. M., et al. Syk kinase is required for collaborative cytokine production induced through Dectin 1 and Toll-like receptors. Eur. J. Immunol. 38, 500-506 (2008).
    • (2008) Eur. J. Immunol. , vol.38 , pp. 500-506
    • Dennehy, K.M.1
  • 29
    • 84863798906 scopus 로고    scopus 로고
    • Glycosphingolipids mediate pneumocystis cell wall β glucan activation of the IL 23/IL 17 axis in human dendritic cells
    • Carmona, E. M., et al. Glycosphingolipids mediate pneumocystis cell wall β glucan activation of the IL 23/IL 17 axis in human dendritic cells. Am. J. Respir. Cell. Mol. Biol. 47, 50-59 (2012).
    • (2012) Am. J. Respir. Cell. Mol. Biol. , vol.47 , pp. 50-59
    • Carmona, E.M.1
  • 30
    • 33846573404 scopus 로고    scopus 로고
    • Histoplasma capsulatum a-(1, 3)-glucan blocks innate immune recognition by the β glucan receptor
    • 2007)
    • Rappleye, C. A., Groppe Eissenberg, L., & Goldman, W. E. Histoplasma capsulatum a-(1, 3)-glucan blocks innate immune recognition by the β glucan receptor. Proc. Natl Acad. Sci. USA 104, 1366-1370 (2007) (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 1366-1370
    • Rappleye, C.A.1    Groppe Eissenberg, L.2    Goldman, W.E.3
  • 31
    • 0019953252 scopus 로고
    • The capsule of Cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages
    • Kozel, T. R., & Gotschlich, E. C. The capsule of Cryptococcus neoformans passively inhibits phagocytosis of the yeast by macrophages. J. Immunol. 129, 1675-1680 (1982).
    • (1982) J. Immunol. , vol.129 , pp. 1675-1680
    • Kozel, T.R.1    Gotschlich, E.C.2
  • 32
    • 0029032512 scopus 로고
    • Ingestion of acapsular Cryptococcus neoformans occurs via mannose and β-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form
    • Cross, C. E., & Bancroft, G. J. Ingestion of acapsular Cryptococcus neoformans occurs via mannose and β-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. Infect. Immun. 63, 2604-2611 (1995).
    • (1995) Infect. Immun. , vol.63 , pp. 2604-2611
    • Cross, C.E.1    Bancroft, G.J.2
  • 33
    • 11144275900 scopus 로고    scopus 로고
    • Glucuronoxylomannan, a microbial compound, regulates expression of costimulatory molecules and production of cytokines in macrophages
    • Monari, C., et al. Glucuronoxylomannan, a microbial compound, regulates expression of costimulatory molecules and production of cytokines in macrophages. J. Infect. Dis. 191, 127-137 (2005).
    • (2005) J. Infect. Dis. , vol.191 , pp. 127-137
    • Monari, C.1
  • 34
    • 85047694795 scopus 로고    scopus 로고
    • Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans
    • Luberto, C., et al. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. J. Clin. Invest. 112, 1080-1094 (2003).
    • (2003) J. Clin. Invest. , vol.112 , pp. 1080-1094
    • Luberto, C.1
  • 35
    • 59849118749 scopus 로고    scopus 로고
    • App1: An antiphagocytic protein that binds to complement receptors 3 and 2
    • Stano, P., et al. App1: an antiphagocytic protein that binds to complement receptors 3 and 2. J. Immunol. 182, 84-91 (2009).
    • (2009) J. Immunol. , vol.182 , pp. 84-91
    • Stano, P.1
  • 36
    • 0034471369 scopus 로고    scopus 로고
    • Hydrophobin gene expression affects hyphal wall composition in Schizophyllum commune
    • van Wetter, M. A., W?ten, H. A., Sietsma, J. H., & Wessels, J. G. H. Hydrophobin gene expression affects hyphal wall composition in Schizophyllum commune. Fungal Genet. Biol. 31, 99-104 (2000).
    • (2000) Fungal Genet. Biol. , vol.31 , pp. 99-104
    • Van Wetter, M.A.1    Wten, H.A.2    Sietsma, J.H.3    Wessels, J.G.H.4
  • 37
    • 69349091586 scopus 로고    scopus 로고
    • Surface hydrophobin prevents immune recognition of airborne fungal spores
    • Aimanianda, V., et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature. 460, 1117-1121 (2009).
    • (2009) Nature. , vol.460 , pp. 1117-1121
    • Aimanianda, V.1
  • 38
    • 76749101561 scopus 로고    scopus 로고
    • Aspergillus fumigatus LaeA-mediated phagocytosis is associated with a decreased hydrophobin layer
    • Dagenais, T. R., et al. Aspergillus fumigatus LaeA-mediated phagocytosis is associated with a decreased hydrophobin layer. Infect. Immun. 78, 823-829 (2010).
    • (2010) Infect. Immun. , vol.78 , pp. 823-829
    • Dagenais, T.R.1
  • 39
    • 84897373901 scopus 로고    scopus 로고
    • A polysaccharide virulence factor from aspergillus fumigatus elicits anti-inflammatory effects through induction of interleukin 1 receptor antagonist
    • Gresnigt, M. S., et al. A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of Interleukin 1 receptor antagonist. PLoS Pathog. 10, e1003936 (2014).
    • (2014) PLoS Pathog , vol.10 , pp. e1003936
    • Gresnigt, M.S.1
  • 40
    • 33750589315 scopus 로고    scopus 로고
    • Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds
    • Nosanchuk, J. D., & Casadevall, A. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob. Agents Chemother. 50, 3519-3528 (2006).
    • (2006) Antimicrob. Agents Chemother. , vol.50 , pp. 3519-3528
    • Nosanchuk, J.D.1    Casadevall, A.2
  • 41
    • 0030729225 scopus 로고    scopus 로고
    • Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence
    • Jahn, B., et al. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect. Immun. 12, 5110-5117 (1997).
    • (1997) Infect. Immun. , vol.12 , pp. 5110-5117
    • Jahn, B.1
  • 42
    • 70349581781 scopus 로고    scopus 로고
    • Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia
    • Pihet, M., et al. Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiol. 9, 177 (2009).
    • (2009) BMC Microbiol. , vol.9 , pp. 177
    • Pihet, M.1
  • 43
    • 79956066252 scopus 로고    scopus 로고
    • Restoration of pattern recognition receptor costimulation to treat chromoblastomycosis, a chronic fungal infection of the skin
    • da Gloria Sousa, M., et al. Restoration of pattern recognition receptor costimulation to treat chromoblastomycosis, a chronic fungal infection of the skin. Cell Host Microbe 9, 436-443 (2011).
    • (2011) Cell Host Microbe , vol.9 , pp. 436-443
    • Da Gloria Sousa, M.1
  • 44
    • 34250695423 scopus 로고    scopus 로고
    • Chemical structure of the cell-wall mannan of Candida albicans serotype A and its difference in yeast and hyphal forms
    • Shibata, N., Suzuki, A., Kobayashi, H., & Okawa, Y. Chemical structure of the cell-wall mannan of Candida albicans serotype A and its difference in yeast and hyphal forms. Biochem. J. 404, 365-372 (2007).
    • (2007) Biochem. J. , vol.404 , pp. 365-372
    • Shibata, N.1    Suzuki, A.2    Kobayashi, H.3    Okawa, Y.4
  • 45
    • 78149258924 scopus 로고    scopus 로고
    • Recognition of yeast by murine macrophages requires mannan but not glucan
    • Keppler-Ross, S., Douglas, L., Konopka, J. B., & Dean, N. Recognition of yeast by murine macrophages requires mannan but not glucan. Eukaryot. Cell 9, 1776-1787 (2010).
    • (2010) Eukaryot. Cell , vol.9 , pp. 1776-1787
    • Keppler-Ross, S.1    Douglas, L.2    Konopka, J.B.3    Dean, N.4
  • 46
    • 77956583415 scopus 로고    scopus 로고
    • A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells
    • Moyes, D. L., et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe 8 225-235 2010).
    • (2010) Cell Host Microbe , vol.8 , pp. 225-235
    • Moyes, D.L.1
  • 47
    • 80555129533 scopus 로고    scopus 로고
    • Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells
    • Moyes, D. L., et al. Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells. PLoS ONE 6, e26580 (2011).
    • (2011) PLoS ONE , vol.6 , pp. e26580
    • Moyes, D.L.1
  • 48
    • 84855747363 scopus 로고    scopus 로고
    • Candida albicans cell wall glycosylation may be indirectly required for activation of epithelial cell pro-inflammatory responses
    • Murciano, C., et al. Candida albicans cell wall glycosylation may be indirectly required for activation of epithelial cell pro-inflammatory responses. Infect. Immun. 12, 4902-4911 (2011).
    • (2011) Infect. Immun. , vol.12 , pp. 4902-4911
    • Murciano, C.1
  • 49
    • 79961092526 scopus 로고    scopus 로고
    • The dectin 1/inflammasome pathway is responsible for the induction of protective T helper 17 responses that discriminate between yeasts and hyphae of Candida albicans
    • Cheng, S. C., et al. The dectin 1/inflammasome pathway is responsible for the induction of protective T helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J. Leukoc. Biol. 90, 357-366 (2011).
    • (2011) J. Leukoc. Biol. , vol.90 , pp. 357-366
    • Cheng, S.C.1
  • 50
    • 84893702179 scopus 로고    scopus 로고
    • Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast
    • Lowman, D. W., et al. Novel structural features in Candida albicans hyphal glucan provide a basis for differential innate immune recognition of hyphae versus yeast. J. Biol. Chem. 289, 3432-3443 (2012).
    • (2012) J. Biol. Chem. , vol.289 , pp. 3432-3443
    • Lowman, D.W.1
  • 51
    • 84911418870 scopus 로고    scopus 로고
    • An anti-inflammatory property of Candida albicans β glucan: Induction of high levels of interleukin 1 receptor antagonist via a Dectin 1/ CR3 independent mechanism
    • Smeekens, S. P., et al. An anti-inflammatory property of Candida albicans β glucan: induction of high levels of interleukin 1 receptor antagonist via a Dectin 1/ CR3 independent mechanism. Cytokine. 71, 215-222 (2015).
    • (2015) Cytokine. , vol.71 , pp. 215-222
    • Smeekens, S.P.1
  • 52
    • 44849141076 scopus 로고    scopus 로고
    • Differential phagocytosis of white versus opaque Candida albicans by Drosophila and mouse phagocytes
    • Lohse, M. B., & Johnson, A. D. Differential phagocytosis of white versus opaque Candida albicans by Drosophila and mouse phagocytes. PLoS ONE 3, e1473 (2008).
    • (2008) PLoS ONE , vol.3 , pp. e1473
    • Lohse, M.B.1    Johnson, A.D.2
  • 53
    • 84896509799 scopus 로고    scopus 로고
    • Stress adaptation in a pathogenic fungus
    • Brown, A. J. P., et al. Stress adaptation in a pathogenic fungus. J. Exp. Biol. 217, 144-155 (2014).
    • (2014) J. Exp. Biol. , vol.217 , pp. 144-155
    • Brown, A.J.P.1
  • 54
    • 84865309913 scopus 로고    scopus 로고
    • Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen
    • Ene, I. V., et al. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell. Microbiol. 14, 1319-1335 (2012).
    • (2012) Cell. Microbiol. , vol.14 , pp. 1319-1335
    • Ene, I.V.1
  • 55
    • 84868152472 scopus 로고    scopus 로고
    • Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans
    • Ene, I. V., et al. Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans. Proteomics 12, 3164-3179 (2012).
    • (2012) Proteomics , vol.12 , pp. 3164-3179
    • Ene, I.V.1
  • 56
    • 84871886451 scopus 로고    scopus 로고
    • Growth of Candida albicans cells on the physiologically relevant carbon source, lactate, affects their recognition and phagocytosis by immune cells
    • Ene, I. V. Cheng, S. C., Netea, M. G., & Brown, A. J. P. Growth of Candida albicans cells on the physiologically relevant carbon source, lactate, affects their recognition and phagocytosis by immune cells. Infect. Immun. 81, 238-248 (2013).
    • (2013) Infect. Immun. , vol.81 , pp. 238-248
    • Ene, I.V.1    Cheng, S.C.2    Netea, M.G.3    Brown, A.J.P.4
  • 58
    • 79251475563 scopus 로고    scopus 로고
    • CO2 acts as a signalling molecule in populations of the fungal pathogen Candida albicans
    • Hall, R. A., et al. CO2 acts as a signalling molecule in populations of the fungal pathogen Candida albicans. PLoS Pathog. 6, e1001193 (2010).
    • (2010) PLoS Pathog. , vol.6 , pp. e1001193
    • Hall, R.A.1
  • 59
    • 34748873304 scopus 로고    scopus 로고
    • The cell wall: A carbohydrate armour for the fungal cell
    • Latg, J. P. The cell wall: a carbohydrate armour for the fungal cell. Mol. Microbiol. 66, 279-290 (2007).
    • (2007) Mol. Microbiol. , vol.66 , pp. 279-290
    • Latg, J.P.1
  • 60
    • 34447526486 scopus 로고    scopus 로고
    • Medicinal importance of fungal β-(1-3), (1-6)-glucans
    • Chen, J., & Seviour, R. Medicinal importance of fungal β-(1-3), (1-6)-glucans. Mycol. Res. 111, 635-652 (2007).
    • (2007) Mycol. Res. , vol.111 , pp. 635-652
    • Chen, J.1    Seviour, R.2
  • 61
    • 79955537225 scopus 로고    scopus 로고
    • Activation of the innate immune receptor Dectin 1 upon formation of a phagocytic synapse
    • Goodridge, H. S., et al. Activation of the innate immune receptor Dectin 1 upon formation of a phagocytic synapse. Nature. 472, 471-475 (2011).
    • (2011) Nature. , vol.472 , pp. 471-475
    • Goodridge, H.S.1
  • 62
    • 65449171976 scopus 로고    scopus 로고
    • Chitin is a size-Dependent regulator of macrophage TNF and IL 10 production
    • Da Silva, C. A., et al. Chitin is a size-Dependent regulator of macrophage TNF and IL 10 production. J. Immunol. 182, 3573-3582 (2009).
    • (2009) J. Immunol. , vol.182 , pp. 3573-3582
    • Da Silva, C.A.1
  • 63
    • 1842671656 scopus 로고    scopus 로고
    • The damage-response framework of microbial pathogenesis
    • Casadevall, A., & Pirofski, L. A. The damage-response framework of microbial pathogenesis. Nat. Rev. Microbiol. 1, 17-24 (2003).
    • (2003) Nat. Rev. Microbiol. , vol.1 , pp. 17-24
    • Casadevall, A.1    Pirofski, L.A.2
  • 64
    • 84891597639 scopus 로고    scopus 로고
    • Altered dynamics of Candida albicans phagocytosis by macrophages and PMNs when both phagocyte subsets are present
    • 13
    • Rudkin, F. M., Walls, J. M., Lewis, L. E., Gow, N. A. R., & Erwig, L. P. Altered dynamics of Candida albicans phagocytosis by macrophages and PMNs when both phagocyte subsets are present. mBio 4, e00810 13 (2013).
    • (2013) MBio , vol.4 , pp. e00810
    • Rudkin, F.M.1    Walls, J.M.2    Lewis, L.E.3    Gow, N.A.R.4    Erwig, L.P.5
  • 65
    • 84891365225 scopus 로고    scopus 로고
    • Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis
    • Ngo, L. Y., et al. Inflammatory monocytes mediate early and organ-specific innate defense during systemic candidiasis. J. Infect. Dis. 209, 109-119 (2014).
    • (2014) J. Infect. Dis. , vol.209 , pp. 109-119
    • Ngo, L.Y.1
  • 66
    • 84890020963 scopus 로고    scopus 로고
    • CX3CR1-dependent renal macrophage survival promotes Candida control and host survival
    • Lionakis, M. S., et al. CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. J. Clin. Invest. 123, 5035-5051 (2013).
    • (2013) J. Clin. Invest. , vol.123 , pp. 5035-5051
    • Lionakis, M.S.1
  • 67
    • 0035015782 scopus 로고    scopus 로고
    • Risk factors and predictors of outcome in patients with cancer and breakthrough candidemia
    • Uzun, O., Ascioglu, S., Anaissie, E. J., & Rex, J. H. Risk factors and predictors of outcome in patients with cancer and breakthrough candidemia. Clin. Infect. Dis. 32, 1713-1717 (2001).
    • (2001) Clin. Infect. Dis. , vol.32 , pp. 1713-1717
    • Uzun, O.1    Ascioglu, S.2    Anaissie, E.J.3    Rex, J.H.4
  • 68
    • 79952002918 scopus 로고    scopus 로고
    • Organ-specific innate immune responses in a mouse model of invasive candidiasis
    • Lionakis, M. S., Lim, J. K., & Murphy, P. M. Organ-specific innate immune responses in a mouse model of invasive candidiasis. J. Innate Immun. 3, 180-199 (2011).
    • (2011) J. Innate Immun. , vol.3 , pp. 180-199
    • Lionakis, M.S.1    Lim, J.K.2    Murphy, P.M.3
  • 69
    • 0032975714 scopus 로고    scopus 로고
    • Non-serum-Dependent chemotactic factors produced by Candida albicans stimulate chemotaxis by binding to the formyl peptide receptor on neutrophils and to an unknown receptor on macrophages
    • Edens, H. A., Kiang, C. A., Jesuits, T. W., Cutler, J. E., & Miettinen, H. M. Non-serum-Dependent chemotactic factors produced by Candida albicans stimulate chemotaxis by binding to the formyl peptide receptor on neutrophils and to an unknown receptor on macrophages. Infect. Immun. 67, 1063-1071 (1999).
    • (1999) Infect. Immun. , vol.67 , pp. 1063-1071
    • Edens, H.A.1    Kiang, C.A.2    Jesuits, T.W.3    Cutler, J.E.4    Miettinen, H.M.5
  • 70
    • 0842305647 scopus 로고    scopus 로고
    • Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans
    • Geiger, J., Wessels, D., Lockhart, S. R., & Soll, D. R. Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans. Infect. Immun. 72, 667-677 (2004).
    • (2004) Infect. Immun. , vol.72 , pp. 667-677
    • Geiger, J.1    Wessels, D.2    Lockhart, S.R.3    Soll, D.R.4
  • 71
    • 78049516774 scopus 로고    scopus 로고
    • Deletion of the Candida albicans histidine kinase gene CHK1 improves recognition by phagocytes through an increased exposure of cell wall β 1,3 glucans
    • Klippel, N., Cui, S., Groebe, L., & Bilitewski, U. Deletion of the Candida albicans histidine kinase gene CHK1 improves recognition by phagocytes through an increased exposure of cell wall β 1,3 glucans. Microbiology 156, 3432-3444 (2010).
    • (2010) Microbiology , vol.156 , pp. 3432-3444
    • Klippel, N.1    Cui, S.2    Groebe, L.3    Bilitewski, U.4
  • 72
    • 33748084030 scopus 로고    scopus 로고
    • Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by rho GTPases and ezrin-radixin-moesin (ERM) proteins
    • Erwig, L. P., et al. Differential regulation of phagosome maturation in macrophages and dendritic cells mediated by rho GTPases and ezrin-radixin-moesin (ERM) proteins. Proc. Natl Acad. Sci. USA 103, 12825-12830 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 12825-12830
    • Erwig, L.P.1
  • 73
    • 77950252783 scopus 로고    scopus 로고
    • Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages
    • McKenzie, C. G., et al. Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect. Immun. 78, 1650-1658 (2010).
    • (2010) Infect. Immun. , vol.78 , pp. 1650-1658
    • McKenzie, C.G.1
  • 74
    • 0031655385 scopus 로고    scopus 로고
    • Early signal transduction induced by Candida albicans in macrophages through shedding of a glycolipid
    • Jouault, T., et al. Early signal transduction induced by Candida albicans in macrophages through shedding of a glycolipid. J. Infect. Dis. 178, 792-802 (1998).
    • (1998) J. Infect. Dis. , vol.178 , pp. 792-802
    • Jouault, T.1
  • 75
    • 84865119423 scopus 로고    scopus 로고
    • Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes
    • Quintin, J., et al. Candida albicans infection affords protection against reinfection via functional reprogramming of monocytes. Cell Host Microbe 12, 223-232 (2012).
    • (2012) Cell Host Microbe , vol.12 , pp. 223-232
    • Quintin, J.1
  • 76
    • 84987806912 scopus 로고    scopus 로고
    • Kinetic studies of Candida parapsilosis phagocytosis by macrophages and detection of intracellular survival mechanisms
    • Tóth, R., et al. Kinetic studies of Candida parapsilosis phagocytosis by macrophages and detection of intracellular survival mechanisms. Front Microbiol. 5, 633 (2014).
    • (2014) Front Microbiol. , vol.5 , pp. 633
    • Tóth, R.1
  • 77
    • 84904247113 scopus 로고    scopus 로고
    • Hyphal growth of phagocytosed Fusarium oxysporum causes cell lysis and death of murine macrophages
    • Schäfer, K., Bain, J. M., Di Pietro, A., Gow, N. A. R., & Erwig, L. P. Hyphal growth of phagocytosed Fusarium oxysporum causes cell lysis and death of murine macrophages. PLoS ONE. 5, e101999 (2014).
    • (2014) PLoS ONE. , vol.5 , pp. e101999
    • Schäfer, K.1    Bain, J.M.2    Di Pietro, A.3    Gow, N.A.R.4    Erwig, L.P.5
  • 78
    • 38049123476 scopus 로고    scopus 로고
    • Clearance of apoptotic cells by phagocytes
    • Erwig, L. P., & Henson, P. M. Clearance of apoptotic cells by phagocytes. Cell Death Differ. 15, 243-250 (2008).
    • (2008) Cell Death Differ. , vol.15 , pp. 243-250
    • Erwig, L.P.1    Henson, P.M.2
  • 79
    • 84907462222 scopus 로고    scopus 로고
    • Distinct innate immune phagocyte responses to Aspergillus fumigatus conidia and hyphae in zebrafish larvae
    • Knox, B. P., et al. Distinct innate immune phagocyte responses to Aspergillus fumigatus conidia and hyphae in zebrafish larvae. Eukaryot. Cell 10, 1266-1277 (2014).
    • (2014) Eukaryot. Cell , vol.10 , pp. 1266-1277
    • Knox, B.P.1
  • 80
    • 0036604083 scopus 로고    scopus 로고
    • BAD1, an essential virulence factor of Blastomyces dermatitidis, suppresses host TNF a production through TGF β dependent and-independent mechanisms
    • Finkel-Jimenez, B., Wüthrich, M., & Klein, B. S. BAD1, an essential virulence factor of Blastomyces dermatitidis, suppresses host TNF a production through TGF β dependent and-independent mechanisms. J. Immunol. 168, 5746-57755 (2002).
    • (2002) J. Immunol. , vol.168 , pp. 5746-57755
    • Finkel-Jimenez, B.1    Wüthrich, M.2    Klein, B.S.3
  • 82
    • 84864134613 scopus 로고    scopus 로고
    • How nascent phagosomes mature to become phagolysosomes
    • Fairn, G. D., & Grinstein, S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol. 33, 397-405 (2012).
    • (2012) Trends Immunol. , vol.33 , pp. 397-405
    • Fairn, G.D.1    Grinstein, S.2
  • 83
    • 64749091309 scopus 로고    scopus 로고
    • Antimicrobial mechanisms of phagocytes and bacterial evasion strategies
    • Flannagan, R. S., Cosio, G., & Grinstein, S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol. 7, 355-366 (2009).
    • (2009) Nat. Rev. Microbiol. , vol.7 , pp. 355-366
    • Flannagan, R.S.1    Cosio, G.2    Grinstein, S.3
  • 84
    • 0027243781 scopus 로고
    • Histoplasma capsulatum modulates the acidification of phagolysosomes
    • Eissenberg, L. G., Goldman, W. E., & Schlesinger, P. H. Histoplasma capsulatum modulates the acidification of phagolysosomes. J. Exp. Med. 177, 1605-1611 (1993).
    • (1993) J. Exp. Med. , vol.177 , pp. 1605-1611
    • Eissenberg, L.G.1    Goldman, W.E.2    Schlesinger, P.H.3
  • 85
    • 80053077071 scopus 로고    scopus 로고
    • The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation
    • Seider, K., et al. The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J. Immunol. 187, 3072-3086 (2011).
    • (2011) J. Immunol. , vol.187 , pp. 3072-3086
    • Seider, K.1
  • 86
    • 62249165087 scopus 로고    scopus 로고
    • Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes
    • Fernández-Arenas, E., et al. Candida albicans actively modulates intracellular membrane trafficking in mouse macrophage phagosomes. Cell. Microbiol. 11, 560-589 (2009).
    • (2009) Cell. Microbiol. , vol.11 , pp. 560-589
    • Fernández-Arenas, E.1
  • 87
    • 84920911069 scopus 로고    scopus 로고
    • Candida albicans hypha formation and mannan masking of β glucan inhibit macrophage phagosome maturation
    • Bain, J. M., et al. Candida albicans hypha formation and mannan masking of β glucan inhibit macrophage phagosome maturation. mBio 5, e01874 (2014).
    • (2014) MBio , vol.5 , pp. e01874
    • Bain, J.M.1
  • 88
    • 31944434598 scopus 로고    scopus 로고
    • Role of the Hog1 stress-Activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans
    • Enjalbert, B., et al. Role of the Hog1 stress-Activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol. Biol. Cell. 17, 1018-1032 (2006).
    • (2006) Mol. Biol. Cell. , vol.17 , pp. 1018-1032
    • Enjalbert, B.1
  • 89
    • 77956693895 scopus 로고    scopus 로고
    • Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans
    • da Silva Dantas, A., et al. Thioredoxin regulates multiple hydrogen peroxide-induced signaling pathways in Candida albicans. Mol. Cell. Biol. 30, 4550-4563 (2010).
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 4550-4563
    • Da Silva Dantas, A.1
  • 90
    • 84888233299 scopus 로고    scopus 로고
    • Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape
    • Patterson, M. J., et al. Ybp1 and Gpx3 signaling in Candida albicans govern hydrogen peroxide-induced oxidation of the Cap1 transcription factor and macrophage escape. Antioxid. Redox Signal. 19, 2244-2260 (2013).
    • (2013) Antioxid. Redox Signal. , vol.19 , pp. 2244-2260
    • Patterson, M.J.1
  • 91
    • 84887281064 scopus 로고    scopus 로고
    • NADPH oxidase-Driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality
    • Brothers, K. M., et al. NADPH oxidase-Driven phagocyte recruitment controls Candida albicans filamentous growth and prevents mortality. PLoS Pathog. 9, e1003634 (2013).
    • (2013) PLoS Pathog. , vol.9 , pp. e1003634
    • Brothers, K.M.1
  • 92
    • 84935895982 scopus 로고    scopus 로고
    • Contribution of Fdh3 and Glr1 to glutathione redox state, stress adaptation and virulence in Candida albicans
    • Tillman, A., et al. Contribution of Fdh3 and Glr1 to glutathione redox state, stress adaptation and virulence in Candida albicans. PLoS ONE. 10, e0126940 (2015).
    • (2015) PLoS ONE. , vol.10 , pp. e0126940
    • Tillman, A.1
  • 93
    • 0032732046 scopus 로고    scopus 로고
    • Rapid recruitment of late endosomes and lysosomes in mouse macrophages ingesting Candida albicans
    • Káposzta, R., Maródi, L., Hollinshead, M., Gordon, S., & da Silva, R. P. Rapid recruitment of late endosomes and lysosomes in mouse macrophages ingesting Candida albicans. J. Cell Sci. 112, 3237-3248 (1999).
    • (1999) J. Cell Sci. , vol.112 , pp. 3237-3248
    • Káposzta, R.1    Maródi, L.2    Hollinshead, M.3    Gordon, S.4    Da Silva, R.P.5
  • 94
    • 84897442496 scopus 로고    scopus 로고
    • Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport
    • Vylkova, S., & Lorenz, M. C. Modulation of phagosomal pH by Candida albicans promotes hyphal morphogenesis and requires Stp2p, a regulator of amino acid transport. PLoS Pathog.10, e1003995 (2014).
    • (2014) PLoS Pathog. , vol.10 , pp. e1003995
    • Vylkova, S.1    Lorenz, M.C.2
  • 95
    • 84947571249 scopus 로고    scopus 로고
    • The Candida albicans ATO gene family promotes neutralization of the macrophage phagolysosome
    • Danhof, H. A., & Lorenz, M. C. The Candida albicans ATO gene family promotes neutralization of the macrophage phagolysosome. Infect. Immun. 83, 4416-4426 (2015).
    • (2015) Infect. Immun. , vol.83 , pp. 4416-4426
    • Danhof, H.A.1    Lorenz, M.C.2
  • 96
    • 38849091401 scopus 로고    scopus 로고
    • Characterization of a Listeria monocytogenes protein interfering with Rab5a
    • Alvarez-Dominguez, C., et al. Characterization of a Listeria monocytogenes protein interfering with Rab5a. Traffic. 9, 325-337 (2008).
    • (2008) Traffic. , vol.9 , pp. 325-337
    • Alvarez-Dominguez, C.1
  • 97
    • 84887552065 scopus 로고    scopus 로고
    • Functional role(s) of phagosomal Rab GTPases
    • Gutierrez, M. G. Functional role(s) of phagosomal Rab GTPases. Small GTPases 4, 148-158 (2013).
    • (2013) Small GTPases , vol.4 , pp. 148-158
    • Gutierrez, M.G.1
  • 98
    • 0035825154 scopus 로고    scopus 로고
    • The phagosome proteome: Insight into phagosome functions
    • Garin, J., et al. The phagosome proteome: insight into phagosome functions. J. Cell Biol. 152, 165-180 (2001).
    • (2001) J. Cell Biol. , vol.152 , pp. 165-180
    • Garin, J.1
  • 99
    • 77956534349 scopus 로고    scopus 로고
    • The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole
    • Bakowski, M. A., et al. The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe 7, 453-462 (2010).
    • (2010) Cell Host Microbe , vol.7 , pp. 453-462
    • Bakowski, M.A.1
  • 100
    • 84925349448 scopus 로고    scopus 로고
    • Rab14 regulates maturation of macrophage phagosomes containing the fungal pathogen Candida albicans and outcome of the host-pathogen interaction
    • Okai, B., Lyall, N., Gow, N. A., Bain, J. M., & Erwig, L. P. Rab14 regulates maturation of macrophage phagosomes containing the fungal pathogen Candida albicans and outcome of the host-pathogen interaction. Infect. Immun. 83, 1523-1535 (2015).
    • (2015) Infect. Immun. , vol.83 , pp. 1523-1535
    • Okai, B.1    Lyall, N.2    Gow, N.A.3    Bain, J.M.4    Erwig, L.P.5
  • 101
    • 84878407479 scopus 로고    scopus 로고
    • Dectin 1 activation controls maturation of β-1,3 glucan-containing phagosomes
    • Mansour, M. K., et al. Dectin 1 activation controls maturation of β-1,3 glucan-containing phagosomes. J. Biol. Chem. 288, 16043-16054 (2013).
    • (2013) J. Biol. Chem. , vol.288 , pp. 16043-16054
    • Mansour, M.K.1
  • 102
    • 84879532977 scopus 로고    scopus 로고
    • Brutons Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1 dependent phagocytosis of Candida albicans in macrophages
    • Strijbis, K., et al. Brutons Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1 dependent phagocytosis of Candida albicans in macrophages. PLoS Pathog. 9, e1003446 (2013).
    • (2013) PLoS Pathog. , vol.9 , pp. e1003446
    • Strijbis, K.1
  • 103
    • 33750467949 scopus 로고    scopus 로고
    • Recruitment of CD63 to Cryptococcus neoformans phagosomes requires acidification
    • Artavanis-Tsakonas, K., Love, J. C., Ploegh, H. L., & Vyas, J. M. Recruitment of CD63 to Cryptococcus neoformans phagosomes requires acidification. Proc. Natl Acad. Sci. USA 103, 15945-15950 (2006).
    • (2006) Proc. Natl Acad. Sci. USA , vol.103 , pp. 15945-15950
    • Artavanis-Tsakonas, K.1    Love, J.C.2    Ploegh, H.L.3    Vyas, J.M.4
  • 104
    • 0032913833 scopus 로고    scopus 로고
    • Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages
    • Levitz, S. M., et al. Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. Infect. Immun. 67, 885-890 (1999).
    • (1999) Infect. Immun. , vol.67 , pp. 885-890
    • Levitz, S.M.1
  • 105
    • 84927784466 scopus 로고    scopus 로고
    • The fungal pathogen Cryptococcus neoformans manipulates macrophage phagosome maturation
    • Smith, L. M., Dixon, E. F., & May, R. C. The fungal pathogen Cryptococcus neoformans manipulates macrophage phagosome maturation. Cell. Microbiol. 17, 702-713 (2015).
    • (2015) Cell. Microbiol. , vol.17 , pp. 702-713
    • Smith, L.M.1    Dixon, E.F.2    May, R.C.3
  • 106
    • 84900427596 scopus 로고    scopus 로고
    • Identification of Candida glabrata genes involved in pH modulation and modification of the phagosomal environment in macrophages
    • Kasper, L., et al. Identification of Candida glabrata genes involved in pH modulation and modification of the phagosomal environment in macrophages. PLoS ONE. 9, e96015 (2014).
    • (2014) PLoS ONE. , vol.9 , pp. e96015
    • Kasper, L.1
  • 107
    • 84903436778 scopus 로고    scopus 로고
    • Catching fire: Candida albicans, macrophages, and pyroptosis
    • Krysan, D. J., Sutterwala F. S., & Wellington M. Catching fire: Candida albicans, macrophages, and pyroptosis. PLoS Pathog. 10, e1004139 (2014).
    • (2014) PLoS Pathog. , vol.10 , pp. e1004139
    • Krysan, D.J.1    Sutterwala, F.S.2    Wellington, M.3
  • 108
    • 84893354236 scopus 로고    scopus 로고
    • Candida albicans triggers NLRP3 mediated pyroptosis in macrophages
    • Wellington, M., Koselny, K., Sutterwala, F. S., & Krysan, D. J. Candida albicans triggers NLRP3 mediated pyroptosis in macrophages. Eukaryot. Cell. 13, 329-340 (2014).
    • (2014) Eukaryot. Cell. , vol.13 , pp. 329-340
    • Wellington, M.1    Koselny, K.2    Sutterwala, F.S.3    Krysan, D.J.4
  • 109
    • 84874643221 scopus 로고    scopus 로고
    • Candida albicans morphogenesis is not required for macrophage interleukin 1β production
    • Wellington, M., Koselny, K., & Krysan, D. J. Candida albicans morphogenesis is not required for macrophage interleukin 1β production. mBio 4, e00433 (2012).
    • (2012) MBio , vol.4 , pp. e00433
    • Wellington, M.1    Koselny, K.2    Krysan, D.J.3
  • 110
    • 84926312414 scopus 로고    scopus 로고
    • Global analysis of fungal morphology exposes mechanisms of host cell escape
    • OMeara, T. R., et al. Global analysis of fungal morphology exposes mechanisms of host cell escape. Nat. Commun. 6, 6741 (2015).
    • (2015) Nat. Commun. , vol.6 , pp. 6741
    • O'Meara, T.R.1
  • 111
    • 84899731243 scopus 로고    scopus 로고
    • The pathogen Candida albicans hijacks pyroptosis for escape from macrophages
    • Uwanahoro, N., et al. The pathogen Candida albicans hijacks pyroptosis for escape from macrophages. mBio 5, e00003 14 (2014).
    • (2014) MBio , vol.14 , Issue.5 , pp. e00003
    • Uwanahoro, N.1
  • 112
    • 33750604745 scopus 로고    scopus 로고
    • Expulsion of live pathogenic yeast by macrophages
    • Ma, H., Croudace, J. E., Lammas, D. A., & May, R. C. Expulsion of live pathogenic yeast by macrophages. Curr. Biol. 16, 2156-2160 (2006).
    • (2006) Curr. Biol. , vol.16 , pp. 2156-2160
    • Ma, H.1    Croudace, J.E.2    Lammas, D.A.3    May, R.C.4
  • 113
    • 33750606979 scopus 로고    scopus 로고
    • Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages
    • Alvarez, M., & Casadevall, A. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr. Biol. 16, 2161-2165 (2006).
    • (2006) Curr. Biol. , vol.16 , pp. 2161-2165
    • Alvarez, M.1    Casadevall, A.2
  • 114
    • 84865158260 scopus 로고    scopus 로고
    • Non-lytic expulsion/exocytosis of Candida albicans from macrophages
    • Bain, J. M., et al. Non-lytic expulsion/exocytosis of Candida albicans from macrophages. Fungal Genet. Biol. 49, 677-678 (2012).
    • (2012) Fungal Genet. Biol. , vol.49 , pp. 677-678
    • Bain, J.M.1
  • 115
    • 79959480893 scopus 로고    scopus 로고
    • The interaction between Candida krusei and murine macrophages results in multiple outcomes, including intracellular survival and escape from killing
    • García-Rodas, R., Gonzalez-Camancho, F., Rodriguez-Tudela, J. L., Cuenca-Estrella, M., & Zaragoza, O. The interaction between Candida krusei and murine macrophages results in multiple outcomes, including intracellular survival and escape from killing. Infect. Immun. 79, 2136-2144 (2011).
    • (2011) Infect. Immun. , vol.79 , pp. 2136-2144
    • García-Rodas, R.1    Gonzalez-Camancho, F.2    Rodriguez-Tudela, J.L.3    Cuenca-Estrella, M.4    Zaragoza, O.5
  • 116
    • 80052597916 scopus 로고    scopus 로고
    • Nonlytic exocytosis of Cryptococcus neoformans from macrophages occurs in vivo and is influenced by phagosomal pH
    • Nicola, A. M., Robertson, E. J., Albuquerque, P., da Silveira Derengowski, L., & Casadevall, A. Nonlytic exocytosis of Cryptococcus neoformans from macrophages occurs in vivo and is influenced by phagosomal pH. mBio 2, e00167 11 (2011).
    • (2011) MBio , vol.11 , Issue.2 , pp. e00167
    • Nicola, A.M.1    Robertson, E.J.2    Albuquerque, P.3    Da Silveira Derengowski, L.4    Casadevall, A.5
  • 117
    • 77958144360 scopus 로고    scopus 로고
    • The human fungal pathogen Cryptococcus neoformans escapes macrophages by a phagosome emptying mechanism that is inhibited by Arp2/3 complex-mediated actin polymerisation
    • Johnston, S. A., & May, R. C. The human fungal pathogen Cryptococcus neoformans escapes macrophages by a phagosome emptying mechanism that is inhibited by Arp2/3 complex-mediated actin polymerisation. PLoS Pathog. 6, e1001041 (2010).
    • (2010) PLoS Pathog. , vol.6 , pp. e1001041
    • Johnston, S.A.1    May, R.C.2
  • 118
    • 77953270062 scopus 로고    scopus 로고
    • Actin and phosphoinositide recruitment of fully formed Candida albicans phagosomes in mouse macrophages
    • Heinsbroek, S. E. M., et al. Actin and phosphoinositide recruitment of fully formed Candida albicans phagosomes in mouse macrophages. Innate Immunol. 1, 244-253 (2009).
    • (2009) Innate Immunol. , vol.1 , pp. 244-253
    • Heinsbroek, S.E.M.1
  • 119
    • 0033588919 scopus 로고    scopus 로고
    • Listeria monocytogenes exploits normal host cell processes to spread from cell to cell
    • Robbins, J. R., et al.Listeria monocytogenes exploits normal host cell processes to spread from cell to cell. J. Cell Biol.146 1333-1350 (1999).
    • (1999) J. Cell Biol. , vol.146 , pp. 1333-1350
    • Robbins, J.R.1
  • 120
    • 77951820508 scopus 로고    scopus 로고
    • Cryptococci at the brain gate: Break and enter or use a Trojan horse?
    • Casadevall, A. Cryptococci at the brain gate: break and enter or use a Trojan horse? J. Clin. Invest. 120, 1389-1392 (2010).
    • (2010) J. Clin. Invest. , vol.120 , pp. 1389-1392
    • Casadevall, A.1
  • 121
    • 84865200499 scopus 로고    scopus 로고
    • Candida albicans infection inhibits macrophage cell division and proliferation
    • Lewis, L. E., Bain, J. M., Lowe, C., Gow, N. A. R., & Erwig, L. P. Candida albicans infection inhibits macrophage cell division and proliferation. Fungal Genet. Biol. 49, 679-680 (2012).
    • (2012) Fungal Genet. Biol. , vol.49 , pp. 679-680
    • Lewis, L.E.1    Bain, J.M.2    Lowe, C.3    Gow, N.A.R.4    Erwig, L.P.5
  • 122
    • 34548759583 scopus 로고    scopus 로고
    • Direct cell to cell spread of a pathogenic yeast
    • Ma, H., Croudace, J. E., Lammas, D. A., & May, R. C. Direct cell to cell spread of a pathogenic yeast. BMC Immunol. 8, 8-15 (2007).
    • (2007) BMC Immunol. , vol.8 , pp. 8-15
    • Ma, H.1    Croudace, J.E.2    Lammas, D.A.3    May, R.C.4
  • 123
    • 79958076329 scopus 로고    scopus 로고
    • Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages
    • Chrisman, C. J., Albuquerque, P., Guimaraes, A. J., Nieves, E., & Casadevall, A. Phospholipids trigger Cryptococcus neoformans capsular enlargement during interactions with amoebae and macrophages. PLoS Pathog. 7, e1002047 (2011).
    • (2011) PLoS Pathog. , vol.7 , pp. e1002047
    • Chrisman, C.J.1    Albuquerque, P.2    Guimaraes, A.J.3    Nieves, E.4    Casadevall, A.5
  • 124
    • 84865307122 scopus 로고    scopus 로고
    • Importance of the Candida albicans cell wall during commensalism and infection
    • Gow, N. A. R., & Hube, B. Importance of the Candida albicans cell wall during commensalism and infection. Curr. Opin. Microbiol. 4, 406-412 (2012).
    • (2012) Curr. Opin. Microbiol. , vol.4 , pp. 406-412
    • Gow, N.A.R.1    Hube, B.2
  • 125
    • 79953062342 scopus 로고    scopus 로고
    • Innate antifungal immunity: The key role of phagocytes
    • Brown, G. D. Innate antifungal immunity: the key role of phagocytes. Annu. Rev. Immunol. 29, 1-21 (2011).
    • (2011) Annu. Rev. Immunol. , vol.29 , pp. 1-21
    • Brown, G.D.1
  • 126
    • 84865411904 scopus 로고    scopus 로고
    • C type lectin receptors orchestrate antifungal immunity
    • Hardison, S. E., & Brown, G. D. C type lectin receptors orchestrate antifungal immunity. Nat. Immunol. 9, 817-822 (2012).
    • (2012) Nat Immunol. , vol.9 , pp. 817-822
    • Hardison, S.E.1    Brown, G.D.2
  • 127
    • 37349015349 scopus 로고    scopus 로고
    • An integrated model of the recognition of Candida albicans by the innate immune system
    • Netea, M. G., Brown, G. D., Kullberg, B. J., & Gow, N. A. R. An integrated model of the recognition of Candida albicans by the innate immune system. Nat. Rev. Microbiol. 1, 67-78 (2008).
    • (2008) Nat. Rev. Microbiol. , vol.1 , pp. 67-78
    • Netea, M.G.1    Brown, G.D.2    Kullberg, B.J.3    Gow, N.A.R.4
  • 128
    • 33845997473 scopus 로고    scopus 로고
    • Modelling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: Implications for microbial killing
    • Winterbourn, C. C., Hampton, M. B., Livesey, J. H., & Kettle, A. J. Modelling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing. J. Biol. Chem. 281, 39860-39869 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 39860-39869
    • Winterbourn, C.C.1    Hampton, M.B.2    Livesey, J.H.3    Kettle, A.J.4
  • 130
    • 84908303450 scopus 로고    scopus 로고
    • Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes
    • Kaloriti, D., et al. Mechanisms underlying the exquisite sensitivity of Candida albicans to combinatorial cationic and oxidative stress that enhances the potent fungicidal activity of phagocytes. mBio 5, e01334 14 (2014).
    • (2014) MBio , vol.14 , Issue.5 , pp. e01334
    • Kaloriti, D.1
  • 131
    • 79952651258 scopus 로고    scopus 로고
    • Defensins enable macrophages to inhibit intracellular proliferation of Listeria monocytogenes
    • Arnett, E., Lehrer, R. I., Pratikhya, P., Lu, W., & Seveau, S. Defensins enable macrophages to inhibit intracellular proliferation of Listeria monocytogenes. Cell. Microbiol. 13, 635-651 (2011).
    • (2011) Cell. Microbiol. , vol.13 , pp. 635-651
    • Arnett, E.1    Lehrer, R.I.2    Pratikhya, P.3    Lu, W.4    Seveau, S.5
  • 132
    • 68049105101 scopus 로고    scopus 로고
    • Rab GTPases as coordinators of vesicle traffic
    • Stenmark, H. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell. Biol. 10, 513-525 (2009).
    • (2009) Nat. Rev. Mol. Cell. Biol. , vol.10 , pp. 513-525
    • Stenmark, H.1
  • 133
    • 79959282083 scopus 로고    scopus 로고
    • Identification of a Brucella spp secreted effector specifically interacting with human small GTPase Rab2
    • de Barsy, M., et al. Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell. Microbiol. 13, 1044-1058 (2011).
    • (2011) Cell. Microbiol. , vol.13 , pp. 1044-1058
    • De Barsy, M.1
  • 134
    • 36749030024 scopus 로고    scopus 로고
    • Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1
    • Kuijl, C., et al. Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 450, 725-730 (2007).
    • (2007) Nature , vol.450 , pp. 725-730
    • Kuijl, C.1
  • 135
    • 34547217380 scopus 로고    scopus 로고
    • Effector proteins translocated by Legionella pneumophila: Strength in numbers
    • Ninio, S., & Roy, C. R. Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends Microbiol. 15, 372-380 (2007).
    • (2007) Trends Microbiol. , vol.15 , pp. 372-380
    • Ninio, S.1    Roy, C.R.2
  • 136
    • 84958227488 scopus 로고    scopus 로고
    • Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts
    • Ma, et al. Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts. Nat. Commun. 7, 10740 (2015).
    • (2015) Nat. Commun. , vol.7 , pp. 10740
    • Ma1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.