메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 5454-5463

UberNet: Training a universal convolutional neural network for Low-, Mid-, and high-level vision using diverse datasets and limited memory

Author keywords

[No Author keywords available]

Indexed keywords

BUDGET CONTROL; C (PROGRAMMING LANGUAGE); CONVOLUTION; IMAGE SEGMENTATION; MEMORY ARCHITECTURE; NETWORK ARCHITECTURE; NEURAL NETWORKS; OBJECT DETECTION; SEMANTICS;

EID: 85043458918     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.579     Document Type: Conference Paper
Times cited : (598)

References (57)
  • 1
    • 85044466104 scopus 로고    scopus 로고
    • Pixelnet: Towards a general pixel-level architecture
    • A. Bansal, X. Chen, B. Russell, A. Gupta, and D. Ramanan. Pixelnet: Towards a general pixel-level architecture. CoRR, abs/1609.06694, 2016.
    • (2016) CoRR
    • Bansal, A.1    Chen, X.2    Russell, B.3    Gupta, A.4    Ramanan, D.5
  • 2
    • 84986247538 scopus 로고    scopus 로고
    • Marr revisited: 2d-3d alignment via surface normal prediction
    • A. Bansal, B. Russell, and A. Gupta. Marr revisited: 2d-3d alignment via surface normal prediction. In Proc. CVPR, 2016.
    • (2016) Proc. CVPR
    • Bansal, A.1    Russell, B.2    Gupta, A.3
  • 3
    • 84986259967 scopus 로고    scopus 로고
    • Insideoutside net: Detecting objects in context with skip pooling and recurrent neural networks
    • S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. Insideoutside net: Detecting objects in context with skip pooling and recurrent neural networks. Proc. CVPR, 2016.
    • (2016) Proc. CVPR
    • Bell, S.1    Zitnick, C.L.2    Bala, K.3    Girshick, R.4
  • 4
    • 55149085224 scopus 로고    scopus 로고
    • A notion of task relatedness yielding provable multiple-task learning guarantees
    • S. Ben-David. A notion of task relatedness yielding provable multiple-task learning guarantees. M. Learning, 2008.
    • (2008) M. Learning
    • Ben-David, S.1
  • 5
    • 84973888826 scopus 로고    scopus 로고
    • High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision
    • G. Bertasius, J. Shi, and L. Torresani. High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision. In Proc. ICCV, 2015.
    • (2015) Proc. ICCV
    • Bertasius, G.1    Shi, J.2    Torresani, L.3
  • 6
    • 85018872495 scopus 로고    scopus 로고
    • Integrated perception with recurrent multi-task neural networks
    • H. Bilen and A. Vedaldi. Integrated perception with recurrent multi-task neural networks. In Proc. NIPS, 2016.
    • (2016) Proc. NIPS
    • Bilen, H.1    Vedaldi, A.2
  • 7
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 8
    • 85019959611 scopus 로고    scopus 로고
    • Fast, exact and multiscale inference for semantic image segmentation with deep Gaussian crfs
    • S. Chandra and I. Kokkinos. Fast, exact and multiscale inference for semantic image segmentation with deep gaussian crfs. In Proc. ECCV, 2016.
    • (2016) Proc. ECCV
    • Chandra, S.1    Kokkinos, I.2
  • 9
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In Proc. ICLR, 2015.
    • (2015) Proc. ICLR
    • Chen, L.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 10
    • 85028056718 scopus 로고    scopus 로고
    • Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
    • L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. CoRR, abs/1606.00915, 2016.
    • (2016) CoRR
    • Chen, L.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 11
    • 84986290525 scopus 로고    scopus 로고
    • Attention to scale: Scale-aware semantic image segmentation
    • L. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. Attention to scale: Scale-aware semantic image segmentation. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Chen, L.1    Yang, Y.2    Wang, J.3    Xu, W.4    Yuille, A.L.5
  • 12
    • 84997227706 scopus 로고    scopus 로고
    • Training deep nets with sublinear memory cost
    • T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with sublinear memory cost. CoRR, abs/1604.06174, 2016.
    • (2016) CoRR
    • Chen, T.1    Xu, B.2    Zhang, C.3    Guestrin, C.4
  • 13
    • 84911421600 scopus 로고    scopus 로고
    • Detect what you can: Detecting and representing objects using holistic models and body parts
    • X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille. Detect what you can: Detecting and representing objects using holistic models and body parts. In Proc. CVPR, 2014.
    • (2014) Proc. CVPR
    • Chen, X.1    Mottaghi, R.2    Liu, X.3    Fidler, S.4    Urtasun, R.5    Yuille, A.6
  • 14
    • 84973890848 scopus 로고    scopus 로고
    • Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
    • J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In Proc. ICCV, 2015.
    • (2015) Proc. ICCV
    • Dai, J.1    He, K.2    Sun, J.3
  • 15
    • 84986282070 scopus 로고    scopus 로고
    • Instance-aware semantic segmentation via multi-task network cascades
    • J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation via multi-task network cascades. In Proc. CVPR, 2016.
    • (2016) Proc. CVPR
    • Dai, J.1    He, K.2    Sun, J.3
  • 16
    • 85018938177 scopus 로고    scopus 로고
    • R-FCN: Object detection via region-based fully convolutional networks
    • J. Dai, Y. Li, K. He, and J. Sun. R-FCN: object detection via region-based fully convolutional networks. In Proc. NIPS, 2016.
    • (2016) Proc. NIPS
    • Dai, J.1    Li, Y.2    He, K.3    Sun, J.4
  • 17
    • 84973897611 scopus 로고    scopus 로고
    • Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
    • D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In Proc. ICCV, 2015.
    • (2015) Proc. ICCV
    • Eigen, D.1    Fergus, R.2
  • 18
    • 85023761923 scopus 로고    scopus 로고
    • Laplacian reconstruction and refinement for semantic segmentation
    • G. Ghiasi and C. C. Fowlkes. Laplacian reconstruction and refinement for semantic segmentation. In Proc. ECCV, 2016.
    • (2016) Proc. ECCV
    • Ghiasi, G.1    Fowlkes, C.C.2
  • 23
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and finegrained localization
    • B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and finegrained localization. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Hariharan, B.1    Arbeláez, P.2    Girshick, R.3    Malik, J.4
  • 24
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. CVPR, 2016.
    • (2016) Proc. CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 25
    • 84969584486 scopus 로고    scopus 로고
    • Batch Normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proc. ICML, 2015.
    • (2015) Proc. ICML
    • Ioffe, S.1    Szegedy, C.2
  • 26
    • 84992495709 scopus 로고    scopus 로고
    • Locally scale-invariant convolutional neural networks
    • A. Kanazawa, A. Sharma, and D. W. Jacobs. Locally scale-invariant convolutional neural networks. CoRR, abs/1412.5104, 2014.
    • (2014) CoRR
    • Kanazawa, A.1    Sharma, A.2    Jacobs, D.W.3
  • 27
    • 80053435765 scopus 로고    scopus 로고
    • Learning with whom to share in multi-task feature learning
    • Z. Kang, K. Grauman, and F. Sha. Learning with whom to share in multi-task feature learning. In ICML, 2011.
    • (2011) ICML
    • Kang, Z.1    Grauman, K.2    Sha, F.3
  • 29
    • 85083952789 scopus 로고    scopus 로고
    • Pushing the boundaries of boundary detection using deep learning
    • I. Kokkinos. Pushing the boundaries of boundary detection using deep learning. ICLR, 2016.
    • (2016) ICLR
    • Kokkinos, I.1
  • 30
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected crfs with Gaussian edge potentials
    • P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge potentials. In NIPS, 2011.
    • (2011) NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 31
    • 84959197795 scopus 로고    scopus 로고
    • Discriminatively trained dense surface normal estimation
    • L. Ladicky, B. Zeisl, and M. Pollefeys. Discriminatively trained dense surface normal estimation. In Proc. ECCV, 2014.
    • (2014) Proc. ECCV
    • Ladicky, L.1    Zeisl, B.2    Pollefeys, M.3
  • 32
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. In Proc. IEEE, 1998.
    • (1998) Proc. IEEE
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 33
    • 84959188465 scopus 로고    scopus 로고
    • Visual saliency based on multiscale deep features
    • G. Li and Y. Yu. Visual saliency based on multiscale deep features. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Li, G.1    Yu, Y.2
  • 34
    • 84986290339 scopus 로고    scopus 로고
    • Deep contrast learning for salient object detection
    • G. Li and Y. Yu. Deep contrast learning for salient object detection. In Proc. CVPR, 2016.
    • (2016) Proc. CVPR
    • Li, G.1    Yu, Y.2
  • 37
    • 84986261676 scopus 로고    scopus 로고
    • Efficient piecewise training of deep structured models for semantic segmentation
    • G. Lin, C. Shen, I. D. Reid, and A. van den Hengel. Efficient piecewise training of deep structured models for semantic segmentation. CVPR, 2016.
    • (2016) CVPR
    • Lin, G.1    Shen, C.2    Reid, I.D.3    Van Den Hengel, A.4
  • 38
    • 85006784854 scopus 로고    scopus 로고
    • Parsenet: Looking wider to see better
    • W. Liu, A. Rabinovich, and A. C. Berg. Parsenet: Looking wider to see better. CoRR, abs/1506.04579, 2015.
    • (2015) CoRR
    • Liu, W.1    Rabinovich, A.2    Berg, A.C.3
  • 39
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 40
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proc. ICCV, 2001.
    • (2001) Proc. ICCV
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 42
    • 84990062418 scopus 로고    scopus 로고
    • Stacked hourglass networks for human pose estimation
    • A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation. CoRR, abs/1603.06937, 2016.
    • (2016) CoRR
    • Newell, A.1    Yang, K.2    Deng, J.3
  • 43
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In Proc. ICCV, 2015.
    • (2015) Proc. ICCV
    • Noh, H.1    Hong, S.2    Han, B.3
  • 44
    • 85041932110 scopus 로고    scopus 로고
    • Weakly- and semi-supervised learning of a DCNN for semantic image segmentation
    • G. Papandreou, L. Chen, K. Murphy, and A. L. Yuille. Weakly- and semi-supervised learning of a DCNN for semantic image segmentation. In Proc. ICCV, 2015.
    • (2015) Proc. ICCV
    • Papandreou, G.1    Chen, L.2    Murphy, K.3    Yuille, A.L.4
  • 45
    • 84959218210 scopus 로고    scopus 로고
    • Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance learning, and sliding window detection
    • G. Papandreou, I. Kokkinos, and P. Savalle. Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance learning, and sliding window detection. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Papandreou, G.1    Kokkinos, I.2    Savalle, P.3
  • 47
    • 85016118349 scopus 로고    scopus 로고
    • Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition
    • R. Ranjan, V. M. Patel, and R. Chellappa. Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. CoRR, abs/1603.01249, 2016.
    • (2016) CoRR
    • Ranjan, R.1    Patel, V.M.2    Chellappa, R.3
  • 48
    • 84960980241 scopus 로고    scopus 로고
    • Faster RCNN: Towards real-time object detection with region proposal networks
    • S. Ren, K. He, R. B. Girshick, and J. Sun. Faster RCNN: towards real-time object detection with region proposal networks. In Proc. NIPS, 2015.
    • (2015) Proc. NIPS
    • Ren, S.1    He, K.2    Girshick, R.B.3    Sun, J.4
  • 49
    • 85011287288 scopus 로고    scopus 로고
    • U-net: Convolutional networks for biomedical image segmentation
    • O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Proc. MICCAI, 2015.
    • (2015) Proc. MICCAI
    • Ronneberger, O.1    Fischer, P.2    Brox, T.3
  • 50
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In Proc. ICLR, 2014.
    • (2014) Proc. ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 51
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Proc. ICLR, 2015.
    • (2015) Proc. ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 53
    • 84959234840 scopus 로고    scopus 로고
    • Designing deep networks for surface normal estimation
    • X. Wang, D. F. Fouhey, and A. Gupta. Designing deep networks for surface normal estimation. In Proc. CVPR, 2015.
    • (2015) Proc. CVPR
    • Wang, X.1    Fouhey, D.F.2    Gupta, A.3
  • 54
    • 85041911631 scopus 로고    scopus 로고
    • Zoom better to see clearer: Human part segmentation with auto zoom net
    • F. Xia, P. Wang, L. Chen, and A. L. Yuille. Zoom better to see clearer: Human part segmentation with auto zoom net. In Proc. ECCV, 2016.
    • (2016) Proc. ECCV
    • Xia, F.1    Wang, P.2    Chen, L.3    Yuille, A.L.4
  • 55
    • 85043777453 scopus 로고    scopus 로고
    • Aggregated residual transformations for deep neural networks
    • S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep neural networks. In CVPR, 2017.
    • (2017) CVPR
    • Xie, S.1    Girshick, R.B.2    Dollár, P.3    Tu, Z.4    He, K.5
  • 56
    • 84973859794 scopus 로고    scopus 로고
    • Holistically-nested edge detection
    • S. Xie and Z. Tu. Holistically-nested edge detection. In Proc. ICCV, 2015.
    • (2015) Proc. ICCV
    • Xie, S.1    Tu, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.