-
1
-
-
85044466104
-
Pixelnet: Towards a general pixel-level architecture
-
A. Bansal, X. Chen, B. Russell, A. Gupta, and D. Ramanan. Pixelnet: Towards a general pixel-level architecture. CoRR, abs/1609.06694, 2016.
-
(2016)
CoRR
-
-
Bansal, A.1
Chen, X.2
Russell, B.3
Gupta, A.4
Ramanan, D.5
-
2
-
-
84986247538
-
Marr revisited: 2d-3d alignment via surface normal prediction
-
A. Bansal, B. Russell, and A. Gupta. Marr revisited: 2d-3d alignment via surface normal prediction. In Proc. CVPR, 2016.
-
(2016)
Proc. CVPR
-
-
Bansal, A.1
Russell, B.2
Gupta, A.3
-
3
-
-
84986259967
-
Insideoutside net: Detecting objects in context with skip pooling and recurrent neural networks
-
S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. Insideoutside net: Detecting objects in context with skip pooling and recurrent neural networks. Proc. CVPR, 2016.
-
(2016)
Proc. CVPR
-
-
Bell, S.1
Zitnick, C.L.2
Bala, K.3
Girshick, R.4
-
4
-
-
55149085224
-
A notion of task relatedness yielding provable multiple-task learning guarantees
-
S. Ben-David. A notion of task relatedness yielding provable multiple-task learning guarantees. M. Learning, 2008.
-
(2008)
M. Learning
-
-
Ben-David, S.1
-
5
-
-
84973888826
-
High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision
-
G. Bertasius, J. Shi, and L. Torresani. High-for-low and low-for-high: Efficient boundary detection from deep object features and its applications to high-level vision. In Proc. ICCV, 2015.
-
(2015)
Proc. ICCV
-
-
Bertasius, G.1
Shi, J.2
Torresani, L.3
-
6
-
-
85018872495
-
Integrated perception with recurrent multi-task neural networks
-
H. Bilen and A. Vedaldi. Integrated perception with recurrent multi-task neural networks. In Proc. NIPS, 2016.
-
(2016)
Proc. NIPS
-
-
Bilen, H.1
Vedaldi, A.2
-
7
-
-
0031189914
-
Multitask learning
-
R. Caruana. Multitask learning. Machine Learning, 28(1):41-75, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
8
-
-
85019959611
-
Fast, exact and multiscale inference for semantic image segmentation with deep Gaussian crfs
-
S. Chandra and I. Kokkinos. Fast, exact and multiscale inference for semantic image segmentation with deep gaussian crfs. In Proc. ECCV, 2016.
-
(2016)
Proc. ECCV
-
-
Chandra, S.1
Kokkinos, I.2
-
9
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected crfs
-
L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In Proc. ICLR, 2015.
-
(2015)
Proc. ICLR
-
-
Chen, L.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
10
-
-
85028056718
-
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
-
L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. CoRR, abs/1606.00915, 2016.
-
(2016)
CoRR
-
-
Chen, L.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
11
-
-
84986290525
-
Attention to scale: Scale-aware semantic image segmentation
-
L. Chen, Y. Yang, J. Wang, W. Xu, and A. L. Yuille. Attention to scale: Scale-aware semantic image segmentation. In Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Chen, L.1
Yang, Y.2
Wang, J.3
Xu, W.4
Yuille, A.L.5
-
12
-
-
84997227706
-
Training deep nets with sublinear memory cost
-
T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with sublinear memory cost. CoRR, abs/1604.06174, 2016.
-
(2016)
CoRR
-
-
Chen, T.1
Xu, B.2
Zhang, C.3
Guestrin, C.4
-
13
-
-
84911421600
-
Detect what you can: Detecting and representing objects using holistic models and body parts
-
X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille. Detect what you can: Detecting and representing objects using holistic models and body parts. In Proc. CVPR, 2014.
-
(2014)
Proc. CVPR
-
-
Chen, X.1
Mottaghi, R.2
Liu, X.3
Fidler, S.4
Urtasun, R.5
Yuille, A.6
-
14
-
-
84973890848
-
Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
-
J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In Proc. ICCV, 2015.
-
(2015)
Proc. ICCV
-
-
Dai, J.1
He, K.2
Sun, J.3
-
15
-
-
84986282070
-
Instance-aware semantic segmentation via multi-task network cascades
-
J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation via multi-task network cascades. In Proc. CVPR, 2016.
-
(2016)
Proc. CVPR
-
-
Dai, J.1
He, K.2
Sun, J.3
-
16
-
-
85018938177
-
R-FCN: Object detection via region-based fully convolutional networks
-
J. Dai, Y. Li, K. He, and J. Sun. R-FCN: object detection via region-based fully convolutional networks. In Proc. NIPS, 2016.
-
(2016)
Proc. NIPS
-
-
Dai, J.1
Li, Y.2
He, K.3
Sun, J.4
-
17
-
-
84973897611
-
Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
-
D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In Proc. ICCV, 2015.
-
(2015)
Proc. ICCV
-
-
Eigen, D.1
Fergus, R.2
-
18
-
-
85023761923
-
Laplacian reconstruction and refinement for semantic segmentation
-
G. Ghiasi and C. C. Fowlkes. Laplacian reconstruction and refinement for semantic segmentation. In Proc. ECCV, 2016.
-
(2016)
Proc. ECCV
-
-
Ghiasi, G.1
Fowlkes, C.C.2
-
21
-
-
85028043258
-
Memory-efficient backpropagation through time
-
A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves. Memory-efficient backpropagation through time. CoRR, abs/1606.03401, 2016.
-
(2016)
CoRR
-
-
Gruslys, A.1
Munos, R.2
Danihelka, I.3
Lanctot, M.4
Graves, A.5
-
22
-
-
84856686500
-
Semantic contours from inverse detectors
-
B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse detectors. In Proc. ICCV, 2011.
-
(2011)
Proc. ICCV
-
-
Hariharan, B.1
Arbeláez, P.2
Bourdev, L.3
Maji, S.4
Malik, J.5
-
24
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proc. CVPR, 2016.
-
(2016)
Proc. CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
25
-
-
84969584486
-
Batch Normalization: Accelerating deep network training by reducing internal covariate shift
-
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proc. ICML, 2015.
-
(2015)
Proc. ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
26
-
-
84992495709
-
Locally scale-invariant convolutional neural networks
-
A. Kanazawa, A. Sharma, and D. W. Jacobs. Locally scale-invariant convolutional neural networks. CoRR, abs/1412.5104, 2014.
-
(2014)
CoRR
-
-
Kanazawa, A.1
Sharma, A.2
Jacobs, D.W.3
-
27
-
-
80053435765
-
Learning with whom to share in multi-task feature learning
-
Z. Kang, K. Grauman, and F. Sha. Learning with whom to share in multi-task feature learning. In ICML, 2011.
-
(2011)
ICML
-
-
Kang, Z.1
Grauman, K.2
Sha, F.3
-
28
-
-
85016395012
-
Overcoming catastrophic forgetting in neural networks
-
J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.
-
(2017)
PNAS
-
-
Kirkpatrick, J.1
Pascanu, R.2
Rabinowitz, N.C.3
Veness, J.4
Desjardins, G.5
Rusu, A.A.6
Milan, K.7
Quan, J.8
Ramalho, T.9
Grabska-Barwinska, A.10
Hassabis, D.11
Clopath, C.12
Kumaran, D.13
Hadsell, R.14
-
29
-
-
85083952789
-
Pushing the boundaries of boundary detection using deep learning
-
I. Kokkinos. Pushing the boundaries of boundary detection using deep learning. ICLR, 2016.
-
(2016)
ICLR
-
-
Kokkinos, I.1
-
30
-
-
85162351107
-
Efficient inference in fully connected crfs with Gaussian edge potentials
-
P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with gaussian edge potentials. In NIPS, 2011.
-
(2011)
NIPS
-
-
Krähenbühl, P.1
Koltun, V.2
-
31
-
-
84959197795
-
Discriminatively trained dense surface normal estimation
-
L. Ladicky, B. Zeisl, and M. Pollefeys. Discriminatively trained dense surface normal estimation. In Proc. ECCV, 2014.
-
(2014)
Proc. ECCV
-
-
Ladicky, L.1
Zeisl, B.2
Pollefeys, M.3
-
33
-
-
84959188465
-
Visual saliency based on multiscale deep features
-
G. Li and Y. Yu. Visual saliency based on multiscale deep features. In Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Li, G.1
Yu, Y.2
-
34
-
-
84986290339
-
Deep contrast learning for salient object detection
-
G. Li and Y. Yu. Deep contrast learning for salient object detection. In Proc. CVPR, 2016.
-
(2016)
Proc. CVPR
-
-
Li, G.1
Yu, Y.2
-
35
-
-
84911400874
-
The secrets of salient object segmentation
-
Y. Li, X. Hou, C. Koch, J. M. Rehg, and A. L. Yuille. The secrets of salient object segmentation. In Proc. CVPR, 2014.
-
(2014)
Proc. CVPR
-
-
Li, Y.1
Hou, X.2
Koch, C.3
Rehg, J.M.4
Yuille, A.L.5
-
37
-
-
84986261676
-
Efficient piecewise training of deep structured models for semantic segmentation
-
G. Lin, C. Shen, I. D. Reid, and A. van den Hengel. Efficient piecewise training of deep structured models for semantic segmentation. CVPR, 2016.
-
(2016)
CVPR
-
-
Lin, G.1
Shen, C.2
Reid, I.D.3
Van Den Hengel, A.4
-
38
-
-
85006784854
-
Parsenet: Looking wider to see better
-
W. Liu, A. Rabinovich, and A. C. Berg. Parsenet: Looking wider to see better. CoRR, abs/1506.04579, 2015.
-
(2015)
CoRR
-
-
Liu, W.1
Rabinovich, A.2
Berg, A.C.3
-
39
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
40
-
-
0034850577
-
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
-
D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proc. ICCV, 2001.
-
(2001)
Proc. ICCV
-
-
Martin, D.1
Fowlkes, C.2
Tal, D.3
Malik, J.4
-
42
-
-
84990062418
-
Stacked hourglass networks for human pose estimation
-
A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation. CoRR, abs/1603.06937, 2016.
-
(2016)
CoRR
-
-
Newell, A.1
Yang, K.2
Deng, J.3
-
43
-
-
84973879016
-
Learning deconvolution network for semantic segmentation
-
H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. In Proc. ICCV, 2015.
-
(2015)
Proc. ICCV
-
-
Noh, H.1
Hong, S.2
Han, B.3
-
44
-
-
85041932110
-
Weakly- and semi-supervised learning of a DCNN for semantic image segmentation
-
G. Papandreou, L. Chen, K. Murphy, and A. L. Yuille. Weakly- and semi-supervised learning of a DCNN for semantic image segmentation. In Proc. ICCV, 2015.
-
(2015)
Proc. ICCV
-
-
Papandreou, G.1
Chen, L.2
Murphy, K.3
Yuille, A.L.4
-
45
-
-
84959218210
-
Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance learning, and sliding window detection
-
G. Papandreou, I. Kokkinos, and P. Savalle. Modeling local and global deformations in deep learning: Epitomic convolution, multiple instance learning, and sliding window detection. In Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Papandreou, G.1
Kokkinos, I.2
Savalle, P.3
-
47
-
-
85016118349
-
Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition
-
R. Ranjan, V. M. Patel, and R. Chellappa. Hyperface: A deep multi-task learning framework for face detection, landmark localization, pose estimation, and gender recognition. CoRR, abs/1603.01249, 2016.
-
(2016)
CoRR
-
-
Ranjan, R.1
Patel, V.M.2
Chellappa, R.3
-
48
-
-
84960980241
-
Faster RCNN: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. B. Girshick, and J. Sun. Faster RCNN: towards real-time object detection with region proposal networks. In Proc. NIPS, 2015.
-
(2015)
Proc. NIPS
-
-
Ren, S.1
He, K.2
Girshick, R.B.3
Sun, J.4
-
49
-
-
85011287288
-
U-net: Convolutional networks for biomedical image segmentation
-
O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. In Proc. MICCAI, 2015.
-
(2015)
Proc. MICCAI
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
50
-
-
85083951635
-
Overfeat: Integrated recognition, localization and detection using convolutional networks
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In Proc. ICLR, 2014.
-
(2014)
Proc. ICLR
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
51
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Proc. ICLR, 2015.
-
(2015)
Proc. ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
53
-
-
84959234840
-
Designing deep networks for surface normal estimation
-
X. Wang, D. F. Fouhey, and A. Gupta. Designing deep networks for surface normal estimation. In Proc. CVPR, 2015.
-
(2015)
Proc. CVPR
-
-
Wang, X.1
Fouhey, D.F.2
Gupta, A.3
-
54
-
-
85041911631
-
Zoom better to see clearer: Human part segmentation with auto zoom net
-
F. Xia, P. Wang, L. Chen, and A. L. Yuille. Zoom better to see clearer: Human part segmentation with auto zoom net. In Proc. ECCV, 2016.
-
(2016)
Proc. ECCV
-
-
Xia, F.1
Wang, P.2
Chen, L.3
Yuille, A.L.4
-
55
-
-
85043777453
-
Aggregated residual transformations for deep neural networks
-
S. Xie, R. B. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated residual transformations for deep neural networks. In CVPR, 2017.
-
(2017)
CVPR
-
-
Xie, S.1
Girshick, R.B.2
Dollár, P.3
Tu, Z.4
He, K.5
-
56
-
-
84973859794
-
Holistically-nested edge detection
-
S. Xie and Z. Tu. Holistically-nested edge detection. In Proc. ICCV, 2015.
-
(2015)
Proc. ICCV
-
-
Xie, S.1
Tu, Z.2
-
57
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. Torr. Conditional random fields as recurrent neural networks. In Proc. ICCV, 2015.
-
(2015)
Proc. ICCV
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.8
|