-
1
-
-
84911417279
-
Multiscale combinatorial grouping
-
P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik. Multiscale combinatorial grouping. In CVPR, 2014.
-
(2014)
CVPR
-
-
Arbeláez, P.1
Pont-Tuset, J.2
Barron, J.T.3
Marques, F.4
Malik, J.5
-
3
-
-
84861335581
-
Cpmc: Automatic object segmentation using constrained parametric min-cuts
-
J. Carreira and C. Sminchisescu. Cpmc: Automatic object segmentation using constrained parametric min-cuts. TPAMI, 2012.
-
(2012)
TPAMI
-
-
Carreira, J.1
Sminchisescu, C.2
-
4
-
-
0031189914
-
Multitask learning
-
R. Caruana. Multitask learning. Machine learning, 28(1):41-75, 1997.
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
5
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected crfs
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015.
-
(2015)
ICLR
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
6
-
-
84973890848
-
Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
-
J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Dai, J.1
He, K.2
Sun, J.3
-
7
-
-
84959216100
-
Convolutional feature masking for joint object and stuff segmentation
-
J. Dai, K. He, and J. Sun. Convolutional feature masking for joint object and stuff segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Dai, J.1
He, K.2
Sun, J.3
-
8
-
-
84973864191
-
Object detection via a multiregion & semantic segmentation-aware cnn model
-
S. Gidaris and N. Komodakis. Object detection via a multiregion & semantic segmentation-aware cnn model. In ICCV, 2015.
-
(2015)
ICCV
-
-
Gidaris, S.1
Komodakis, N.2
-
9
-
-
85029359197
-
Fast R-CNN
-
R. Girshick. Fast R-CNN. In ICCV, 2015.
-
(2015)
ICCV
-
-
Girshick, R.1
-
10
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
11
-
-
84892421248
-
-
arXiv:1302.4389
-
I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. arXiv:1302.4389, 2013.
-
(2013)
Maxout Networks
-
-
Goodfellow, I.J.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
12
-
-
84856686500
-
Semantic contours from inverse detectors
-
B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse detectors. In ICCV, 2011.
-
(2011)
ICCV
-
-
Hariharan, B.1
Arbeláez, P.2
Bourdev, L.3
Maji, S.4
Malik, J.5
-
14
-
-
84959236250
-
Hypercolumns for object segmentation and fine-grained localization
-
B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
-
(2015)
CVPR
-
-
Hariharan, B.1
Arbeláez, P.2
Girshick, R.3
Malik, J.4
-
15
-
-
85009918748
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014.
-
(2014)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
17
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015.
-
(2015)
ICCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
19
-
-
85009867858
-
-
arXiv preprint arXiv:1408.5093
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
20
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
21
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1989.
-
(1989)
Neural Computation
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
22
-
-
85009931853
-
Microsoft COCO: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft COCO: Common objects in context. In ECCV. 2014.
-
(2014)
ECCV.
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
23
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
24
-
-
84965124068
-
Weakly-and semi-supervised learning of a dcnn for semantic image segmentation
-
G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weakly-and semi-supervised learning of a dcnn for semantic image segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Papandreou, G.1
Chen, L.-C.2
Murphy, K.3
Yuille, A.L.4
-
26
-
-
84960980241
-
Faster R-CNN: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015.
-
(2015)
NIPS
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
27
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
28
-
-
84898978862
-
Compete to compute
-
R. K. Srivastava, J. Masci, S. Kazerounian, F. Gomez, and J. Schmidhuber. Compete to compute. In NIPS, 2013.
-
(2013)
NIPS
-
-
Srivastava, R.K.1
Masci, J.2
Kazerounian, S.3
Gomez, F.4
Schmidhuber, J.5
-
30
-
-
84937902251
-
Visualizing and understanding convolutional neural networks
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional neural networks. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zeiler, M.D.1
Fergus, R.2
-
31
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. Torr. Conditional random fields as recurrent neural networks. In ICCV, 2015.
-
(2015)
ICCV
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.8
-
32
-
-
85009853104
-
Edge boxes: Locating object proposals from edges
-
C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zitnick, C.L.1
Dollár, P.2
|