메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 447-456

Hypercolumns for object segmentation and fine-grained localization

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER VISION; PIXELS; SEMANTICS;

EID: 84959236250     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298642     Document Type: Conference Paper
Times cited : (1602)

References (44)
  • 3
    • 80052880727 scopus 로고    scopus 로고
    • Shape-based pedestrian parsing
    • Y. Bo and C. C. Fowlkes. Shape-based pedestrian parsing. In CVPR, 2011
    • (2011) CVPR
    • Bo, Y.1    Fowlkes, C.C.2
  • 4
    • 0042004575 scopus 로고    scopus 로고
    • Class-specific, top-down segmentation
    • E. Borenstein and S. Ullman. Class-specific, top-down segmentation. In ECCV. 2002
    • (2002) ECCV
    • Borenstein, E.1    Ullman, S.2
  • 5
    • 80052912306 scopus 로고    scopus 로고
    • Detecting people using mutually consistent poselet activations
    • L. Bourdev, S. Maji, T. Brox, and J. Malik. Detecting people using mutually consistent poselet activations. In ECCV, 2010
    • (2010) ECCV
    • Bourdev, L.1    Maji, S.2    Brox, T.3    Malik, J.4
  • 6
    • 84919741208 scopus 로고    scopus 로고
    • Improved bird species recognition using pose normalized deep convolutional nets
    • S. Branson, G. Van Horn, P. Perona, and S. Belongie. Improved bird species recognition using pose normalized deep convolutional nets. In BMVC, 2014
    • (2014) BMVC
    • Branson, S.1    Van Horn, G.2    Perona, P.3    Belongie, S.4
  • 7
    • 18844364899 scopus 로고    scopus 로고
    • High accuracy optical flow estimation based on a theory for warping
    • T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. In ECCV. 2004
    • (2004) ECCV
    • Brox, T.1    Bruhn, A.2    Papenberg, N.3    Weickert, J.4
  • 10
    • 84911421600 scopus 로고    scopus 로고
    • Detect what you can: Detecting and representing objects using holistic models and body parts
    • X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille. Detect what you can: Detecting and representing objects using holistic models and body parts. In CVPR, 2014
    • (2014) CVPR
    • Chen, X.1    Mottaghi, R.2    Liu, X.3    Fidler, S.4    Urtasun, R.5    Yuille, A.6
  • 11
    • 84959216100 scopus 로고    scopus 로고
    • Convolutional feature masking for joint object and stuff segmentation
    • J. Dai, K. He, and J. Sun. Convolutional feature masking for joint object and stuff segmentation. In CVPR, 2015
    • (2015) CVPR
    • Dai, J.1    He, K.2    Sun, J.3
  • 12
    • 84866636076 scopus 로고    scopus 로고
    • Learning to localize detected objects
    • Q. Dai and D. Hoiem. Learning to localize detected objects. In CVPR, 2012
    • (2012) CVPR
    • Dai, Q.1    Hoiem, D.2
  • 15
    • 84876258641 scopus 로고    scopus 로고
    • Learning hierarchical features for scene labeling
    • C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical features for scene labeling. TPAMI, 35(8), 2013
    • (2013) TPAMI , vol.35 , Issue.8
    • Farabet, C.1    Couprie, C.2    Najman, L.3    LeCun, Y.4
  • 16
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained partbased models
    • P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. TPAMI, 32(9), 2010
    • (2010) TPAMI , vol.32 , Issue.9
    • Felzenszwalb, P.F.1    Girshick, R.B.2    McAllester, D.3    Ramanan, D.4
  • 18
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 21
    • 84911427286 scopus 로고    scopus 로고
    • Using k-poselets for detecting people and localizing their keypoints
    • G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. Using k-poselets for detecting people and localizing their keypoints. In CVPR, 2014
    • (2014) CVPR
    • Gkioxari, G.1    Hariharan, B.2    Girshick, R.3    Malik, J.4
  • 23
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 24
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
    • D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of physiology, 160(1), 1962
    • (1962) The Journal of Physiology , vol.160 , Issue.1
    • Hubel, D.H.1    Wiesel, T.N.2
  • 25
    • 84911420074 scopus 로고    scopus 로고
    • Iterated second-order label sensitive pooling for 3d human pose estimation
    • C. Ionescu, J. Carreira, and C. Sminchisescu. Iterated second-order label sensitive pooling for 3d human pose estimation. In CVPR, 2014
    • (2014) CVPR
    • Ionescu, C.1    Carreira, J.2    Sminchisescu, C.3
  • 26
    • 0345079704 scopus 로고
    • Determining three-dimensional shape from orientation and spatial frequency disparities
    • D. G. Jones and J. Malik. Determining three-dimensional shape from orientation and spatial frequency disparities. In ECCV, 1992
    • (1992) ECCV
    • Jones, D.G.1    Malik, J.2
  • 27
    • 0023141705 scopus 로고
    • Representation of local geometry in the visual system
    • J. J. Koenderink and A. J. van Doorn. Representation of local geometry in the visual system. Biological cybernetics, 55(6), 1987
    • (1987) Biological Cybernetics , vol.55 , Issue.6
    • Koenderink, J.J.1    Van Doorn, A.J.2
  • 28
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 30
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Schelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015
    • (2015) CVPR
    • Long, J.1    Schelhamer, E.2    Darrell, T.3
  • 31
    • 84898770979 scopus 로고    scopus 로고
    • Pedestrian parsing via deep decompositional network
    • P. Luo, X. Wang, and X. Tang. Pedestrian parsing via deep decompositional network. In ICCV, 2013
    • (2013) ICCV
    • Luo, P.1    Wang, X.2    Tang, X.3
  • 34
    • 84887328988 scopus 로고    scopus 로고
    • Pedestrian detection with unsupervised multi-stage feature learning
    • P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun. Pedestrian detection with unsupervised multi-stage feature learning. In CVPR, 2013
    • (2013) CVPR
    • Sermanet, P.1    Kavukcuoglu, K.2    Chintala, S.3    LeCun, Y.4
  • 37
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In NIPS (To appear), 2014
    • (2014) NIPS (To Appear
    • Tompson, J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 38
    • 84911381180 scopus 로고    scopus 로고
    • Deeppose: Human pose estimation via deep neural networks
    • A. Toshev and C. Szegedy. Deeppose: Human pose estimation via deep neural networks. In CVPR, 2014
    • (2014) CVPR
    • Toshev, A.1    Szegedy, C.2
  • 39
    • 0029210315 scopus 로고
    • Robust computation of optical flow in a multi-scale differential framework
    • J. Weber and J. Malik. Robust computation of optical flow in a multi-scale differential framework. IJCV, 14(1), 1995
    • (1995) IJCV , vol.14 , Issue.1
    • Weber, J.1    Malik, J.2
  • 40
    • 84898779488 scopus 로고    scopus 로고
    • Paper doll parsing: Retrieving similar styles to parse clothing items
    • K. Yamaguchi, M. H. Kiapour, and T. L. Berg. Paper doll parsing: Retrieving similar styles to parse clothing items. In ICCV, 2013
    • (2013) ICCV
    • Yamaguchi, K.1    Kiapour, M.H.2    Berg, T.L.3
  • 42
    • 84865582931 scopus 로고    scopus 로고
    • Layered object models for image segmentation
    • Y. Yang, S. Hallman, D. Ramanan, and C. C. Fowlkes. Layered object models for image segmentation. TPAMI, 34(9), 2012
    • (2012) TPAMI , vol.34 , Issue.9
    • Yang, Y.1    Hallman, S.2    Ramanan, D.3    Fowlkes, C.C.4
  • 43
    • 84887598018 scopus 로고    scopus 로고
    • Articulated human detection with flexible mixtures of parts
    • Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. TPAMI, 35(12), 2013
    • (2013) TPAMI , vol.35 , Issue.12
    • Yang, Y.1    Ramanan, D.2
  • 44
    • 84956617559 scopus 로고    scopus 로고
    • Partbased R-CNNs for fine-grained category detection
    • N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Partbased R-CNNs for fine-grained category detection. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, N.1    Donahue, J.2    Girshick, R.3    Darrell, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.