메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 5965-5974

Marr revisited: 2D-3D alignment via surface normal prediction

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; FORECASTING; NEURAL NETWORKS; PATTERN RECOGNITION;

EID: 84986247538     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.642     Document Type: Conference Paper
Times cited : (265)

References (49)
  • 1
    • 84911409986 scopus 로고    scopus 로고
    • Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models
    • 2, 4, 8
    • M. Aubry, D. Maturana, A. A. Efros, B. C. Russell, and J. Sivic. Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models. In CVPR, 2014.
    • (2014) CVPR
    • Aubry, M.1    Maturana, D.2    Efros, A.A.3    Russell, B.C.4    Sivic, J.5
  • 2
    • 84973922850 scopus 로고    scopus 로고
    • Understanding deep features with computer-generated imagery
    • 3
    • M. Aubry and B. C. Russell. Understanding deep features with computer-generated imagery. In ICCV, 2015.
    • (2015) ICCV
    • Aubry, M.1    Russell, B.C.2
  • 3
    • 84947222450 scopus 로고    scopus 로고
    • Learning visual similarity for product design with convolutional neural networks
    • 3, 5, 6
    • S. Bell and K. Bala. Learning visual similarity for product design with convolutional neural networks. ACM Transactions on Graphics, 2015.
    • (2015) ACM Transactions on Graphics
    • Bell, S.1    Bala, K.2
  • 4
    • 0023322501 scopus 로고
    • Recognition by components: A theory of human image interpretation
    • 2
    • I. Biederman. Recognition by components: A theory of human image interpretation. Pyschological review, 94: 115-147, 1987.
    • (1987) Pyschological Review , vol.94 , pp. 115-147
    • Biederman, I.1
  • 6
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • 6
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 7
    • 84959187594 scopus 로고    scopus 로고
    • Object detection with 2D-3D registration and continuous viewpoint estimation
    • 2
    • C. B. Choy, M. Stark, S. Corbett-Davies, and S. Savarese. Object detection with 2D-3D registration and continuous viewpoint estimation. In CVPR, 2015.
    • (2015) CVPR
    • Choy, C.B.1    Stark, M.2    Corbett-Davies, S.3    Savarese, S.4
  • 8
    • 0344127842 scopus 로고    scopus 로고
    • The manhattan world assumption: Regularities in scene statistics which enable Bayesian inference
    • 2
    • J. Coughlan and A. Yuille. The Manhattan world assumption: Regularities in scene statistics which enable Bayesian inference. In NIPS, 2000.
    • (2000) NIPS
    • Coughlan, J.1    Yuille, A.2
  • 9
    • 84973897611 scopus 로고    scopus 로고
    • Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
    • 2, 3, 6, 7
    • D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In ICCV, 2015.
    • (2015) ICCV
    • Eigen, D.1    Fergus, R.2
  • 10
    • 84898832490 scopus 로고    scopus 로고
    • Data-driven 3D primitives for single image understanding
    • 2, 6, 7
    • D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3D primitives for single image understanding. In ICCV, 2013.
    • (2013) ICCV
    • Fouhey, D.F.1    Gupta, A.2    Hebert, M.3
  • 11
    • 84959200391 scopus 로고    scopus 로고
    • Unfolding an indoor origami world
    • 2, 6
    • D. F. Fouhey, A. Gupta, and M. Hebert. Unfolding an indoor origami world. In ECCV, 2014.
    • (2014) ECCV
    • Fouhey, D.F.1    Gupta, A.2    Hebert, M.3
  • 13
    • 84898793384 scopus 로고    scopus 로고
    • Support surface prediction in indoor scenes
    • 2, 7
    • R. Guo and D. Hoiem. Support surface prediction in indoor scenes. In ICCV, 2013.
    • (2013) ICCV
    • Guo, R.1    Hoiem, D.2
  • 15
    • 84952358220 scopus 로고    scopus 로고
    • Aligning 3D models to RGB-D images of cluttered scenes
    • 2, 5, 7
    • S. Gupta, P. A. Arbeláez, R. B. Girshick, and J. Malik. Aligning 3D models to RGB-D images of cluttered scenes. In CVPR, 2015.
    • (2015) CVPR
    • Gupta, S.1    Arbeláez, P.A.2    Girshick, R.B.3    Malik, J.4
  • 16
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization
    • 3, 4
    • B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
    • (2015) CVPR
    • Hariharan, B.1    Arbeláez, P.2    Girshick, R.3    Malik, J.4
  • 17
    • 77953216235 scopus 로고    scopus 로고
    • Recovering the spatial layout of cluttered rooms
    • 2, 7
    • V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial layout of cluttered rooms. In ICCV, 2009.
    • (2009) ICCV
    • Hedau, V.1    Hoiem, D.2    Forsyth, D.3
  • 19
    • 84943786323 scopus 로고    scopus 로고
    • Single-view reconstruction via joint analysis of image and shape collections
    • 2
    • Q. Huang, H. Wang, and V. Koltun. Single-view reconstruction via joint analysis of image and shape collections. ACM Transactions on Graphics, 34 (4), 2015.
    • (2015) ACM Transactions on Graphics , vol.34 , Issue.4
    • Huang, Q.1    Wang, H.2    Koltun, V.3
  • 22
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • 3, 4
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 23
    • 84959197795 scopus 로고    scopus 로고
    • Discriminatively trained dense surface normal estimation
    • 2, 6
    • L. Ladicky, B. Zeisl, and M. Pollefeys. Discriminatively trained dense surface normal estimation. In ECCV, 2014.
    • (2014) ECCV
    • Ladicky, L.1    Zeisl, B.2    Pollefeys, M.3
  • 24
    • 85161973668 scopus 로고    scopus 로고
    • Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces
    • 2
    • D. C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. In NIPS, 2010.
    • (2010) NIPS
    • Lee, D.C.1    Gupta, A.2    Hebert, M.3    Kanade, T.4
  • 26
    • 84898778816 scopus 로고    scopus 로고
    • Parsing IKEA objects: Fine pose estimation
    • 2
    • J. J. Lim, H. Pirsiavash, and A. Torralba. Parsing IKEA objects: Fine pose estimation. In ICCV, 2013.
    • (2013) ICCV
    • Lim, J.J.1    Pirsiavash, H.2    Torralba, A.3
  • 27
    • 84959229072 scopus 로고    scopus 로고
    • Deep convolutional neural fields for depth estimation from a single image
    • 2
    • F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields for depth estimation from a single image. In CVPR, 2015.
    • (2015) CVPR
    • Liu, F.1    Shen, C.2    Lin, G.3
  • 28
    • 84945230598 scopus 로고    scopus 로고
    • Fully convolutional models for semantic segmentation
    • 3, 4
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 29
    • 84973905353 scopus 로고    scopus 로고
    • Learning informative edge maps for indoor scene layout prediction
    • 2
    • A. Mallya and S. Lazebnik. Learning informative edge maps for indoor scene layout prediction. In ICCV, 2015.
    • (2015) ICCV
    • Mallya, A.1    Lazebnik, S.2
  • 30
    • 0003834557 scopus 로고
    • W. H. Freeman and Company, 1
    • D. Marr. Vision. W. H. Freeman and Company, 1982.
    • (1982) Vision
    • Marr, D.1
  • 31
    • 84959207702 scopus 로고    scopus 로고
    • Feedforward semantic segmentation with zoom-out features
    • 4
    • M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feedforward semantic segmentation with zoom-out features. In CVPR, 2015.
    • (2015) CVPR
    • Mostajabi, M.1    Yadollahpour, P.2    Shakhnarovich, G.3
  • 33
    • 84973925898 scopus 로고    scopus 로고
    • Semantic pose using deep networks trained on synthetic RGB-D
    • 2, 7
    • J. Papon and M. Schoeler. Semantic pose using deep networks trained on synthetic RGB-D. In ICCV, 2015.
    • (2015) ICCV
    • Papon, J.1    Schoeler, M.2
  • 34
    • 84973922826 scopus 로고    scopus 로고
    • Learning deep object detectors from 3D models
    • 2
    • X. Peng, K. Saenko, B. Sun, and K. Ali. Learning deep object detectors from 3D models. In ICCV, 2015.
    • (2015) ICCV
    • Peng, X.1    Saenko, K.2    Sun, B.3    Ali, K.4
  • 38
    • 84898804709 scopus 로고    scopus 로고
    • Box in the box: Joint 3D layout and object reasoning from single images
    • 2
    • A. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box in the box: Joint 3D layout and object reasoning from single images. In ICCV, 2013.
    • (2013) ICCV
    • Schwing, A.1    Fidler, S.2    Pollefeys, M.3    Urtasun, R.4
  • 39
    • 84887367772 scopus 로고    scopus 로고
    • Efficient exact inference for 3D indoor scene understanding
    • 2
    • A. Schwing and R. Urtasun. Efficient exact inference for 3D indoor scene understanding. In ECCV, 2012.
    • (2012) ECCV
    • Schwing, A.1    Urtasun, R.2
  • 40
    • 85009847526 scopus 로고    scopus 로고
    • Indoor segmentation and support inference from rgbd images
    • 3, 6
    • N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012.
    • (2012) ECCV
    • Silberman, N.1    Hoiem, D.2    Kohli, P.3    Fergus, R.4
  • 42
    • 84937466025 scopus 로고    scopus 로고
    • Sliding shapes for 3d object detection in depth images
    • 2
    • S. Song and J. Xiao. Sliding shapes for 3d object detection in depth images. In ECCV, 2014.
    • (2014) ECCV
    • Song, S.1    Xiao, J.2
  • 45
    • 84973860892 scopus 로고    scopus 로고
    • Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
    • 2, 5
    • H. Su, C. Qi, Y. Li, and L. Guibas. Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views. In ICCV, 2015.
    • (2015) ICCV
    • Su, H.1    Qi, C.2    Li, Y.3    Guibas, L.4
  • 46
    • 84959234840 scopus 로고    scopus 로고
    • Designing deep networks for surface normal estimation
    • 2, 3, 6, 7
    • X. Wang, D. Fouhey, and A. Gupta. Designing deep networks for surface normal estimation. In CVPR, 2015.
    • (2015) CVPR
    • Wang, X.1    Fouhey, D.2    Gupta, A.3
  • 47
    • 84949636429 scopus 로고    scopus 로고
    • 3D ShapeNets: A deep representation for volumetric shape modeling
    • 2, 3, 7
    • Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3D ShapeNets: A deep representation for volumetric shape modeling. In CVPR, 2015.
    • (2015) CVPR
    • Wu, Z.1    Song, S.2    Khosla, A.3    Yu, F.4    Zhang, L.5    Tang, X.6    Xiao, J.7
  • 48
    • 84877753809 scopus 로고    scopus 로고
    • Localizing 3D cuboids in single-view images
    • 2
    • J. Xiao, B. C. Russell, and A. Torralba. Localizing 3D cuboids in single-view images. In NIPS, 2012.
    • (2012) NIPS
    • Xiao, J.1    Russell, B.C.2    Torralba, A.3
  • 49
    • 84973859794 scopus 로고    scopus 로고
    • Holistically-nested edge detection
    • 3
    • S. Xie and Z. Tu. Holistically-nested edge detection. In ICCV, 2015.
    • (2015) ICCV
    • Xie, S.1    Tu, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.