-
1
-
-
84911409986
-
Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models
-
2, 4, 8
-
M. Aubry, D. Maturana, A. A. Efros, B. C. Russell, and J. Sivic. Seeing 3D chairs: Exemplar part-based 2D-3D alignment using a large dataset of CAD models. In CVPR, 2014.
-
(2014)
CVPR
-
-
Aubry, M.1
Maturana, D.2
Efros, A.A.3
Russell, B.C.4
Sivic, J.5
-
2
-
-
84973922850
-
Understanding deep features with computer-generated imagery
-
3
-
M. Aubry and B. C. Russell. Understanding deep features with computer-generated imagery. In ICCV, 2015.
-
(2015)
ICCV
-
-
Aubry, M.1
Russell, B.C.2
-
3
-
-
84947222450
-
Learning visual similarity for product design with convolutional neural networks
-
3, 5, 6
-
S. Bell and K. Bala. Learning visual similarity for product design with convolutional neural networks. ACM Transactions on Graphics, 2015.
-
(2015)
ACM Transactions on Graphics
-
-
Bell, S.1
Bala, K.2
-
4
-
-
0023322501
-
Recognition by components: A theory of human image interpretation
-
2
-
I. Biederman. Recognition by components: A theory of human image interpretation. Pyschological review, 94: 115-147, 1987.
-
(1987)
Pyschological Review
, vol.94
, pp. 115-147
-
-
Biederman, I.1
-
6
-
-
85072028231
-
Return of the devil in the details: Delving deep into convolutional nets
-
6
-
K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014.
-
(2014)
BMVC
-
-
Chatfield, K.1
Simonyan, K.2
Vedaldi, A.3
Zisserman, A.4
-
7
-
-
84959187594
-
Object detection with 2D-3D registration and continuous viewpoint estimation
-
2
-
C. B. Choy, M. Stark, S. Corbett-Davies, and S. Savarese. Object detection with 2D-3D registration and continuous viewpoint estimation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Choy, C.B.1
Stark, M.2
Corbett-Davies, S.3
Savarese, S.4
-
8
-
-
0344127842
-
The manhattan world assumption: Regularities in scene statistics which enable Bayesian inference
-
2
-
J. Coughlan and A. Yuille. The Manhattan world assumption: Regularities in scene statistics which enable Bayesian inference. In NIPS, 2000.
-
(2000)
NIPS
-
-
Coughlan, J.1
Yuille, A.2
-
9
-
-
84973897611
-
Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
-
2, 3, 6, 7
-
D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In ICCV, 2015.
-
(2015)
ICCV
-
-
Eigen, D.1
Fergus, R.2
-
10
-
-
84898832490
-
Data-driven 3D primitives for single image understanding
-
2, 6, 7
-
D. F. Fouhey, A. Gupta, and M. Hebert. Data-driven 3D primitives for single image understanding. In ICCV, 2013.
-
(2013)
ICCV
-
-
Fouhey, D.F.1
Gupta, A.2
Hebert, M.3
-
13
-
-
84898793384
-
Support surface prediction in indoor scenes
-
2, 7
-
R. Guo and D. Hoiem. Support surface prediction in indoor scenes. In ICCV, 2013.
-
(2013)
ICCV
-
-
Guo, R.1
Hoiem, D.2
-
15
-
-
84952358220
-
Aligning 3D models to RGB-D images of cluttered scenes
-
2, 5, 7
-
S. Gupta, P. A. Arbeláez, R. B. Girshick, and J. Malik. Aligning 3D models to RGB-D images of cluttered scenes. In CVPR, 2015.
-
(2015)
CVPR
-
-
Gupta, S.1
Arbeláez, P.A.2
Girshick, R.B.3
Malik, J.4
-
16
-
-
84959236250
-
Hypercolumns for object segmentation and fine-grained localization
-
3, 4
-
B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
-
(2015)
CVPR
-
-
Hariharan, B.1
Arbeláez, P.2
Girshick, R.3
Malik, J.4
-
17
-
-
77953216235
-
Recovering the spatial layout of cluttered rooms
-
2, 7
-
V. Hedau, D. Hoiem, and D. Forsyth. Recovering the spatial layout of cluttered rooms. In ICCV, 2009.
-
(2009)
ICCV
-
-
Hedau, V.1
Hoiem, D.2
Forsyth, D.3
-
19
-
-
84943786323
-
Single-view reconstruction via joint analysis of image and shape collections
-
2
-
Q. Huang, H. Wang, and V. Koltun. Single-view reconstruction via joint analysis of image and shape collections. ACM Transactions on Graphics, 34 (4), 2015.
-
(2015)
ACM Transactions on Graphics
, vol.34
, Issue.4
-
-
Huang, Q.1
Wang, H.2
Koltun, V.3
-
20
-
-
85009867858
-
-
CoRR, abs/1408. 5093, 4
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. CoRR, abs/1408. 5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
22
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
3, 4
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
23
-
-
84959197795
-
Discriminatively trained dense surface normal estimation
-
2, 6
-
L. Ladicky, B. Zeisl, and M. Pollefeys. Discriminatively trained dense surface normal estimation. In ECCV, 2014.
-
(2014)
ECCV
-
-
Ladicky, L.1
Zeisl, B.2
Pollefeys, M.3
-
24
-
-
85161973668
-
Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces
-
2
-
D. C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. In NIPS, 2010.
-
(2010)
NIPS
-
-
Lee, D.C.1
Gupta, A.2
Hebert, M.3
Kanade, T.4
-
25
-
-
84995745188
-
Joint embeddings of shapes and images via CNN image purification
-
3
-
Y. Li, H. Su, C. R. Qi, N. Fish, D. Cohen-Or, and L. J. Guibas. Joint embeddings of shapes and images via CNN image purification. ACM Transactions on Graphics (Proceeding of SIGGRAPH Asia), 2015. 3
-
(2015)
ACM Transactions on Graphics (Proceeding of SIGGRAPH Asia)
-
-
Li, Y.1
Su, H.2
Qi, C.R.3
Fish, N.4
Cohen-Or, D.5
Guibas, L.J.6
-
26
-
-
84898778816
-
Parsing IKEA objects: Fine pose estimation
-
2
-
J. J. Lim, H. Pirsiavash, and A. Torralba. Parsing IKEA objects: Fine pose estimation. In ICCV, 2013.
-
(2013)
ICCV
-
-
Lim, J.J.1
Pirsiavash, H.2
Torralba, A.3
-
27
-
-
84959229072
-
Deep convolutional neural fields for depth estimation from a single image
-
2
-
F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields for depth estimation from a single image. In CVPR, 2015.
-
(2015)
CVPR
-
-
Liu, F.1
Shen, C.2
Lin, G.3
-
28
-
-
84945230598
-
Fully convolutional models for semantic segmentation
-
3, 4
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional models for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
29
-
-
84973905353
-
Learning informative edge maps for indoor scene layout prediction
-
2
-
A. Mallya and S. Lazebnik. Learning informative edge maps for indoor scene layout prediction. In ICCV, 2015.
-
(2015)
ICCV
-
-
Mallya, A.1
Lazebnik, S.2
-
30
-
-
0003834557
-
-
W. H. Freeman and Company, 1
-
D. Marr. Vision. W. H. Freeman and Company, 1982.
-
(1982)
Vision
-
-
Marr, D.1
-
33
-
-
84973925898
-
Semantic pose using deep networks trained on synthetic RGB-D
-
2, 7
-
J. Papon and M. Schoeler. Semantic pose using deep networks trained on synthetic RGB-D. In ICCV, 2015.
-
(2015)
ICCV
-
-
Papon, J.1
Schoeler, M.2
-
34
-
-
84973922826
-
Learning deep object detectors from 3D models
-
2
-
X. Peng, K. Saenko, B. Sun, and K. Ali. Learning deep object detectors from 3D models. In ICCV, 2015.
-
(2015)
ICCV
-
-
Peng, X.1
Saenko, K.2
Sun, B.3
Ali, K.4
-
37
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
3
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet large scale visual recognition challenge. IJCV, 2015.
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
38
-
-
84898804709
-
Box in the box: Joint 3D layout and object reasoning from single images
-
2
-
A. Schwing, S. Fidler, M. Pollefeys, and R. Urtasun. Box in the box: Joint 3D layout and object reasoning from single images. In ICCV, 2013.
-
(2013)
ICCV
-
-
Schwing, A.1
Fidler, S.2
Pollefeys, M.3
Urtasun, R.4
-
39
-
-
84887367772
-
Efficient exact inference for 3D indoor scene understanding
-
2
-
A. Schwing and R. Urtasun. Efficient exact inference for 3D indoor scene understanding. In ECCV, 2012.
-
(2012)
ECCV
-
-
Schwing, A.1
Urtasun, R.2
-
40
-
-
85009847526
-
Indoor segmentation and support inference from rgbd images
-
3, 6
-
N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012.
-
(2012)
ECCV
-
-
Silberman, N.1
Hoiem, D.2
Kohli, P.3
Fergus, R.4
-
42
-
-
84937466025
-
Sliding shapes for 3d object detection in depth images
-
2
-
S. Song and J. Xiao. Sliding shapes for 3d object detection in depth images. In ECCV, 2014.
-
(2014)
ECCV
-
-
Song, S.1
Xiao, J.2
-
43
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
4
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. JMLR, 2014.
-
(2014)
JMLR
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
44
-
-
84905757490
-
Estimating image depth using shape collections
-
2
-
H. Su, Q. Huang, N. Mitra, Y. Li, and L. Guibas. Estimating image depth using shape collections. ACM Transactions on Graphics, 33 (4), 2014.
-
(2014)
ACM Transactions on Graphics
, vol.33
, Issue.4
-
-
Su, H.1
Huang, Q.2
Mitra, N.3
Li, Y.4
Guibas, L.5
-
45
-
-
84973860892
-
Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views
-
2, 5
-
H. Su, C. Qi, Y. Li, and L. Guibas. Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views. In ICCV, 2015.
-
(2015)
ICCV
-
-
Su, H.1
Qi, C.2
Li, Y.3
Guibas, L.4
-
46
-
-
84959234840
-
Designing deep networks for surface normal estimation
-
2, 3, 6, 7
-
X. Wang, D. Fouhey, and A. Gupta. Designing deep networks for surface normal estimation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Wang, X.1
Fouhey, D.2
Gupta, A.3
-
47
-
-
84949636429
-
3D ShapeNets: A deep representation for volumetric shape modeling
-
2, 3, 7
-
Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3D ShapeNets: A deep representation for volumetric shape modeling. In CVPR, 2015.
-
(2015)
CVPR
-
-
Wu, Z.1
Song, S.2
Khosla, A.3
Yu, F.4
Zhang, L.5
Tang, X.6
Xiao, J.7
-
48
-
-
84877753809
-
Localizing 3D cuboids in single-view images
-
2
-
J. Xiao, B. C. Russell, and A. Torralba. Localizing 3D cuboids in single-view images. In NIPS, 2012.
-
(2012)
NIPS
-
-
Xiao, J.1
Russell, B.C.2
Torralba, A.3
-
49
-
-
84973859794
-
Holistically-nested edge detection
-
3
-
S. Xie and Z. Tu. Holistically-nested edge detection. In ICCV, 2015.
-
(2015)
ICCV
-
-
Xie, S.1
Tu, Z.2
|