메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 5987-5995

Aggregated residual transformations for deep neural networks

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER VISION; IMAGE ENHANCEMENT; NETWORK ARCHITECTURE;

EID: 85043777453     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.634     Document Type: Conference Paper
Times cited : (9009)

References (44)
  • 1
    • 84986259967 scopus 로고    scopus 로고
    • Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks
    • S. Bell, C. L. Zitnick, K. Bala, and R. Girshick. Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In CVPR, 2016.
    • (2016) CVPR
    • Bell, S.1    Zitnick, C.L.2    Bala, K.3    Girshick, R.4
  • 5
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 6
    • 84937896655 scopus 로고    scopus 로고
    • Exploiting linear structure within convolutional networks for efficient evaluation
    • E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting linear structure within convolutional networks for efficient evaluation. In NIPS, 2014.
    • (2014) NIPS
    • Denton, E.1    Zaremba, W.2    Bruna, J.3    LeCun, Y.4    Fergus, R.5
  • 9
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNN
    • R. Girshick. Fast R-CNN. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 10
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 13
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on ima-genet classification
    • K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on ima-genet classification. In ICCV, 2015.
    • (2015) ICCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 14
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016.
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 15
    • 84990056336 scopus 로고    scopus 로고
    • Identity mappings in deep residual networks
    • K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In ECCV, 2016.
    • (2016) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 17
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 18
    • 85062833929 scopus 로고    scopus 로고
    • Speeding up convolutional neural networks with low rank expansions
    • M. Jaderberg, A. Vedaldi, and A. Zisserman. Speeding up convolutional neural networks with low rank expansions. In BMVC, 2014.
    • (2014) BMVC
    • Jaderberg, M.1    Vedaldi, A.2    Zisserman, A.3
  • 21
    • 85083951289 scopus 로고    scopus 로고
    • Compression of deep convolutional neural networks for fast and low power mobile applications
    • Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin. Compression of deep convolutional neural networks for fast and low power mobile applications. In ICLR, 2016.
    • (2016) ICLR
    • Kim, Y.-D.1    Park, E.2    Yoo, S.3    Choi, T.4    Yang, L.5    Shin, D.6
  • 23
    • 77956002520 scopus 로고    scopus 로고
    • Learning multiple layers of features from tiny images
    • A. Krizhevsky. Learning multiple layers of features from tiny images. Tech Report, 2009.
    • (2009) Tech Report
    • Krizhevsky, A.1
  • 24
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 26
  • 28
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 29
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
    • (2004) IJCV
    • Lowe, D.G.1
  • 32
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015.
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 34
    • 85083951635 scopus 로고    scopus 로고
    • Overfeat: Integrated recognition, localization and detection using convolutional networks
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. In ICLR, 2014.
    • (2014) ICLR
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    LeCun, Y.6
  • 36
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 37
    • 84983383396 scopus 로고    scopus 로고
    • Inception-v4, inception-resnet and the impact of residual connections on learning
    • C. Szegedy, S. Ioffe, and V. Vanhoucke. Inception-v4, inception-resnet and the impact of residual connections on learning. In ICLR Workshop, 2016.
    • (2016) ICLR Workshop
    • Szegedy, C.1    Ioffe, S.2    Vanhoucke, V.3
  • 40
    • 85019250516 scopus 로고    scopus 로고
    • Residual networks behave like ensembles of relatively shallow network
    • A. Veit, M. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively shallow network. In NIPS, 2016.
    • (2016) NIPS
    • Veit, A.1    Wilber, M.2    Belongie, S.3
  • 44
    • 84937902251 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional neural networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional neural networks. In ECCV, 2014.
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.