메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 390-399

Modeling local and global deformations in Deep Learning: Epitomic convolution, Multiple Instance Learning, and sliding window detection

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ASPECT RATIO; CLASSIFICATION (OF INFORMATION); COMPUTER VISION; CONVOLUTION; DEFORMATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; PATTERN RECOGNITION;

EID: 84959218210     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298636     Document Type: Conference Paper
Times cited : (209)

References (45)
  • 1
    • 67349251766 scopus 로고    scopus 로고
    • Sparse and redundant modeling of image content using an image-signaturedictionary
    • M. Aharon and M. Elad. Sparse and redundant modeling of image content using an image-signaturedictionary. SIAM J. Imaging Sci., 1(3):228-247, 2008
    • (2008) SIAM J. Imaging Sci. , vol.1 , Issue.3 , pp. 228-247
    • Aharon, M.1    Elad, M.2
  • 2
    • 85141266799 scopus 로고    scopus 로고
    • Support vector machines for multiple instance learning
    • S. Andrews, T. Hofmann, and I. Tsochantaridis. Support vector machines for multiple instance learning. In NIPS, 2002
    • (2002) NIPS
    • Andrews, S.1    Hofmann, T.2    Tsochantaridis, I.3
  • 3
    • 80052902364 scopus 로고    scopus 로고
    • Sparse image representation with epitomes
    • L. Benot, J. Mairal, F. Bach, and J. Ponce. Sparse image representation with epitomes. In Proc. CVPR, pages 2913-2920, 2011
    • (2011) Proc. CVPR , pp. 2913-2920
    • Benot, L.1    Mairal, J.2    Bach, F.3    Ponce, J.4
  • 6
    • 0034857786 scopus 로고    scopus 로고
    • Constrained active appearance models
    • T. Cootes and C. Taylor. Constrained active appearance models. In Proc. ICCV, volume 1, pages 748-754, 2001
    • (2001) Proc. ICCV , vol.1 , pp. 748-754
    • Cootes, T.1    Taylor, C.2
  • 8
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple-instance problem with axis-parallel rectangles
    • T. G. Dietterich, R. H. Lathrop, and T. Lozanoperez. Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence, 89:31-71, 1997
    • (1997) Artificial Intelligence , vol.89 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozanoperez, T.3
  • 9
    • 84867882646 scopus 로고    scopus 로고
    • Exact acceleration of linear object detectors
    • Springer Berlin Heidelberg
    • C. Dubout and F. Fleuret. Exact acceleration of linear object detectors. In Computer Vision-ECCV 2012, pages 301-311. Springer Berlin Heidelberg, 2012
    • (2012) Computer Vision-ECCV 2012 , pp. 301-311
    • Dubout, C.1    Fleuret, F.2
  • 10
    • 77955422240 scopus 로고    scopus 로고
    • Object detection with discriminatively trained part-based models
    • P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. IEEE Trans. PAMI, 32(9):1627-1645, 2010
    • (2010) IEEE Trans. PAMI , vol.32 , Issue.9 , pp. 1627-1645
    • Felzenszwalb, P.1    Girshick, R.2    McAllester, D.3    Ramanan, D.4
  • 11
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. CVPR, 2014
    • (2014) Proc. CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 13
    • 84939544309 scopus 로고    scopus 로고
    • Deformable part models are convolutional neural networks
    • abs/1409. 5403
    • R. B. Girshick, F. N. Iandola, T. Darrell, and J. Malik. Deformable part models are convolutional neural networks. CoRR, abs/1409. 5403, 2014
    • (2014) CoRR
    • Girshick, R.B.1    Iandola, F.N.2    Darrell, T.3    Malik, J.4
  • 15
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 16
    • 84946590548 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • abs/1502. 01852
    • K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. CoRR, abs/1502. 01852, 2015
    • (2015) CoRR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 17
    • 84958143547 scopus 로고    scopus 로고
    • Improving human action recognition using score distribution and ranking
    • M. Hoai and A. Zisserman. Improving human action recognition using score distribution and ranking. In Asian Conference on Computer Vision, 2014
    • (2014) Asian Conference on Computer Vision
    • Hoai, M.1    Zisserman, A.2
  • 20
    • 84946590546 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • abs/1502. 03167
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR, abs/1502. 03167, 2015
    • (2015) CoRR
    • Ioffe, S.1    Szegedy, C.2
  • 21
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition
    • K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. Le-Cun. What is the best multi-stage architecture for object recognition? In Proc. ICCV, pages 2146-2153, 2009
    • (2009) Proc. ICCV , pp. 2146-2153
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.3    Le-Cun, Y.4
  • 23
    • 0344551961 scopus 로고    scopus 로고
    • Epitomic analysis of appearance and shape
    • N. Jojic, B. Frey, and A. Kannan. Epitomic analysis of appearance and shape. In Proc. ICCV, pages 34-41, 2003
    • (2003) Proc. ICCV , pp. 34-41
    • Jojic, N.1    Frey, B.2    Kannan, A.3
  • 24
    • 84889603377 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In Proc. NIPS, 2013
    • (2013) Proc. NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 25
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86(11):2278-2324, 1998
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 27
    • 84940748339 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • abs/1411. 4038
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. CoRR, abs/1411. 4038, 2014
    • (2014) CoRR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 31
    • 84898788725 scopus 로고    scopus 로고
    • Joint deep learning for pedestrian detection
    • W. Ouyang and X. Wang. Joint deep learning for pedestrian detection. In Proc. ICCV, 2013
    • (2013) Proc. ICCV
    • Ouyang, W.1    Wang, X.2
  • 32
    • 84898788725 scopus 로고    scopus 로고
    • Joint deep learning for pedestrian detection
    • W. Ouyang and X. Wang. Joint deep learning for pedestrian detection. In ICCV, 2013
    • (2013) ICCV
    • Ouyang, W.1    Wang, X.2
  • 35
    • 84911406627 scopus 로고    scopus 로고
    • Modeling image patches with a generic dictionary of miniepitomes
    • G. Papandreou, L.-C. Chen, and A. Yuille. Modeling image patches with a generic dictionary of miniepitomes. In Proc. CVPR, 2014
    • (2014) Proc. CVPR
    • Papandreou, G.1    Chen, L.-C.2    Yuille, A.3
  • 36
    • 31844448950 scopus 로고    scopus 로고
    • Supervised versus multiple instance learning: An empirical comparison
    • S. Ray and M. Craven. Supervised versus multiple instance learning: an empirical comparison. In Proc. ICML, 2005
    • (2005) Proc. ICML
    • Ray, S.1    Craven, M.2
  • 38
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in cortex. Nature neuroscience, 2(11):1019-1025, 1999
    • (1999) Nature Neuroscience , vol.2 , Issue.11 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2
  • 43
    • 50649115912 scopus 로고    scopus 로고
    • Learning the discriminative power-invariance trade-off
    • M. Varma and D. Ray. Learning the discriminative power-invariance trade-off. In ICCV, 2007
    • (2007) ICCV
    • Varma, M.1    Ray, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.