메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1529-1537

Conditional random fields as recurrent neural networks

Author keywords

[No Author keywords available]

Indexed keywords

BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; COMPUTER VISION; CONVOLUTION; IMAGE PROCESSING; IMAGE RECOGNITION; IMAGE SEGMENTATION; LEARNING ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS; PIXELS; RANDOM PROCESSES; SEMANTICS;

EID: 84973861983     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.179     Document Type: Conference Paper
Times cited : (2718)

References (58)
  • 1
    • 77952844108 scopus 로고    scopus 로고
    • Fast high-dimensional filtering using the permutohedral lattice
    • A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional filtering using the permutohedral lattice. CGF, 2010.
    • (2010) CGF
    • Adams, A.1    Baek, J.2    Davis, M.A.3
  • 3
    • 79953048649 scopus 로고    scopus 로고
    • Contour detection and hierarchical image segmentation
    • P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. TPAMI, (5), 2011.
    • (2011) TPAMI , Issue.5
    • Arbeláez, P.1    Maire, M.2    Fowlkes, C.3    Malik, J.4
  • 4
    • 70350599323 scopus 로고    scopus 로고
    • Training an active random field for real-time image denoising
    • A. Barbu. Training an active random field for real-time image denoising. TIP, (11), 2009.
    • (2009) TIP , Issue.11
    • Barbu, A.1
  • 5
    • 84959212440 scopus 로고    scopus 로고
    • Material recognition in the wild with the materials in context database
    • S. Bell, P. Upchurch, N. Snavely, and K. Bala. Material recognition in the wild with the materials in context database. In CVPR, 2015.
    • (2015) CVPR
    • Bell, S.1    Upchurch, P.2    Snavely, N.3    Bala, K.4
  • 6
    • 0001263162 scopus 로고
    • Globally trained handwritten word recognizer using spatial representation, convolutional neural networks, and hidden markov models
    • Y. Bengio, Y. LeCun, and D. Henderson. Globally trained handwritten word recognizer using spatial representation, convolutional neural networks, and hidden markov models. In NIPS, 1994.
    • (1994) NIPS
    • Bengio, Y.1    LeCun, Y.2    Henderson, D.3
  • 7
    • 84973859959 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE TNN, 1994.
    • (1994) IEEE TNN
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 9
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015.
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 11
    • 84973890848 scopus 로고    scopus 로고
    • Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
    • J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Dai, J.1    He, K.2    Sun, J.3
  • 12
    • 84959216100 scopus 로고    scopus 로고
    • Convolutional feature masking for joint object and stuff segmentation
    • J. Dai, K. He, and J. Sun. Convolutional feature masking for joint object and stuff segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Dai, J.1    He, K.2    Sun, J.3
  • 13
    • 84973864841 scopus 로고    scopus 로고
    • Neural conditional random fields
    • T.-M.-T. Do and T. Artieres. Neural conditional random fields. In NIPS, 2010.
    • (2010) NIPS
    • Do, T.-M.-T.1    Artieres, T.2
  • 15
    • 84946737993 scopus 로고    scopus 로고
    • Towards unified object detection and semantic segmentation
    • J. Dong, Q. Chen, S. Yan, and A. Yuille. Towards unified object detection and semantic segmentation. In ECCV, 2014.
    • (2014) ECCV
    • Dong, J.1    Chen, Q.2    Yan, S.3    Yuille, A.4
  • 16
    • 84937943470 scopus 로고    scopus 로고
    • Depth map prediction from a single image using a multi-scale deep network
    • D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network. In NIPS, 2014.
    • (2014) NIPS
    • Eigen, D.1    Puhrsch, C.2    Fergus, R.3
  • 18
  • 19
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 20
    • 84959195179 scopus 로고    scopus 로고
    • Deformable part models are convolutional neural networks
    • R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable part models are convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Girshick, R.1    Iandola, F.2    Darrell, T.3    Malik, J.4
  • 23
    • 84959236250 scopus 로고    scopus 로고
    • Hypercolumns for object segmentation and fine-grained localization
    • B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
    • (2015) CVPR
    • Hariharan, B.1    Arbelaez, P.2    Girshick, R.3    Malik, J.4
  • 24
    • 85083954541 scopus 로고    scopus 로고
    • Deep structured output learning for unconstrained text recognition
    • M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. Deep structured output learning for unconstrained text recognition. In ICLR, 2015.
    • (2015) ICLR
    • Jaderberg, M.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 26
    • 84942581361 scopus 로고    scopus 로고
    • Human pose estmation with fields of parts
    • M. Kiefel and P. V. Gehler. Human pose estmation with fields of parts. In ECCV, 2014.
    • (2014) ECCV
    • Kiefel, M.1    Gehler, P.V.2
  • 27
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected crfs with Gaussian edge potentials
    • P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with Gaussian edge potentials. In NIPS, 2011.
    • (2011) NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 28
    • 84897536915 scopus 로고    scopus 로고
    • Parameter learning and convergent inference for dense random fields
    • P. Krähenbühl and V. Koltun. Parameter learning and convergent inference for dense random fields. In ICML, 2013.
    • (2013) ICML
    • Krähenbühl, P.1    Koltun, V.2
  • 29
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 30
    • 77953225585 scopus 로고    scopus 로고
    • Associative hierarchical crfs for object class image segmentation
    • L. Ladicky, C. Russell, P. Kohli, and P. H. Torr. Associative hierarchical crfs for object class image segmentation. In ICCV, 2009.
    • (2009) ICCV
    • Ladicky, L.1    Russell, C.2    Kohli, P.3    Torr, P.H.4
  • 31
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
    • (2001) ICML
    • Lafferty, J.D.1    McCallum, A.2    Pereira, F.C.N.3
  • 35
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 36
    • 84959207702 scopus 로고    scopus 로고
    • Feedforward semantic segmentation with zoom-out features
    • M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feedforward semantic segmentation with zoom-out features. In CVPR, 2015.
    • (2015) CVPR
    • Mostajabi, M.1    Yadollahpour, P.2    Shakhnarovich, G.3
  • 39
    • 84965124068 scopus 로고    scopus 로고
    • Weaklyand semi-supervised learning of a dcnn for semantic image segmentation
    • G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weaklyand semi-supervised learning of a dcnn for semantic image segmentation. In ICCV, 2015.
    • (2015) ICCV
    • Papandreou, G.1    Chen, L.-C.2    Murphy, K.3    Yuille, A.L.4
  • 41
    • 84897497795 scopus 로고    scopus 로고
    • On the difficulty of training recurrent neural networks
    • R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. On the difficulty of training recurrent neural networks. In ICML, 2013.
    • (2013) ICML
    • Pascanu, R.1    Gulcehre, C.2    Cho, K.3    Bengio, Y.4
  • 42
    • 84887357627 scopus 로고    scopus 로고
    • Discriminative re-ranking of diverse segmentations
    • G. S. Payman Yadollahpour, Dhruv Batra. Discriminative re-ranking of diverse segmentations. In CVPR, 2013.
    • (2013) CVPR
    • Payman Yadollahpour, G.S.1    Batra, D.2
  • 43
    • 84863373241 scopus 로고    scopus 로고
    • Conditional neural fields
    • J. Peng, L. Bo, and J. Xu. Conditional neural fields. In NIPS, 2009.
    • (2009) NIPS
    • Peng, J.1    Bo, L.2    Xu, J.3
  • 44
    • 84919790220 scopus 로고    scopus 로고
    • Recurrent convolutional neural networks for scene labeling
    • P. H. O. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene labeling. In ICML, 2014.
    • (2014) ICML
    • Pinheiro, P.H.O.1    Collobert, R.2
  • 45
    • 80052872903 scopus 로고    scopus 로고
    • Learning messagepassing inference machines for structured prediction
    • S. Ross, D. Munoz, M. Hebert, and J. A. Bagnell. Learning messagepassing inference machines for structured prediction. In CVPR, 2011.
    • (2011) CVPR
    • Ross, S.1    Munoz, D.2    Hebert, M.3    Bagnell, J.A.4
  • 49
    • 51949114829 scopus 로고    scopus 로고
    • Semantic texton forests for image categorization and segmentation
    • J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization and segmentation. In CVPR, 2008.
    • (2008) CVPR
    • Shotton, J.1    Johnson, M.2    Cipolla, R.3
  • 50
    • 58149151266 scopus 로고    scopus 로고
    • Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV, (1), 2009.
    • (2009) IJCV , Issue.1
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 51
    • 84965161185 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2014.
    • (2014) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 52
    • 84883148756 scopus 로고    scopus 로고
    • Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
    • V. Stoyanov, A. Ropson, and J. Eisner. Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure. In AISTATS, 2011.
    • (2011) AISTATS
    • Stoyanov, V.1    Ropson, A.2    Eisner, J.3
  • 53
    • 4043138374 scopus 로고    scopus 로고
    • Loopy belief propagation and gibbs measures
    • S. C. Tatikonda and M. I. Jordan. Loopy belief propagation and gibbs measures. In UAI, 2002.
    • (2002) UAI
    • Tatikonda, S.C.1    Jordan, M.I.2
  • 54
    • 35148864238 scopus 로고    scopus 로고
    • Bilateral filtering for gray and color images
    • C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In CVPR, 1998.
    • (1998) CVPR
    • Tomasi, C.1    Manduchi, R.2
  • 55
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In NIPS, 2014.
    • (2014) NIPS
    • Tompson, J.J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 56
    • 51949119486 scopus 로고    scopus 로고
    • Auto-context and its application to high-level vision tasks
    • Z. Tu. Auto-context and its application to high-level vision tasks. In CVPR, 2008.
    • (2008) CVPR
    • Tu, Z.1
  • 57
    • 17444392134 scopus 로고    scopus 로고
    • Image parsing: Unifying segmentation, detection, and recognition
    • Z. Tu, X. Chen, A. L. Yuille, and S.-C. Zhu. Image parsing: Unifying segmentation, detection, and recognition. IJCV, 63(2):113-140, 2005.
    • (2005) IJCV , vol.63 , Issue.2 , pp. 113-140
    • Tu, Z.1    Chen, X.2    Yuille, A.L.3    Zhu, S.-C.4
  • 58
    • 84866662367 scopus 로고    scopus 로고
    • Efficient inference for fully-connected crfs with stationarity
    • Y. Zhang and T. Chen. Efficient inference for fully-connected crfs with stationarity. In CVPR, 2012.
    • (2012) CVPR
    • Zhang, Y.1    Chen, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.