-
1
-
-
77952844108
-
Fast high-dimensional filtering using the permutohedral lattice
-
A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional filtering using the permutohedral lattice. CGF, 2010.
-
(2010)
CGF
-
-
Adams, A.1
Baek, J.2
Davis, M.A.3
-
2
-
-
84866677439
-
Semantic segmentation using regions and parts
-
P. Arbeláez, B. Hariharan, C. Gu, S. Gupta, L. Bourdev, and J. Malik. Semantic segmentation using regions and parts. In CVPR, 2012.
-
(2012)
CVPR
-
-
Arbeláez, P.1
Hariharan, B.2
Gu, C.3
Gupta, S.4
Bourdev, L.5
Malik, J.6
-
3
-
-
79953048649
-
Contour detection and hierarchical image segmentation
-
P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Contour detection and hierarchical image segmentation. TPAMI, (5), 2011.
-
(2011)
TPAMI
, Issue.5
-
-
Arbeláez, P.1
Maire, M.2
Fowlkes, C.3
Malik, J.4
-
4
-
-
70350599323
-
Training an active random field for real-time image denoising
-
A. Barbu. Training an active random field for real-time image denoising. TIP, (11), 2009.
-
(2009)
TIP
, Issue.11
-
-
Barbu, A.1
-
5
-
-
84959212440
-
Material recognition in the wild with the materials in context database
-
S. Bell, P. Upchurch, N. Snavely, and K. Bala. Material recognition in the wild with the materials in context database. In CVPR, 2015.
-
(2015)
CVPR
-
-
Bell, S.1
Upchurch, P.2
Snavely, N.3
Bala, K.4
-
6
-
-
0001263162
-
Globally trained handwritten word recognizer using spatial representation, convolutional neural networks, and hidden markov models
-
Y. Bengio, Y. LeCun, and D. Henderson. Globally trained handwritten word recognizer using spatial representation, convolutional neural networks, and hidden markov models. In NIPS, 1994.
-
(1994)
NIPS
-
-
Bengio, Y.1
LeCun, Y.2
Henderson, D.3
-
7
-
-
84973859959
-
Learning long-term dependencies with gradient descent is difficult
-
Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE TNN, 1994.
-
(1994)
IEEE TNN
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
-
9
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected crfs
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015.
-
(2015)
ICLR
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
11
-
-
84973890848
-
Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
-
J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Dai, J.1
He, K.2
Sun, J.3
-
12
-
-
84959216100
-
Convolutional feature masking for joint object and stuff segmentation
-
J. Dai, K. He, and J. Sun. Convolutional feature masking for joint object and stuff segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Dai, J.1
He, K.2
Sun, J.3
-
13
-
-
84973864841
-
Neural conditional random fields
-
T.-M.-T. Do and T. Artieres. Neural conditional random fields. In NIPS, 2010.
-
(2010)
NIPS
-
-
Do, T.-M.-T.1
Artieres, T.2
-
15
-
-
84946737993
-
Towards unified object detection and semantic segmentation
-
J. Dong, Q. Chen, S. Yan, and A. Yuille. Towards unified object detection and semantic segmentation. In ECCV, 2014.
-
(2014)
ECCV
-
-
Dong, J.1
Chen, Q.2
Yan, S.3
Yuille, A.4
-
16
-
-
84937943470
-
Depth map prediction from a single image using a multi-scale deep network
-
D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a multi-scale deep network. In NIPS, 2014.
-
(2014)
NIPS
-
-
Eigen, D.1
Puhrsch, C.2
Fergus, R.3
-
17
-
-
84921069139
-
The pascal visual object classes challenge: A retrospective
-
M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes challenge: A retrospective. IJCV, 111(1).
-
IJCV
, vol.111
, Issue.1
-
-
Everingham, M.1
Eslami, S.M.A.2
Van Gool, L.3
Williams, C.K.I.4
Winn, J.5
Zisserman, A.6
-
19
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
20
-
-
84959195179
-
Deformable part models are convolutional neural networks
-
R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable part models are convolutional neural networks. In CVPR, 2015.
-
(2015)
CVPR
-
-
Girshick, R.1
Iandola, F.2
Darrell, T.3
Malik, J.4
-
21
-
-
84856686500
-
Semantic contours from inverse detectors
-
B. Hariharan, P. Arbelaez, L. D. Bourdev, S. Maji, and J. Malik. Semantic contours from inverse detectors. In ICCV, 2011.
-
(2011)
ICCV
-
-
Hariharan, B.1
Arbelaez, P.2
Bourdev, L.D.3
Maji, S.4
Malik, J.5
-
23
-
-
84959236250
-
Hypercolumns for object segmentation and fine-grained localization
-
B. Hariharan, P. Arbelaez, R. Girshick, and J. Malik. Hypercolumns for object segmentation and fine-grained localization. In CVPR, 2015.
-
(2015)
CVPR
-
-
Hariharan, B.1
Arbelaez, P.2
Girshick, R.3
Malik, J.4
-
24
-
-
85083954541
-
Deep structured output learning for unconstrained text recognition
-
M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman. Deep structured output learning for unconstrained text recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Jaderberg, M.1
Simonyan, K.2
Vedaldi, A.3
Zisserman, A.4
-
25
-
-
84913555165
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. In ACM Multimedia.
-
ACM Multimedia
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
26
-
-
84942581361
-
Human pose estmation with fields of parts
-
M. Kiefel and P. V. Gehler. Human pose estmation with fields of parts. In ECCV, 2014.
-
(2014)
ECCV
-
-
Kiefel, M.1
Gehler, P.V.2
-
27
-
-
85162351107
-
Efficient inference in fully connected crfs with Gaussian edge potentials
-
P. Krähenbühl and V. Koltun. Efficient inference in fully connected crfs with Gaussian edge potentials. In NIPS, 2011.
-
(2011)
NIPS
-
-
Krähenbühl, P.1
Koltun, V.2
-
28
-
-
84897536915
-
Parameter learning and convergent inference for dense random fields
-
P. Krähenbühl and V. Koltun. Parameter learning and convergent inference for dense random fields. In ICML, 2013.
-
(2013)
ICML
-
-
Krähenbühl, P.1
Koltun, V.2
-
29
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
30
-
-
77953225585
-
Associative hierarchical crfs for object class image segmentation
-
L. Ladicky, C. Russell, P. Kohli, and P. H. Torr. Associative hierarchical crfs for object class image segmentation. In ICCV, 2009.
-
(2009)
ICCV
-
-
Ladicky, L.1
Russell, C.2
Kohli, P.3
Torr, P.H.4
-
31
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML, 2001.
-
(2001)
ICML
-
-
Lafferty, J.D.1
McCallum, A.2
Pereira, F.C.N.3
-
32
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, (11), 1998.
-
(1998)
Proceedings of the IEEE
, Issue.11
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
34
-
-
84906505935
-
-
arXiv:1405. 0312
-
T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollar. Microsoft coco: Common objects in context. In arXiv:1405. 0312, 2014.
-
(2014)
Microsoft Coco: Common Objects in Context
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Bourdev, L.4
Girshick, R.5
Hays, J.6
Perona, P.7
Ramanan, D.8
Zitnick, C.L.9
Dollar, P.10
-
35
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
37
-
-
84911444024
-
The role of context for object detection and semantic segmentation in the wild
-
R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Urtasun, and A. Yuille. The role of context for object detection and semantic segmentation in the wild. In CVPR, 2014.
-
(2014)
CVPR
-
-
Mottaghi, R.1
Chen, X.2
Liu, X.3
Cho, N.-G.4
Lee, S.-W.5
Fidler, S.6
Urtasun, R.7
Yuille, A.8
-
39
-
-
84965124068
-
Weaklyand semi-supervised learning of a dcnn for semantic image segmentation
-
G. Papandreou, L.-C. Chen, K. Murphy, and A. L. Yuille. Weaklyand semi-supervised learning of a dcnn for semantic image segmentation. In ICCV, 2015.
-
(2015)
ICCV
-
-
Papandreou, G.1
Chen, L.-C.2
Murphy, K.3
Yuille, A.L.4
-
41
-
-
84897497795
-
On the difficulty of training recurrent neural networks
-
R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. On the difficulty of training recurrent neural networks. In ICML, 2013.
-
(2013)
ICML
-
-
Pascanu, R.1
Gulcehre, C.2
Cho, K.3
Bengio, Y.4
-
42
-
-
84887357627
-
Discriminative re-ranking of diverse segmentations
-
G. S. Payman Yadollahpour, Dhruv Batra. Discriminative re-ranking of diverse segmentations. In CVPR, 2013.
-
(2013)
CVPR
-
-
Payman Yadollahpour, G.S.1
Batra, D.2
-
43
-
-
84863373241
-
Conditional neural fields
-
J. Peng, L. Bo, and J. Xu. Conditional neural fields. In NIPS, 2009.
-
(2009)
NIPS
-
-
Peng, J.1
Bo, L.2
Xu, J.3
-
44
-
-
84919790220
-
Recurrent convolutional neural networks for scene labeling
-
P. H. O. Pinheiro and R. Collobert. Recurrent convolutional neural networks for scene labeling. In ICML, 2014.
-
(2014)
ICML
-
-
Pinheiro, P.H.O.1
Collobert, R.2
-
45
-
-
80052872903
-
Learning messagepassing inference machines for structured prediction
-
S. Ross, D. Munoz, M. Hebert, and J. A. Bagnell. Learning messagepassing inference machines for structured prediction. In CVPR, 2011.
-
(2011)
CVPR
-
-
Ross, S.1
Munoz, D.2
Hebert, M.3
Bagnell, J.A.4
-
48
-
-
80052878786
-
Real-time human pose recognition in parts from single depth images
-
J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. Real-time human pose recognition in parts from single depth images. In CVPR, 2011.
-
(2011)
CVPR
-
-
Shotton, J.1
Fitzgibbon, A.2
Cook, M.3
Sharp, T.4
Finocchio, M.5
Moore, R.6
Kipman, A.7
Blake, A.8
-
49
-
-
51949114829
-
Semantic texton forests for image categorization and segmentation
-
J. Shotton, M. Johnson, and R. Cipolla. Semantic texton forests for image categorization and segmentation. In CVPR, 2008.
-
(2008)
CVPR
-
-
Shotton, J.1
Johnson, M.2
Cipolla, R.3
-
50
-
-
58149151266
-
Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
-
J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV, (1), 2009.
-
(2009)
IJCV
, Issue.1
-
-
Shotton, J.1
Winn, J.2
Rother, C.3
Criminisi, A.4
-
51
-
-
84965161185
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2014.
-
(2014)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
52
-
-
84883148756
-
Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
-
V. Stoyanov, A. Ropson, and J. Eisner. Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure. In AISTATS, 2011.
-
(2011)
AISTATS
-
-
Stoyanov, V.1
Ropson, A.2
Eisner, J.3
-
53
-
-
4043138374
-
Loopy belief propagation and gibbs measures
-
S. C. Tatikonda and M. I. Jordan. Loopy belief propagation and gibbs measures. In UAI, 2002.
-
(2002)
UAI
-
-
Tatikonda, S.C.1
Jordan, M.I.2
-
54
-
-
35148864238
-
Bilateral filtering for gray and color images
-
C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images. In CVPR, 1998.
-
(1998)
CVPR
-
-
Tomasi, C.1
Manduchi, R.2
-
55
-
-
84930634156
-
Joint training of a convolutional network and a graphical model for human pose estimation
-
J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. In NIPS, 2014.
-
(2014)
NIPS
-
-
Tompson, J.J.1
Jain, A.2
LeCun, Y.3
Bregler, C.4
-
56
-
-
51949119486
-
Auto-context and its application to high-level vision tasks
-
Z. Tu. Auto-context and its application to high-level vision tasks. In CVPR, 2008.
-
(2008)
CVPR
-
-
Tu, Z.1
-
57
-
-
17444392134
-
Image parsing: Unifying segmentation, detection, and recognition
-
Z. Tu, X. Chen, A. L. Yuille, and S.-C. Zhu. Image parsing: Unifying segmentation, detection, and recognition. IJCV, 63(2):113-140, 2005.
-
(2005)
IJCV
, vol.63
, Issue.2
, pp. 113-140
-
-
Tu, Z.1
Chen, X.2
Yuille, A.L.3
Zhu, S.-C.4
-
58
-
-
84866662367
-
Efficient inference for fully-connected crfs with stationarity
-
Y. Zhang and T. Chen. Efficient inference for fully-connected crfs with stationarity. In CVPR, 2012.
-
(2012)
CVPR
-
-
Zhang, Y.1
Chen, T.2
|