메뉴 건너뛰기




Volumn 34, Issue 12, 2016, Pages 1287-1291

Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation

Author keywords

[No Author keywords available]

Indexed keywords

DATA VISUALIZATION; RNA;

EID: 85003441754     PISSN: 10870156     EISSN: 15461696     Source Type: Journal    
DOI: 10.1038/nbt.3682     Document Type: Article
Times cited : (117)

References (35)
  • 1
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell, C., et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511-515 (2010).
    • (2010) Nat. Biotechnol. , vol.28 , pp. 511-515
    • Trapnell, C.1
  • 2
    • 77949507153 scopus 로고    scopus 로고
    • RNA-Seq gene expression estimation with read mapping uncertainty
    • Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A., Dewey, C. N. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics 26, 493-500 (2010).
    • (2010) Bioinformatics , vol.26 , pp. 493-500
    • Li, B.1    Ruotti, V.2    Stewart, R.M.3    Thomson, J.A.4    Dewey, C.N.5
  • 3
    • 84887433583 scopus 로고    scopus 로고
    • Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories
    • Hoen, P. A., et al. Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nat. Biotechnol. 31, 1015-1022 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 1015-1022
    • Hoen, P.A.1
  • 4
    • 84920550975 scopus 로고    scopus 로고
    • SEQC/MAQC-III Consortium A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium
    • Su, Z., SEQC/MAQC-III Consortium A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium. Nat. Biotechnol. 32, 903-914 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 903-914
    • Su, Z.1
  • 5
    • 84909587930 scopus 로고    scopus 로고
    • Detecting and correcting systematic variation in large-scale RNA sequencing data
    • Li, S., et al. Detecting and correcting systematic variation in large-scale RNA sequencing data. Nat. Biotechnol. 32, 888-895 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 888-895
    • Li, S.1
  • 6
    • 84858068675 scopus 로고    scopus 로고
    • Removing technical variability in RNA-seq data using conditional quantile normalization
    • Hansen, K. D., Irizarry, R. A., Wu, Z. Removing technical variability in RNA-seq data using conditional quantile normalization. Biostatistics 13, 204-216 (2012).
    • (2012) Biostatistics , vol.13 , pp. 204-216
    • Hansen, K.D.1    Irizarry, R.A.2    Wu, Z.3
  • 8
    • 79960557820 scopus 로고    scopus 로고
    • Bias detection and correction in RNA-Sequencing data
    • Zheng, W., Chung, L. M., Zhao, H. Bias detection and correction in RNA-Sequencing data. BMC Bioinformatics 12, 290 (2011).
    • (2011) BMC Bioinformatics , vol.12 , pp. 290
    • Zheng, W.1    Chung, L.M.2    Zhao, H.3
  • 9
    • 84861734626 scopus 로고    scopus 로고
    • Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses
    • Stegle, O., Parts, L., Piipari, M., Winn, J., Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500-507 (2012).
    • (2012) Nat. Protoc. , vol.7 , pp. 500-507
    • Stegle, O.1    Parts, L.2    Piipari, M.3    Winn, J.4    Durbin, R.5
  • 10
    • 84909644283 scopus 로고    scopus 로고
    • Normalization of RNA-seq data using factor analysis of control genes or samples
    • Risso, D., Ngai, J., Speed, T. P., Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 32, 896-902 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 896-902
    • Risso, D.1    Ngai, J.2    Speed, T.P.3    Dudoit, S.4
  • 11
    • 84925226706 scopus 로고    scopus 로고
    • Svaseq: Removing batch effects and other unwanted noise from sequencing data
    • Leek, J. T. svaseq: removing batch effects and other unwanted noise from sequencing data. Nucleic Acids Res. 42, e161 (2014).
    • (2014) Nucleic Acids Res. , vol.42 , pp. e161
    • Leek, J.T.1
  • 12
    • 77951940273 scopus 로고    scopus 로고
    • Modeling non-uniformity in short-read rates in RNA-Seq data
    • Li, J., Jiang, H., Wong, W. H. Modeling non-uniformity in short-read rates in RNA-Seq data. Genome Biol. 11, R50 (2010).
    • (2010) Genome Biol. , vol.11 , pp. R50
    • Li, J.1    Jiang, H.2    Wong, W.H.3
  • 13
    • 77955883388 scopus 로고    scopus 로고
    • Biases in Illumina transcriptome sequencing caused by random hexamer priming
    • Hansen, K. D., Brenner, S. E., Dudoit, S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res. 38, e131 (2010).
    • (2010) Nucleic Acids Res. , vol.38 , pp. e131
    • Hansen, K.D.1    Brenner, S.E.2    Dudoit, S.3
  • 14
    • 79952709611 scopus 로고    scopus 로고
    • Improving RNA-Seq expression estimates by correcting for fragment bias
    • Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L., Pachter, L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 12, R22-R14 (2011).
    • (2011) Genome Biol. , vol.12 , pp. R22-R114
    • Roberts, A.1    Trapnell, C.2    Donaghey, J.3    Rinn, J.L.4    Pachter, L.5
  • 15
  • 16
    • 84869396421 scopus 로고    scopus 로고
    • Transcriptome assembly and isoform expression level estimation from biased RNA-Seq reads
    • Li, W., Jiang, T. Transcriptome assembly and isoform expression level estimation from biased RNA-Seq reads. Bioinformatics 28, 2914-2921 (2012).
    • (2012) Bioinformatics , vol.28 , pp. 2914-2921
    • Li, W.1    Jiang, T.2
  • 17
    • 84911861819 scopus 로고    scopus 로고
    • IVT-seq reveals extreme bias in RNA sequencing
    • Lahens, N. F., et al. IVT-seq reveals extreme bias in RNA sequencing. Genome Biol. 15, R86 (2014).
    • (2014) Genome Biol. , vol.15 , pp. R86
    • Lahens, N.F.1
  • 18
    • 84950278935 scopus 로고    scopus 로고
    • Benchmark analysis of algorithms for determining and quantifying full-length mRNA splice forms from RNA-seq data
    • Hayer, K. E., Pizarro, A., Lahens, N. F., Hogenesch, J. B., Grant, G. R. Benchmark analysis of algorithms for determining and quantifying full-length mRNA splice forms from RNA-seq data. Bioinformatics 31, 3938-3945 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 3938-3945
    • Hayer, K.E.1    Pizarro, A.2    Lahens, N.F.3    Hogenesch, J.B.4    Grant, G.R.5
  • 19
    • 84885645853 scopus 로고    scopus 로고
    • Transcriptome and genome sequencing uncovers functional variation in humans
    • Lappalainen, T., et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506-511 (2013).
    • (2013) Nature , vol.501 , pp. 506-511
    • Lappalainen, T.1
  • 20
    • 79951694175 scopus 로고    scopus 로고
    • Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries
    • Aird, D., et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011).
    • (2011) Genome Biol. , vol.12 , pp. R18
    • Aird, D.1
  • 21
    • 84861548193 scopus 로고    scopus 로고
    • Summarizing and correcting the GC content bias in high-throughput sequencing
    • Benjamini, Y., Speed, T. P. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 40, e72 (2012).
    • (2012) Nucleic Acids Res. , vol.40 , pp. e72
    • Benjamini, Y.1    Speed, T.P.2
  • 22
    • 84055216924 scopus 로고    scopus 로고
    • Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation
    • Li, J. J., Jiang, C. R., Brown, J. B., Huang, H., Bickel, P. J. Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation. Proc. Natl. Acad. Sci. USA 108, 19867-19872 (2011).
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 19867-19872
    • Li, J.J.1    Jiang, C.R.2    Brown, J.B.3    Huang, H.4    Bickel, P.J.5
  • 24
    • 84900328038 scopus 로고    scopus 로고
    • Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms
    • Patro, R., Mount, S. M., Kingsford, C. Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat. Biotechnol. 32, 462-464 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 462-464
    • Patro, R.1    Mount, S.M.2    Kingsford, C.3
  • 27
    • 78649714014 scopus 로고    scopus 로고
    • Analysis and design of RNA sequencing experiments for identifying isoform regulation
    • Katz, Y., Wang, E. T., Airoldi, E. M., Burge, C. B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009-1015 (2010).
    • (2010) Nat. Methods , vol.7 , pp. 1009-1015
    • Katz, Y.1    Wang, E.T.2    Airoldi, E.M.3    Burge, C.B.4
  • 28
    • 84940775779 scopus 로고    scopus 로고
    • Polyester: Simulating RNA-seq datasets with differential transcript expression
    • Frazee, A. C., Jaffe, A. E., Langmead, B., Leek, J. T. Polyester: simulating RNA-seq datasets with differential transcript expression. Bioinformatics 31, 2778-2784 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 2778-2784
    • Frazee, A.C.1    Jaffe, A.E.2    Langmead, B.3    Leek, J.T.4
  • 29
    • 84922578455 scopus 로고    scopus 로고
    • Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study
    • Li, S., et al. Multi-platform assessment of transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat. Biotechnol. 32, 915-925 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 915-925
    • Li, S.1
  • 30
    • 84930195617 scopus 로고    scopus 로고
    • Quantitative visualization of alternative exon expression from RNA-seq data
    • Katz, Y., et al. Quantitative visualization of alternative exon expression from RNA-seq data. Bioinformatics 31, 2400-2402 (2015).
    • (2015) Bioinformatics , vol.31 , pp. 2400-2402
    • Katz, Y.1
  • 31
    • 84871809302 scopus 로고    scopus 로고
    • STAR: Ultrafast universal RNA-seq aligner
    • Dobin, A., et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 15-21
    • Dobin, A.1
  • 32
    • 84876996918 scopus 로고    scopus 로고
    • TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
    • Kim, D., et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).
    • (2013) Genome Biol. , vol.14 , pp. R36
    • Kim, D.1
  • 33
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S., Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
    • (2010) Genome Biol. , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 34
    • 84961289551 scopus 로고    scopus 로고
    • Orchestrating high-throughput genomic analysis with Bioconductor
    • Huber, W., et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115-121 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 115-121
    • Huber, W.1
  • 35
    • 84883368195 scopus 로고    scopus 로고
    • Software for computing and annotating genomic ranges
    • Lawrence, M., et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).
    • (2013) PLoS Comput. Biol. , vol.9 , pp. e1003118
    • Lawrence, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.