-
1
-
-
85019202712
-
-
The crowdflower platform. https://www.crowdflower.com/.
-
-
-
-
2
-
-
85019172604
-
-
Pinterest. https://www.pinterest.com/.
-
-
-
-
3
-
-
84858390207
-
A study on similarity and relatedness using distributional and wordnet-based approaches
-
E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Paşca, and A. Soroa. A study on similarity and relatedness using distributional and wordnet-based approaches. In NAACL HLT, pages 19-27, 2009.
-
(2009)
NAACL HLT
, pp. 19-27
-
-
Agirre, E.1
Alfonseca, E.2
Hall, K.3
Kravalova, J.4
Paşca, M.5
Soroa, A.6
-
4
-
-
33845260073
-
Neural probabilistic language models
-
Springer
-
Y. Bengio, H. Schwenk, J.-S. Senécal, F. Morin, and J.-L. Gauvain. Neural probabilistic language models. In Innovations in Machine Learning, pages 137-186. Springer, 2006.
-
(2006)
Innovations in Machine Learning
, pp. 137-186
-
-
Bengio, Y.1
Schwenk, H.2
Senécal, J.-S.3
Morin, F.4
Gauvain, J.-L.5
-
5
-
-
84894469728
-
Multimodal distributional semantics
-
E. Bruni, N.-K. Tran, and M. Baroni. Multimodal distributional semantics. JAIR, 49(1-47), 2014.
-
(2014)
JAIR
, vol.49
, Issue.1-47
-
-
Bruni, E.1
Tran, N.-K.2
Baroni, M.3
-
7
-
-
84919728106
-
-
arXiv preprint arXiv:1406.1078
-
K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.
-
(2014)
Learning Phrase Representations Using Rnn Encoder-decoder for Statistical Machine Translation
-
-
Cho, K.1
Van Merriënboer, B.2
Gulcehre, C.3
Bahdanau, D.4
Bougares, F.5
Schwenk, H.6
Bengio, Y.7
-
8
-
-
85019204739
-
On using very large target vocabulary for neural Machine translation
-
S. J. K. Cho, R. Memisevic, and Y. Bengio. On using very large target vocabulary for neural machine translation. In ACL, 2015.
-
(2015)
ACL
-
-
Cho, S.J.K.1
Memisevic, R.2
Bengio, Y.3
-
9
-
-
84959236502
-
Long-term recurrent convolutional networks for visual recognition and description
-
J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual recognition and description. In CVPR, 2015.
-
(2015)
CVPR
-
-
Donahue, J.1
Anne Hendricks, L.2
Guadarrama, S.3
Rohrbach, M.4
Venugopalan, S.5
Saenko, K.6
Darrell, T.7
-
10
-
-
26444565569
-
Finding structure in time
-
J. L. Elman. Finding structure in time. Cognitive science, 14(2):179-211, 1990.
-
(1990)
Cognitive Science
, vol.14
, Issue.2
, pp. 179-211
-
-
Elman, J.L.1
-
11
-
-
85017481510
-
Placing search in context: The concept revisited
-
ACM
-
L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Ruppin. Placing search in context: The concept revisited. In WWW, pages 406-414. ACM, 2001.
-
(2001)
WWW
, pp. 406-414
-
-
Finkelstein, L.1
Gabrilovich, E.2
Matias, Y.3
Rivlin, E.4
Solan, Z.5
Wolfman, G.6
Ruppin, E.7
-
12
-
-
38049183286
-
The iapr tc-12 benchmark: A new evaluation resource for visual information systems
-
M. Grubinger, P. Clough, H. Müller, and T. Deselaers. The iapr tc-12 benchmark: A new evaluation resource for visual information systems. In International Workshop OntoImage, pages 13-23, 2006.
-
(2006)
International Workshop OntoImage
, pp. 13-23
-
-
Grubinger, M.1
Clough, P.2
Müller, H.3
Deselaers, T.4
-
13
-
-
84926042674
-
Learning abstract concept embeddings from multi-modal data: Since you probably can't see what i mean
-
Citeseer
-
F. Hill and A. Korhonen. Learning abstract concept embeddings from multi-modal data: Since you probably can't see what i mean. In EMNLP, pages 255-265. Citeseer, 2014.
-
(2014)
EMNLP
, pp. 255-265
-
-
Hill, F.1
Korhonen, A.2
-
14
-
-
84953746791
-
Simlex-999: Evaluating semantic models with (genuine) similarity estimation
-
F. Hill, R. Reichart, and A. Korhonen. Simlex-999: Evaluating semantic models with (genuine) similarity estimation. Computational Linguistics, 2015.
-
(2015)
Computational Linguistics
-
-
Hill, F.1
Reichart, R.2
Korhonen, A.3
-
15
-
-
84883394520
-
Framing image description as a ranking task: Data, models and evaluation metrics
-
M. Hodosh, P. Young, and J. Hockenmaier. Framing image description as a ranking task: Data, models and evaluation metrics. Journal of Artificial Intelligence Research, pages 853-899, 2013.
-
(2013)
Journal of Artificial Intelligence Research
, pp. 853-899
-
-
Hodosh, M.1
Young, P.2
Hockenmaier, J.3
-
16
-
-
84946734827
-
Deep visual-semantic alignments for generating image descriptions
-
A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, pages 3128-3137, 2015.
-
(2015)
CVPR
, pp. 3128-3137
-
-
Karpathy, A.1
Fei-Fei, L.2
-
17
-
-
84952650015
-
Learning image embeddings using convolutional neural networks for improved multi-modal semantics
-
Citeseer
-
D. Kiela and L. Bottou. Learning image embeddings using convolutional neural networks for improved multi-modal semantics. In EMNLP, pages 36-45. Citeseer, 2014.
-
(2014)
EMNLP
, pp. 36-45
-
-
Kiela, D.1
Bottou, L.2
-
20
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
-
(2012)
NIPS
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
22
-
-
84906493406
-
Microsoft coco: Common objects in context
-
Springer
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick. Microsoft coco: Common objects in context. In ECCV, pages 740-755. Springer, 2014.
-
(2014)
ECCV
, pp. 740-755
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollár, P.7
Zitnick, C.L.8
-
23
-
-
84973863256
-
Learning like a child: Fast novel visual concept learning from sentence descriptions of images
-
J. Mao, X. Wei, Y. Yang, J. Wang, Z. Huang, and A. L. Yuille. Learning like a child: Fast novel visual concept learning from sentence descriptions of images. In ICCV, pages 2533-2541, 2015.
-
(2015)
ICCV
, pp. 2533-2541
-
-
Mao, J.1
Wei, X.2
Yang, Y.3
Wang, J.4
Huang, Z.5
Yuille, A.L.6
-
24
-
-
85083950512
-
Deep captioning with multimodal recurrent neural networks (m-rnn)
-
J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille. Deep captioning with multimodal recurrent neural networks (m-rnn). In ICLR, 2015.
-
(2015)
ICLR
-
-
Mao, J.1
Xu, W.2
Yang, Y.3
Wang, J.4
Huang, Z.5
Yuille, A.6
-
25
-
-
84898956512
-
Distributed representations of words and phrases and their compositionality
-
T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, pages 3111-3119, 2013.
-
(2013)
NIPS
, pp. 3111-3119
-
-
Mikolov, T.1
Sutskever, I.2
Chen, K.3
Corrado, G.S.4
Dean, J.5
-
27
-
-
12344307633
-
The University of South Florida free Association, rhyme, and word fragment norms
-
D. L. Nelson, C. L. McEvoy, and T. A. Schreiber. The university of south florida free association, rhyme, and word fragment norms. Behavior Research Methods, Instruments, & Computers, 36(3):402-407, 2004.
-
(2004)
Behavior Research Methods, Instruments, & Computers
, vol.36
, Issue.3
, pp. 402-407
-
-
Nelson, D.L.1
McEvoy, C.L.2
Schreiber, T.A.3
-
29
-
-
84961289992
-
Glove: Global vectors for word representation
-
J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP, volume 14, pages 1532-43, 2014.
-
(2014)
EMNLP
, vol.14
, pp. 1532-1543
-
-
Pennington, J.1
Socher, R.2
Manning, C.D.3
-
30
-
-
84959860040
-
Evaluation methods for unsupervised word embeddings
-
T. Schnabel, I. Labutov, D. Mimno, and T. Joachims. Evaluation methods for unsupervised word embeddings. In EMNLP, pages 298-307, 2015.
-
(2015)
EMNLP
, pp. 298-307
-
-
Schnabel, T.1
Labutov, I.2
Mimno, D.3
Joachims, T.4
-
31
-
-
84906930522
-
Learning grounded meaning representations with autoencoders
-
C. Silberer and M. Lapata. Learning grounded meaning representations with autoencoders. In ACL, pages 721-732, 2014.
-
(2014)
ACL
, pp. 721-732
-
-
Silberer, C.1
Lapata, M.2
-
32
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
33
-
-
84928547704
-
Sequence to sequence learning with neural networks
-
I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, pages 3104-3112, 2014.
-
(2014)
NIPS
, pp. 3104-3112
-
-
Sutskever, I.1
Vinyals, O.2
Le, Q.V.3
-
34
-
-
84957922397
-
Yfcc100m: The new data in multimedia research
-
B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li. Yfcc100m: The new data in multimedia research. Communications of the ACM, 59(2):64-73, 2016.
-
(2016)
Communications of the ACM
, vol.59
, Issue.2
, pp. 64-73
-
-
Thomee, B.1
Shamma, D.A.2
Friedland, G.3
Elizalde, B.4
Ni, K.5
Poland, D.6
Borth, D.7
Li, L.-J.8
-
35
-
-
57249084011
-
Visualizing data using t-sne
-
L. Van der Maaten and G. Hinton. Visualizing data using t-sne. JMLR, 9(2579-2605):85, 2008.
-
(2008)
JMLR
, vol.9
, Issue.2579-2605
, pp. 85
-
-
Van Der Maaten, L.1
Hinton, G.2
-
36
-
-
84946747440
-
Show and tell: A neural image caption generator
-
O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In CVPR, pages 3156-3164, 2015.
-
(2015)
CVPR
, pp. 3156-3164
-
-
Vinyals, O.1
Toshev, A.2
Bengio, S.3
Erhan, D.4
-
37
-
-
84906494296
-
From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions
-
P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. In ACL, pages 479-488, 2014.
-
(2014)
ACL
, pp. 479-488
-
-
Young, P.1
Lai, A.2
Hodosh, M.3
Hockenmaier, J.4
|