메뉴 건너뛰기




Volumn , Issue , 2016, Pages 442-450

Training and evaluating multimodal word embeddings with large-scale web annotated images

Author keywords

[No Author keywords available]

Indexed keywords

RECURRENT NEURAL NETWORKS; SEMANTICS;

EID: 85019227172     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (53)

References (37)
  • 1
    • 85019202712 scopus 로고    scopus 로고
    • The crowdflower platform. https://www.crowdflower.com/.
  • 2
    • 85019172604 scopus 로고    scopus 로고
    • Pinterest. https://www.pinterest.com/.
  • 3
    • 84858390207 scopus 로고    scopus 로고
    • A study on similarity and relatedness using distributional and wordnet-based approaches
    • E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Paşca, and A. Soroa. A study on similarity and relatedness using distributional and wordnet-based approaches. In NAACL HLT, pages 19-27, 2009.
    • (2009) NAACL HLT , pp. 19-27
    • Agirre, E.1    Alfonseca, E.2    Hall, K.3    Kravalova, J.4    Paşca, M.5    Soroa, A.6
  • 5
    • 84894469728 scopus 로고    scopus 로고
    • Multimodal distributional semantics
    • E. Bruni, N.-K. Tran, and M. Baroni. Multimodal distributional semantics. JAIR, 49(1-47), 2014.
    • (2014) JAIR , vol.49 , Issue.1-47
    • Bruni, E.1    Tran, N.-K.2    Baroni, M.3
  • 8
    • 85019204739 scopus 로고    scopus 로고
    • On using very large target vocabulary for neural Machine translation
    • S. J. K. Cho, R. Memisevic, and Y. Bengio. On using very large target vocabulary for neural machine translation. In ACL, 2015.
    • (2015) ACL
    • Cho, S.J.K.1    Memisevic, R.2    Bengio, Y.3
  • 10
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. L. Elman. Finding structure in time. Cognitive science, 14(2):179-211, 1990.
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 13
    • 84926042674 scopus 로고    scopus 로고
    • Learning abstract concept embeddings from multi-modal data: Since you probably can't see what i mean
    • Citeseer
    • F. Hill and A. Korhonen. Learning abstract concept embeddings from multi-modal data: Since you probably can't see what i mean. In EMNLP, pages 255-265. Citeseer, 2014.
    • (2014) EMNLP , pp. 255-265
    • Hill, F.1    Korhonen, A.2
  • 14
    • 84953746791 scopus 로고    scopus 로고
    • Simlex-999: Evaluating semantic models with (genuine) similarity estimation
    • F. Hill, R. Reichart, and A. Korhonen. Simlex-999: Evaluating semantic models with (genuine) similarity estimation. Computational Linguistics, 2015.
    • (2015) Computational Linguistics
    • Hill, F.1    Reichart, R.2    Korhonen, A.3
  • 16
    • 84946734827 scopus 로고    scopus 로고
    • Deep visual-semantic alignments for generating image descriptions
    • A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In CVPR, pages 3128-3137, 2015.
    • (2015) CVPR , pp. 3128-3137
    • Karpathy, A.1    Fei-Fei, L.2
  • 17
    • 84952650015 scopus 로고    scopus 로고
    • Learning image embeddings using convolutional neural networks for improved multi-modal semantics
    • Citeseer
    • D. Kiela and L. Bottou. Learning image embeddings using convolutional neural networks for improved multi-modal semantics. In EMNLP, pages 36-45. Citeseer, 2014.
    • (2014) EMNLP , pp. 36-45
    • Kiela, D.1    Bottou, L.2
  • 20
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 23
    • 84973863256 scopus 로고    scopus 로고
    • Learning like a child: Fast novel visual concept learning from sentence descriptions of images
    • J. Mao, X. Wei, Y. Yang, J. Wang, Z. Huang, and A. L. Yuille. Learning like a child: Fast novel visual concept learning from sentence descriptions of images. In ICCV, pages 2533-2541, 2015.
    • (2015) ICCV , pp. 2533-2541
    • Mao, J.1    Wei, X.2    Yang, Y.3    Wang, J.4    Huang, Z.5    Yuille, A.L.6
  • 24
    • 85083950512 scopus 로고    scopus 로고
    • Deep captioning with multimodal recurrent neural networks (m-rnn)
    • J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille. Deep captioning with multimodal recurrent neural networks (m-rnn). In ICLR, 2015.
    • (2015) ICLR
    • Mao, J.1    Xu, W.2    Yang, Y.3    Wang, J.4    Huang, Z.5    Yuille, A.6
  • 25
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, pages 3111-3119, 2013.
    • (2013) NIPS , pp. 3111-3119
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 29
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP, volume 14, pages 1532-43, 2014.
    • (2014) EMNLP , vol.14 , pp. 1532-1543
    • Pennington, J.1    Socher, R.2    Manning, C.D.3
  • 30
    • 84959860040 scopus 로고    scopus 로고
    • Evaluation methods for unsupervised word embeddings
    • T. Schnabel, I. Labutov, D. Mimno, and T. Joachims. Evaluation methods for unsupervised word embeddings. In EMNLP, pages 298-307, 2015.
    • (2015) EMNLP , pp. 298-307
    • Schnabel, T.1    Labutov, I.2    Mimno, D.3    Joachims, T.4
  • 31
    • 84906930522 scopus 로고    scopus 로고
    • Learning grounded meaning representations with autoencoders
    • C. Silberer and M. Lapata. Learning grounded meaning representations with autoencoders. In ACL, pages 721-732, 2014.
    • (2014) ACL , pp. 721-732
    • Silberer, C.1    Lapata, M.2
  • 32
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 33
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, pages 3104-3112, 2014.
    • (2014) NIPS , pp. 3104-3112
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 35
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-sne
    • L. Van der Maaten and G. Hinton. Visualizing data using t-sne. JMLR, 9(2579-2605):85, 2008.
    • (2008) JMLR , vol.9 , Issue.2579-2605 , pp. 85
    • Van Der Maaten, L.1    Hinton, G.2
  • 36
    • 84946747440 scopus 로고    scopus 로고
    • Show and tell: A neural image caption generator
    • O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image caption generator. In CVPR, pages 3156-3164, 2015.
    • (2015) CVPR , pp. 3156-3164
    • Vinyals, O.1    Toshev, A.2    Bengio, S.3    Erhan, D.4
  • 37
    • 84906494296 scopus 로고    scopus 로고
    • From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions
    • P. Young, A. Lai, M. Hodosh, and J. Hockenmaier. From image descriptions to visual denotations: New similarity metrics for semantic inference over event descriptions. In ACL, pages 479-488, 2014.
    • (2014) ACL , pp. 479-488
    • Young, P.1    Lai, A.2    Hodosh, M.3    Hockenmaier, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.