메뉴 건너뛰기




Volumn 2015-August, Issue , 2015, Pages 4979-4983

Structure discovery of deep neural network based on evolutionary algorithms

Author keywords

CMA ES; Deep neural network; evolutionary algorithm; genetic algorithm; structure optimization

Indexed keywords

AUDIO SIGNAL PROCESSING; COVARIANCE MATRIX; DIRECTED GRAPHS; EVOLUTIONARY ALGORITHMS; GENETIC ALGORITHMS; PARAMETER ESTIMATION; SPEECH COMMUNICATION; SPEECH PROCESSING; STRUCTURAL OPTIMIZATION; TUNING;

EID: 84946084313     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2015.7178918     Document Type: Conference Paper
Times cited : (62)

References (23)
  • 3
    • 0030676559 scopus 로고    scopus 로고
    • Opti-mization of HMM by a genetic algorithm
    • C. W. Chau, S. Kwong, C. K. Diu, and W. R. Fahrner, "Opti-mization of HMM by a genetic algorithm," in Proc. ICASSP. IEEE, 1997, vol. 3, pp. 1727-1730.
    • (1997) Proc. ICASSP. IEEE , vol.3 , pp. 1727-1730
    • Chau, C.W.1    Kwong, S.2    Diu, C.K.3    Fahrner, W.R.4
  • 4
    • 0034825617 scopus 로고    scopus 로고
    • Optimi-sation of HMM topology and its model parameters by genetic algorithms
    • S. Kwong, C. W. Chau, K. F. Man, and K. S. Tang, "Optimi-sation of HMM topology and its model parameters by genetic algorithms," Pattern Recognition, vol. 34, no. 2, pp. 509-522, 2001.
    • (2001) Pattern Recognition , vol.34 , Issue.2 , pp. 509-522
    • Kwong, S.1    Chau, C.W.2    Man, K.F.3    Tang, K.S.4
  • 5
    • 77957933139 scopus 로고    scopus 로고
    • Comparison of particle swarm optimization and genetic algorithm for HMM training
    • F. Yang, C. Zhang, and T. Sun, "Comparison of particle swarm optimization and genetic algorithm for HMM training," in Proc. ICPR, 2008, pp. 1-4.
    • (2008) Proc. ICPR , pp. 1-4
    • Yang, F.1    Zhang, C.2    Sun, T.3
  • 6
    • 84890527827 scopus 로고    scopus 로고
    • Improving deep neural networks for LVCSR using rectified linear units and dropout
    • G. E. Dahl, T. N. Sainath, and G. E. Hinton, "Improving deep neural networks for LVCSR using rectified linear units and dropout," in Proc. ICASSP. IEEE, 2013, pp. 8609-8613.
    • (2013) Proc. ICASSP. IEEE , pp. 8609-8613
    • Dahl, G.E.1    Sainath, T.N.2    Hinton, G.E.3
  • 7
    • 84905216973 scopus 로고    scopus 로고
    • Black box optimization for au-tomatic speech recognition
    • S. Watanabe and J. Le Roux, "Black box optimization for au-tomatic speech recognition," in Proc. ICASSP. IEEE, 2014, pp. 3256-3260.
    • (2014) Proc. ICASSP. IEEE , pp. 3256-3260
    • Watanabe, S.1    Le Roux, J.2
  • 9
    • 84867614591 scopus 로고    scopus 로고
    • Scalable stacking and learning for building deep architectures
    • L. Deng, D. Yu, and J. Platt, "Scalable stacking and learning for building deep architectures," in Proc. ICASSP. IEEE, 2012, pp. 2133-2136.
    • (2012) Proc. ICASSP. IEEE , pp. 2133-2136
    • Deng, L.1    Yu, D.2    Platt, J.3
  • 10
    • 0033709098 scopus 로고    scopus 로고
    • Tandem connec-tionist feature extraction for conventional HMM systems
    • H. Hermansky, DPW Ellis, and S. Sharma, "Tandem connec-tionist feature extraction for conventional HMM systems," in Proc. ICASSP. IEEE, 2000, vol. 3, pp. 1635-1638.
    • (2000) Proc. ICASSP. IEEE , vol.3 , pp. 1635-1638
    • Hermansky, H.1    Ellis, D.P.W.2    Sharma, S.3
  • 11
    • 34547548235 scopus 로고    scopus 로고
    • Probabilis-tic and bottle-neck features for LVCSR of meetings
    • F. Grezl, M. Karafiát, S. Kontár, and J. Cernocky, "Probabilis-tic and bottle-neck features for LVCSR of meetings.," in Proc. ICASSP. IEEE, 2007, pp. 757-760.
    • (2007) Proc. ICASSP. IEEE , pp. 757-760
    • Grezl, F.1    Karafiát, M.2    Kontár, S.3    Cernocky, J.4
  • 12
    • 85135145174 scopus 로고    scopus 로고
    • Acoustic modeling based on the MDL criterion for speech recognition
    • K. Shinoda and T.Watanabe, "Acoustic modeling based on the MDL criterion for speech recognition," in Proc. Eurospeech, 1997, vol. 1, pp. 99-102.
    • (1997) Proc. Eurospeech , vol.1 , pp. 99-102
    • Shinoda, K.1    Watanabe, T.2
  • 13
    • 84875953283 scopus 로고    scopus 로고
    • Clustering via the Bayesian information criterion with applications in speech recognition
    • S. S. Chen and P. S. Gopalakrishnan, "Clustering via the Bayesian information criterion with applications in speech recognition," in Proc. ICASSP. IEEE, 1998, vol. 2, pp. 645-648.
    • (1998) Proc. ICASSP. IEEE , vol.2 , pp. 645-648
    • Chen, S.S.1    Gopalakrishnan, P.S.2
  • 15
    • 64149085496 scopus 로고    scopus 로고
    • Automatic model complexity control using marginalized discriminative growth functions
    • X. Liu and M. Gales, "Automatic model complexity control using marginalized discriminative growth functions," IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 4, pp. 1414-1424, 2007.
    • (2007) IEEE Transactions on Audio, Speech, and Language Processing , vol.15 , Issue.4 , pp. 1414-1424
    • Liu, X.1    Gales, M.2
  • 18
    • 0042879997 scopus 로고    scopus 로고
    • Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
    • N. Hansen, S. D. Müller, and P. Koumoutsakos, "Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)," Evolutionary Com-putation, vol. 11, no. 1, pp. 1-18, 2003.
    • (2003) Evolutionary Com-putation , vol.11 , Issue.1 , pp. 1-18
    • Hansen, N.1    Müller, S.D.2    Koumoutsakos, P.3
  • 20
    • 33845271655 scopus 로고    scopus 로고
    • The CMA evolution strategy: A comparing re-view
    • Springer
    • N. Hansen, "The CMA evolution strategy: a comparing re-view," in Towards a new evolutionary computation, pp. 75-102. Springer, 2006.
    • (2006) Towards A New Evolutionary Computation , pp. 75-102
    • Hansen, N.1
  • 21
    • 0003200767 scopus 로고    scopus 로고
    • The aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions
    • D. Pearce and H. Hirsch, "The aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions," in ISCA ITRW ASR2000, 2000, pp. 29-32.
    • (2000) ISCA ITRW ASR2000 , pp. 29-32
    • Pearce, D.1    Hirsch, H.2
  • 23
    • 34548285373 scopus 로고    scopus 로고
    • Property of average precision and its generaliza-tion: An examination of evaluation indicator for information retrieval
    • K. Kishida, "Property of average precision and its generaliza-tion: an examination of evaluation indicator for information retrieval," Tech. Rep., National Institute of Informatics, 2005.
    • (2005) Tech. Rep., National Institute of Informatics
    • Kishida, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.