-
1
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, 2012.
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
Kingsbury, B.11
-
2
-
-
84890537373
-
A high-performance Cantonese keyword search system
-
B. Kingsbury, J. Cui, X. Cui, M.J.F. Gales, K. Knill, J. Mamou, L. Mangu, D. Nolden, M. Picheny, B. Ramabhadran, et al., "A high-performance Cantonese keyword search system," in Proc. ICASSP. IEEE, 2013, pp. 8277-8281.
-
(2013)
Proc. ICASSP. IEEE
, pp. 8277-8281
-
-
Kingsbury, B.1
Cui, J.2
Cui, X.3
Gales, M.J.F.4
Knill, K.5
Mamou, J.6
Mangu, L.7
Nolden, D.8
Picheny, M.9
Ramabhadran, B.10
-
3
-
-
0030676559
-
Opti-mization of HMM by a genetic algorithm
-
C. W. Chau, S. Kwong, C. K. Diu, and W. R. Fahrner, "Opti-mization of HMM by a genetic algorithm," in Proc. ICASSP. IEEE, 1997, vol. 3, pp. 1727-1730.
-
(1997)
Proc. ICASSP. IEEE
, vol.3
, pp. 1727-1730
-
-
Chau, C.W.1
Kwong, S.2
Diu, C.K.3
Fahrner, W.R.4
-
4
-
-
0034825617
-
Optimi-sation of HMM topology and its model parameters by genetic algorithms
-
S. Kwong, C. W. Chau, K. F. Man, and K. S. Tang, "Optimi-sation of HMM topology and its model parameters by genetic algorithms," Pattern Recognition, vol. 34, no. 2, pp. 509-522, 2001.
-
(2001)
Pattern Recognition
, vol.34
, Issue.2
, pp. 509-522
-
-
Kwong, S.1
Chau, C.W.2
Man, K.F.3
Tang, K.S.4
-
5
-
-
77957933139
-
Comparison of particle swarm optimization and genetic algorithm for HMM training
-
F. Yang, C. Zhang, and T. Sun, "Comparison of particle swarm optimization and genetic algorithm for HMM training," in Proc. ICPR, 2008, pp. 1-4.
-
(2008)
Proc. ICPR
, pp. 1-4
-
-
Yang, F.1
Zhang, C.2
Sun, T.3
-
6
-
-
84890527827
-
Improving deep neural networks for LVCSR using rectified linear units and dropout
-
G. E. Dahl, T. N. Sainath, and G. E. Hinton, "Improving deep neural networks for LVCSR using rectified linear units and dropout," in Proc. ICASSP. IEEE, 2013, pp. 8609-8613.
-
(2013)
Proc. ICASSP. IEEE
, pp. 8609-8613
-
-
Dahl, G.E.1
Sainath, T.N.2
Hinton, G.E.3
-
7
-
-
84905216973
-
Black box optimization for au-tomatic speech recognition
-
S. Watanabe and J. Le Roux, "Black box optimization for au-tomatic speech recognition," in Proc. ICASSP. IEEE, 2014, pp. 3256-3260.
-
(2014)
Proc. ICASSP. IEEE
, pp. 3256-3260
-
-
Watanabe, S.1
Le Roux, J.2
-
8
-
-
84055211743
-
Acoustic model-ing using deep belief networks
-
A. R. Mohamed, G. E. Dahl, and G. Hinton, "Acoustic model-ing using deep belief networks," IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no. 1, pp. 14-22, 2012.
-
(2012)
IEEE Transactions on Audio, Speech, and Language Processing
, vol.20
, Issue.1
, pp. 14-22
-
-
Mohamed, A.R.1
Dahl, G.E.2
Hinton, G.3
-
9
-
-
84867614591
-
Scalable stacking and learning for building deep architectures
-
L. Deng, D. Yu, and J. Platt, "Scalable stacking and learning for building deep architectures," in Proc. ICASSP. IEEE, 2012, pp. 2133-2136.
-
(2012)
Proc. ICASSP. IEEE
, pp. 2133-2136
-
-
Deng, L.1
Yu, D.2
Platt, J.3
-
10
-
-
0033709098
-
Tandem connec-tionist feature extraction for conventional HMM systems
-
H. Hermansky, DPW Ellis, and S. Sharma, "Tandem connec-tionist feature extraction for conventional HMM systems," in Proc. ICASSP. IEEE, 2000, vol. 3, pp. 1635-1638.
-
(2000)
Proc. ICASSP. IEEE
, vol.3
, pp. 1635-1638
-
-
Hermansky, H.1
Ellis, D.P.W.2
Sharma, S.3
-
11
-
-
34547548235
-
Probabilis-tic and bottle-neck features for LVCSR of meetings
-
F. Grezl, M. Karafiát, S. Kontár, and J. Cernocky, "Probabilis-tic and bottle-neck features for LVCSR of meetings.," in Proc. ICASSP. IEEE, 2007, pp. 757-760.
-
(2007)
Proc. ICASSP. IEEE
, pp. 757-760
-
-
Grezl, F.1
Karafiát, M.2
Kontár, S.3
Cernocky, J.4
-
12
-
-
85135145174
-
Acoustic modeling based on the MDL criterion for speech recognition
-
K. Shinoda and T.Watanabe, "Acoustic modeling based on the MDL criterion for speech recognition," in Proc. Eurospeech, 1997, vol. 1, pp. 99-102.
-
(1997)
Proc. Eurospeech
, vol.1
, pp. 99-102
-
-
Shinoda, K.1
Watanabe, T.2
-
13
-
-
84875953283
-
Clustering via the Bayesian information criterion with applications in speech recognition
-
S. S. Chen and P. S. Gopalakrishnan, "Clustering via the Bayesian information criterion with applications in speech recognition," in Proc. ICASSP. IEEE, 1998, vol. 2, pp. 645-648.
-
(1998)
Proc. ICASSP. IEEE
, vol.2
, pp. 645-648
-
-
Chen, S.S.1
Gopalakrishnan, P.S.2
-
14
-
-
3042741069
-
Vari-ational Bayesian estimation and clustering for speech recog-nition
-
S. Watanabe, Y. Minami, A. Nakamura, and N. Ueda, "Vari-ational Bayesian estimation and clustering for speech recog-nition," IEEE Transactions on Speech and Audio Processing, vol. 12, pp. 365-381, 2004.
-
(2004)
IEEE Transactions on Speech and Audio Processing
, vol.12
, pp. 365-381
-
-
Watanabe, S.1
Minami, Y.2
Nakamura, A.3
Ueda, N.4
-
15
-
-
64149085496
-
Automatic model complexity control using marginalized discriminative growth functions
-
X. Liu and M. Gales, "Automatic model complexity control using marginalized discriminative growth functions," IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 4, pp. 1414-1424, 2007.
-
(2007)
IEEE Transactions on Audio, Speech, and Language Processing
, vol.15
, Issue.4
, pp. 1414-1424
-
-
Liu, X.1
Gales, M.2
-
16
-
-
77952624645
-
Gaussian mixture optimization based on efficient cross-validation
-
T. Shinozaki, S. Furui, and T. Kawahara, "Gaussian mixture optimization based on efficient cross-validation," IEEE Jour-nal of Selected Topics in Signal Processing, vol. 4, no. 3, pp. 540-547, 2010.
-
(2010)
IEEE Jour-nal of Selected Topics in Signal Processing
, vol.4
, Issue.3
, pp. 540-547
-
-
Shinozaki, T.1
Furui, S.2
Kawahara, T.3
-
18
-
-
0042879997
-
Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)
-
N. Hansen, S. D. Müller, and P. Koumoutsakos, "Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES)," Evolutionary Com-putation, vol. 11, no. 1, pp. 1-18, 2003.
-
(2003)
Evolutionary Com-putation
, vol.11
, Issue.1
, pp. 1-18
-
-
Hansen, N.1
Müller, S.D.2
Koumoutsakos, P.3
-
19
-
-
77955938333
-
Com-paring results of 31 algorithms from the black-box optimiza-tion benchmarking bbob-2009
-
N. Hansen, A. Auger, R. Ros, S. Finck, and P. Pošík, "Com-paring results of 31 algorithms from the black-box optimiza-tion benchmarking bbob-2009," in Proc. The 12th annual con-ference companion on Genetic and evolutionary computation (GECCO), 2010, pp. 1689-1696.
-
(2010)
Proc. The 12th Annual Con-ference Companion on Genetic and Evolutionary Computation (GECCO)
, pp. 1689-1696
-
-
Hansen, N.1
Auger, A.2
Ros, R.3
Finck, S.4
Pošík, P.5
-
20
-
-
33845271655
-
The CMA evolution strategy: A comparing re-view
-
Springer
-
N. Hansen, "The CMA evolution strategy: a comparing re-view," in Towards a new evolutionary computation, pp. 75-102. Springer, 2006.
-
(2006)
Towards A New Evolutionary Computation
, pp. 75-102
-
-
Hansen, N.1
-
21
-
-
0003200767
-
The aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions
-
D. Pearce and H. Hirsch, "The aurora experimental framework for the performance evaluation of speech recognition systems under noisy conditions," in ISCA ITRW ASR2000, 2000, pp. 29-32.
-
(2000)
ISCA ITRW ASR2000
, pp. 29-32
-
-
Pearce, D.1
Hirsch, H.2
-
22
-
-
84857819132
-
Theano: A CPU and GPU math expression compiler
-
J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio, "Theano: a CPU and GPU math expression compiler," in Proc. The Python for Scientific Computing Conference (SciPy), 2010.
-
(2010)
Proc. The Python for Scientific Computing Conference (SciPy)
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
Turian, J.7
Warde-Farley, D.8
Bengio, Y.9
-
23
-
-
34548285373
-
Property of average precision and its generaliza-tion: An examination of evaluation indicator for information retrieval
-
K. Kishida, "Property of average precision and its generaliza-tion: an examination of evaluation indicator for information retrieval," Tech. Rep., National Institute of Informatics, 2005.
-
(2005)
Tech. Rep., National Institute of Informatics
-
-
Kishida, K.1
|