-
1
-
-
56449091550
-
Gaussian process product models for nonparametric nonstationarity
-
R. P. Adams and O. Stegle. Gaussian process product models for nonparametric nonstationarity. in Proc. Int. Conf. Mach. Learn., 2008, pp. 1-8
-
(2008)
Proc. Int. Conf. Mach. Learn
, pp. 1-8
-
-
Adams, R.P.1
Stegle, O.2
-
2
-
-
84897563832
-
Thompson sampling for contextual bandits with linear payoffs
-
S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs. in Proc. Int. Conf. Mach. Learn., 2013, pp. 127-135
-
(2013)
Proc. Int. Conf. Mach. Learn
, pp. 127-135
-
-
Agrawal, S.1
Goyal, N.2
-
3
-
-
51049107702
-
Estimating deformations of isotropic Gaussian random fields on the plane
-
E. B. Anderes and M. L. Stein. Estimating deformations of isotropic Gaussian random fields on the plane. Ann. Stat., vol. 36, no. 2, pp. 719-741, 2008
-
(2008)
Ann. Stat
, vol.36
, Issue.2
, pp. 719-741
-
-
Anderes, E.B.1
Stein, M.L.2
-
4
-
-
0037262814
-
An introduction to MCMC for machine learning
-
C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC for machine learning. Mach. Learn., vol. 50, no. 1-2, pp. 5-43, 2003
-
(2003)
Mach. Learn
, vol.50
, Issue.1-2
, pp. 5-43
-
-
Andrieu, C.1
De Freitas, N.2
Doucet, A.3
Jordan, M.I.4
-
6
-
-
85079701866
-
Surrogatemodel-based method for constrained optimization
-
C. Audet, J. J. Dennis, D. W. Moore, A. Booker, and P. D. Frank. Surrogatemodel-based method for constrained optimization. in Proc. AIAA/USAF/NASA/ISSMO Symp. Multidisciplinary Anal. Optim., 2000, DOI: 10.2514/6.2000-4891
-
(2000)
Proc. AIAA/USAF/NASA/ISSMO Symp. Multidisciplinary Anal. Optim
-
-
Audet, C.1
Dennis, J.J.2
Moore, D.W.3
Booker, A.4
Frank, P.D.5
-
8
-
-
0041966002
-
Using confidence bounds for exploitation-exploration trade-offs
-
P. Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res., vol. 3, pp. 397-422, 2003
-
(2003)
J. Mach. Learn. Res
, vol.3
, pp. 397-422
-
-
Auer, P.1
-
9
-
-
0029513526
-
Gambling in a rigged casino: The adversarial multi-Armed bandit problem
-
P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. Gambling in a rigged casino: The adversarial multi-Armed bandit problem. in Proc. Symp. Found. Comput. Sci., 1995, pp. 322-331
-
(1995)
Proc. Symp. Found. Comput. Sci
, pp. 322-331
-
-
Auer, P.1
Cesa-Bianchi, N.2
Freund, Y.3
Schapire, R.E.4
-
10
-
-
0037709910
-
The nonstochastic multiarmed bandit problem
-
P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit problem. SIAM J. Comput., vol. 32, no. 1, pp. 48-77, 2002
-
(2002)
SIAM J. Comput
, vol.32
, Issue.1
, pp. 48-77
-
-
Auer, P.1
Cesa-Bianchi, N.2
Freund, Y.3
Schapire, R.E.4
-
12
-
-
84882279850
-
Collaborative hyperparameter tuning
-
R. Bardenet, M. Brendel, B. Kégl, and M. Sebag. Collaborative hyperparameter tuning. in Proc. Int. Conf. Mach. Learn., 2013, pp. 199-207
-
(2013)
Proc. Int. Conf. Mach. Learn
, pp. 199-207
-
-
Bardenet, R.1
Brendel, M.2
Kégl, B.3
Sebag, M.4
-
13
-
-
77956526263
-
Surrogating the surrogate: Accelerating Gaussian-processbased global optimization with a mixture cross-entropy algorithm
-
R. Bardenet and B. Kégl. Surrogating the surrogate: Accelerating Gaussian-processbased global optimization with a mixture cross-entropy algorithm. in Proc. Int. Conf. Mach. Learn., 2010, pp. 55-62
-
(2010)
Proc. Int. Conf. Mach. Learn
, pp. 55-62
-
-
Bardenet, R.1
Kégl, B.2
-
15
-
-
84867871496
-
Robust Gaussian process-based global optimization using a fully Bayesian expected improvement criterion
-
C. Coello, Ed. Berlin, Germany: Springer-Verlag
-
R. Benassi, J. Bect, and E. Vazquez. Robust Gaussian process-based global optimization using a fully Bayesian expected improvement criterion. in Learning and Intelligent Optimization, vol. 6683, C. Coello, Ed. Berlin, Germany: Springer-Verlag, 2011, pp. 176-190
-
(2011)
Learning and Intelligent Optimization
, vol.6683
, pp. 176-190
-
-
Benassi, R.1
Bect, J.2
Vazquez, E.3
-
16
-
-
85162384813
-
Algorithms for hyper-parameter optimization
-
J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 2546-2554
-
(2011)
Proc. Adv. Neural Inf. Process. Syst
, pp. 2546-2554
-
-
Bergstra, J.1
Bardenet, R.2
Bengio, Y.3
Kégl, B.4
-
17
-
-
84857855190
-
Random search for hyper-parameter optimization
-
J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. J. Mach. Learn. Res., vol. 13, pp. 281-305, 2012
-
(2012)
J. Mach. Learn. Res
, vol.13
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
19
-
-
84897558007
-
Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
-
J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. in Proc. Int. Conf. Mach. Learn., 2013, pp. 115-123
-
(2013)
Proc. Int. Conf. Mach. Learn
, pp. 115-123
-
-
Bergstra, J.1
Yamins, D.2
Cox, D.D.3
-
22
-
-
84862848995
-
Modeling nonstationary processes through dimension expansion
-
L. Bornn, G. Shaddick, and J. V. Zidek. Modeling nonstationary processes through dimension expansion. J. Amer. Stat. Soc., vol. 107, no. 497, 2012, pp. 281-289
-
(2012)
J. Amer. Stat. Soc
, vol.107
, Issue.497
, pp. 281-289
-
-
Bornn, L.1
Shaddick, G.2
Zidek, J.V.3
-
24
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001
-
(2001)
Mach. Learn
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
25
-
-
0003802343
-
-
New York NY USA: Wadsworth and Brooks
-
L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and Regression Trees. New York, NY, USA: Wadsworth and Brooks, 1984
-
(1984)
Classification Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
27
-
-
77958068642
-
A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning
-
E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Dept. Comput. Sci., Univ. British Columbia, Vancouver, BC, Canada, Tech. Rep. UBC TR-2009-23, 2009
-
(2009)
Dept. Comput. Sci., Univ. British Columbia, Vancouver, BC, Canada, Tech. Rep. UBC TR-2009-23
-
-
Brochu, E.1
Cora, V.M.2
De Freitas, N.3
-
29
-
-
84874045238
-
Regret analysis of stochastic and nonstochastic multi-Armed bandit problems
-
S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-Armed bandit problems. Found. Trends Mach. Learn., vol. 5, no. 1, pp. 1-122, 2012
-
(2012)
Found. Trends Mach. Learn
, vol.5
, Issue.1
, pp. 1-122
-
-
Bubeck, S.1
Cesa-Bianchi, N.2
-
31
-
-
79960128338
-
X-Armed bandits
-
S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvari. X-Armed bandits. J. Mach. Learn. Res., vol. 12, pp. 1655-1695, 2011
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 1655-1695
-
-
Bubeck, S.1
Munos, R.2
Stoltz, G.3
Szepesvari, C.4
-
32
-
-
80555140070
-
Convergence rates of efficient global optimization algorithms
-
A. D. Bull. Convergence rates of efficient global optimization algorithms. J. Mach. Learn. Res., vol. 12, pp. 2879-2904, 2011
-
(2011)
J. Mach. Learn. Res
, vol.12
, pp. 2879-2904
-
-
Bull, A.D.1
-
33
-
-
63749116574
-
Hierarchical adaptive experimental design for Gaussian process emulators
-
Jul
-
D. Busby. Hierarchical adaptive experimental design for Gaussian process emulators. Reliab. Eng. Syst. Safety, vol. 94, no. 7, pp. 1183-1193, Jul. 2009
-
(2009)
Reliab. Eng. Syst. Safety
, vol.94
, Issue.7
, pp. 1183-1193
-
-
Busby, D.1
-
35
-
-
84896062989
-
Bandit theory meets compressed sensing for high dimensional stochastic linear bandit
-
A. Carpentier and R. Munos. Bandit theory meets compressed sensing for high dimensional stochastic linear bandit. in Proc. 15th Int. Conf. Artif. Intell. Stat., 2012, pp. 190-198
-
(2012)
Proc. 15th Int. Conf. Artif. Intell. Stat
, pp. 190-198
-
-
Carpentier, A.1
Munos, R.2
-
37
-
-
84972528615
-
Bayesian experimental design: A review
-
K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Stat. Sci., vol. 10, no. 3, pp. 273-304, 1995
-
(1995)
Stat. Sci
, vol.10
, Issue.3
, pp. 273-304
-
-
Chaloner, K.1
Verdinelli, I.2
-
39
-
-
84867136616
-
Joint optimization and variable selection of highdimensional Gaussian processes
-
B. Chen, R. Castro, and A. Krause. Joint optimization and variable selection of highdimensional Gaussian processes. in Proc. Int. Conf. Mach. Learn., 2012, pp. 1423-1430
-
(2012)
Proc. Int. Conf. Mach. Learn
, pp. 1423-1430
-
-
Chen, B.1
Castro, R.2
Krause, A.3
-
42
-
-
84859414659
-
Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
-
A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends Comput. Graph. Vis., vol. 7, pp. 81-227, 2011
-
(2011)
Found. Trends Comput. Graph. Vis
, vol.7
, pp. 81-227
-
-
Criminisi, A.1
Shotton, J.2
Konukoglu, E.3
-
43
-
-
84867124523
-
Exponential regret bounds for Gaussian process bandits with deterministic observations
-
N. De Freitas, A. Smola, and M. Zoghi. Exponential regret bounds for Gaussian process bandits with deterministic observations. in Proc. Int. Conf. Mach. Learn., 2012, pp. 1743-1750
-
(2012)
Proc. Int. Conf. Mach. Learn
, pp. 1743-1750
-
-
De Freitas, N.1
Smola, A.2
Zoghi, M.3
-
44
-
-
84867478719
-
Learning where to attend with deep architectures for image tracking
-
M. Denil, L. Bazzani, H. Larochelle, and N. De Freitas. Learning where to attend with deep architectures for image tracking. Neural Comput., vol. 24, no. 8, pp. 2151-2184, 2012
-
(2012)
Neural Comput
, vol.24
, Issue.8
, pp. 2151-2184
-
-
Denil, M.1
Bazzani, L.2
Larochelle, H.3
De Freitas, N.4
-
45
-
-
84942597150
-
Parallelizing exploration-exploitation tradeoffs with Gaussian process bandit optimization
-
T. Desautels, A. Krause, and J. Burdick. Parallelizing exploration-exploitation tradeoffs with Gaussian process bandit optimization. J. Mach. Learn. Res., vol. 15, pp. 4053-4103, 2014
-
(2014)
J. Mach. Learn. Res
, vol.15
, pp. 4053-4103
-
-
Desautels, T.1
Krause, A.2
Burdick, J.3
-
47
-
-
84949921865
-
Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
-
Jul
-
T. Domhan, J. T. Springenberg, and F. Hutter. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. in Proc. 24th Int. Joint Conf. Artif. Intell., Jul. 2015, pp. 3460-3468
-
(2015)
Proc. 24th Int. Joint Conf. Artif. Intell
, pp. 3460-3468
-
-
Domhan, T.1
Springenberg, J.T.2
Hutter, F.3
-
50
-
-
84877730309
-
Best arm identification: A unified approach to fixed budget and fixed confidence
-
V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best arm identification: A unified approach to fixed budget and fixed confidence. in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 3212-3220
-
(2012)
Proc. Adv. Neural Inf. Process. Syst
, pp. 3212-3220
-
-
Gabillon, V.1
Ghavamzadeh, M.2
Lazaric, A.3
-
51
-
-
85162482585
-
Multi-bandit best arm identification
-
V. Gabillon, M. Ghavamzadeh, A. Lazaric, and S. Bubeck. Multi-bandit best arm identification. in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 2222-2230
-
(2011)
Proc. Adv. Neural Inf. Process. Syst
, pp. 2222-2230
-
-
Gabillon, V.1
Ghavamzadeh, M.2
Lazaric, A.3
Bubeck, S.4
-
52
-
-
84919924831
-
Bayesian optimization with inequality constraints
-
J. R. Gardner, M. J. Kusner, Z. Xu, K. Q. Weinberger, and J. P. Cunningham. Bayesian optimization with inequality constraints. in Proc. Int. Conf. Mach. Learn., 2014, pp. 937-945
-
(2014)
Proc. Int. Conf. Mach. Learn
, pp. 937-945
-
-
Gardner, J.R.1
Kusner, M.J.2
Xu, Z.3
Weinberger, K.Q.4
Cunningham, J.P.5
-
54
-
-
78149279501
-
Sequential Bayesian prediction in the presence of changepoints and faults
-
R. Garnett, M. A. Osborne, S. Reece, A. Rogers, and S. J. Roberts. Sequential Bayesian prediction in the presence of changepoints and faults. Comput. J., vol. 53, no. 9, pp. 1430-1446, 2010
-
(2010)
Comput. J.
, vol.53
, Issue.9
, pp. 1430-1446
-
-
Garnett, R.1
Osborne, M.A.2
Reece, S.3
Rogers, A.4
Roberts, S.J.5
-
59
-
-
0000169010
-
Bandit processes and dynamic allocation indices J. Roy. Stat. Soc. B
-
J. C. Gittins. Bandit processes and dynamic allocation indices J. Roy. Stat. Soc. B, Methodol., vol. 2, pp. 148-177, 1979
-
(1979)
Methodol
, vol.2
, pp. 148-177
-
-
Gittins, J.C.1
-
60
-
-
17944394120
-
Geostatistics for Natural Resources Evaluation. Oxford
-
P. Goovaerts, Geostatistics for Natural Resources Evaluation. Oxford, U.K.: Oxford Univ. Press, 1997
-
(1997)
U.K.: Oxford Univ. Press
-
-
Goovaerts, P.1
-
64
-
-
84862294467
-
Regret bounds for Gaussian process bandit problems
-
S. Grunewalder, J. Audibert, M. Opper, and J. Shawe-Taylor. Regret bounds for Gaussian process bandit problems. in Proc. 13th Int. Conf. Artif. Intell. Stat., 2010, pp. 273-280
-
(2010)
Proc. 13th Int. Conf. Artif. Intell. Stat
, pp. 273-280
-
-
Grunewalder, S.1
Audibert, J.2
Opper, M.3
Shawe-Taylor, J.4
-
65
-
-
84873695090
-
Self-Avoiding random dynamics on integer complex systems
-
F. Hamze, Z. Wang, and N. De Freitas. Self-Avoiding random dynamics on integer complex systems. ACM Trans. Model. Comput. Simul., vol. 23, no. 1, p. 9, 2013
-
(2013)
ACM Trans. Model. Comput. Simul
, vol.23
, Issue.1
, pp. 9
-
-
Hamze, F.1
Wang, Z.2
De Freitas, N.3
-
66
-
-
0035377566
-
Completely derandomized self-Adaptation in evolution strategies
-
N. Hansen and A. Ostermeier. Completely derandomized self-Adaptation in evolution strategies. Evol. Comput, vol. 9, no. 2, pp. 159-195, 2001
-
(2001)
Evol. Comput
, vol.9
, Issue.2
, pp. 159-195
-
-
Hansen, N.1
Ostermeier, A.2
-
67
-
-
84864947871
-
Entropy search for information-efficient global optimization
-
P. Hennig and C. Schuler. Entropy search for information-efficient global optimization. J. Mach. Learn. Res., vol. 13, no. 1, pp. 1809-1837, 2012
-
(2012)
J. Mach. Learn. Res
, vol.13
, Issue.1
, pp. 1809-1837
-
-
Hennig, P.1
Schuler, C.2
-
68
-
-
84969765655
-
Predictive entropy search for Bayesian optimization with unknown constraints
-
J. M. Hernández-Lobato, M. A. Gelbart, M. W. Hoffman, R. P. Adams, and Z. Ghahramani. Predictive entropy search for Bayesian optimization with unknown constraints. in Proc. Int. Conf. Mach. Learn., 2015, pp. 1699-1707
-
(2015)
Proc. Int. Conf. Mach. Learn
, pp. 1699-1707
-
-
Hernández-Lobato, J.M.1
Gelbart, M.A.2
Hoffman, M.W.3
Adams, R.P.4
Ghahramani, Z.5
-
70
-
-
0000439277
-
Non-stationary spatial modeling
-
D. Higdon, J. Swall, and J. Kern. Non-stationary spatial modeling. Bayesian Stat., vol. 6, 1998, pp. 761-768
-
(1998)
Bayesian Stat
, vol.6
, pp. 761-768
-
-
Higdon, D.1
Swall, J.2
Kern, J.3
-
71
-
-
85162037149
-
Using deep belief nets to learn covariance kernels for Gaussian processes
-
G. E. Hinton and R. Salakhutdinov. Using deep belief nets to learn covariance kernels for Gaussian processes. in Proc. Adv. Neural Inf. Process. Syst., 2008, pp. 1249-1256
-
(2008)
Proc. Adv. Neural Inf. Process. Syst
, pp. 1249-1256
-
-
Hinton, G.E.1
Salakhutdinov, R.2
-
72
-
-
84955516630
-
On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning
-
M. Hoffman, B. Shahriari, and N. De Freitas. On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning. in Proc. 17th Int. Conf. Artif. Intell. Stat., 2014, pp. 365-374
-
(2014)
Proc. 17th Int. Conf. Artif. Intell. Stat
, pp. 365-374
-
-
Hoffman, M.1
Shahriari, B.2
De Freitas, N.3
-
74
-
-
84856827305
-
Programming by optimization
-
H. H. Hoos. Programming by optimization. Commun. ACM, vol. 55, no. 2, pp. 70-80, 2012
-
(2012)
Commun ACM
, vol.55
, Issue.2
, pp. 70-80
-
-
Hoos, H.H.1
-
75
-
-
33644791173
-
Global optimization of stochastic black-box systems via sequential Kriging meta-models
-
D. Huang, T. Allen, W. Notz, and N. Zeng. Global optimization of stochastic black-box systems via sequential Kriging meta-models. J. Global Optim., vol. 34, no. 3, pp. 441-466, 2006
-
(2006)
J. Global Optim
, vol.34
, Issue.3
, pp. 441-466
-
-
Huang, D.1
Allen, T.2
Notz, W.3
Zeng, N.4
-
76
-
-
73649133736
-
-
Ph.D. dissertation, Univ. British Columbia, Vancouver, BC, Canada
-
F. Hutter. Automated configuration of algorithms for solving hard computational problems. Ph.D. dissertation, Univ. British Columbia, Vancouver, BC, Canada, 2009
-
(2009)
Automated Configuration of Algorithms for Solving Hard Computational Problems
-
-
Hutter, F.1
-
77
-
-
84890938757
-
Identifying key algorithm parameters and instance features using forward selection
-
Berlin, Germany: Springer-Verlag
-
F. Hutter, H. Hoos, and K. Leyton-Brown. Identifying key algorithm parameters and instance features using forward selection. in Learning and Intelligent Optimization, vol. 7997, Berlin, Germany: Springer-Verlag, 2013, pp. 364-381
-
(2013)
Learning and Intelligent Optimization
, vol.7997
, pp. 364-381
-
-
Hutter, F.1
Hoos, H.2
Leyton-Brown, K.3
-
78
-
-
77955439544
-
-
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems Berlin Germany: Springer-Verlag
-
F. Hutter, H. H. Hoos, and K. Leyton-Brown. Automated configuration of mixed integer programming solvers. in Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Berlin, Germany: Springer-Verlag, 2010, pp. 186-202
-
(2010)
Automated Configuration of Mixed Integer Programming Solvers
, pp. 186-202
-
-
Hutter, F.1
Hoos, H.H.2
Leyton-Brown, K.3
-
79
-
-
84868554032
-
-
Learning and Intelligent Optimization Berlin Germany: Springer- Verlag
-
F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based optimization for general algorithm configuration. Learning and Intelligent Optimization, Berlin, Germany: Springer-Verlag, 2011, pp. 507-523
-
(2011)
Sequential Model-based Optimization for General Algorithm Configuration
, pp. 507-523
-
-
Hutter, F.1
Hoos, H.H.2
Leyton-Brown, K.3
-
80
-
-
84867862661
-
-
Learning and Intelligent Optimization Berlin Germany: Springer- Verlag
-
F. Hutter, H. H. Hoos, and K. Leyton-Brown. Parallel algorithm configuration. Learning and Intelligent Optimization, Berlin, Germany: Springer-Verlag, 2012, pp. 55-70
-
(2012)
Parallel Algorithm Configuration
, pp. 55-70
-
-
Hutter, F.1
Hoos, H.H.2
Leyton-Brown, K.3
-
81
-
-
0035577808
-
A taxonomy of global optimization methods based on response surfaces
-
D. Jones. A taxonomy of global optimization methods based on response surfaces. J. Global Optim., vol. 21, no. 4, pp. 345-383, 2001
-
(2001)
J. Global Optim
, vol.21
, Issue.4
, pp. 345-383
-
-
Jones, D.1
-
82
-
-
0000561424
-
Efficient global optimization of expensive black-box functions
-
D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black-box functions. J. Global Optim., vol. 13, no. 4, pp. 455-492, 1998
-
(1998)
J. Global Optim
, vol.13
, Issue.4
, pp. 455-492
-
-
Jones, D.1
Schonlau, M.2
Welch, W.3
-
83
-
-
0027678534
-
Lipschitzian optimization without the Lipschitz constant
-
D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl., vol. 79, no. 1, pp. 157-181, 1993
-
(1993)
J. Optim. Theory Appl
, vol.79
, Issue.1
, pp. 157-181
-
-
Jones, D.R.1
Perttunen, C.D.2
Stuckman, B.E.3
-
85
-
-
84867888479
-
Thompson sampling: An asymptotically optimal finite-Time analysis
-
Berlin, Germany: Springer-Verlag
-
E. Kaufmann, N. Korda, and R. Munos. Thompson sampling: An asymptotically optimal finite-Time analysis. in Algorithmic Learning Theory, vol. 7568, Berlin, Germany: Springer-Verlag, 2012, pp. 199-213
-
(2012)
Algorithmic Learning Theory
, vol.7568
, pp. 199-213
-
-
Kaufmann, E.1
Korda, N.2
Munos, R.3
-
86
-
-
34547984865
-
Most likely heteroscedastic Gaussian process regression
-
K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard. Most likely heteroscedastic Gaussian process regression. in Proc. Int. Conf. Mach. Learn., 2007, pp. 393-400
-
(2007)
Proc. Int. Conf. Mach. Learn
, pp. 393-400
-
-
Kersting, K.1
Plagemann, C.2
Pfaff, P.3
Burgard, W.4
-
88
-
-
57849115716
-
Controlled experiments on the web: Survey and practical guide
-
R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experiments on the web: Survey and practical guide. Data Mining Knowl. Disc., vol. 18, no. 1, pp. 140-181, 2009
-
(2009)
Data Mining Knowl. Disc
, vol.18
, Issue.1
, pp. 140-181
-
-
Kohavi, R.1
Longbotham, R.2
Sommerfield, D.3
Henne, R.M.4
-
90
-
-
0000455229
-
A statistical approach to some basic mine valuation problems on the witwatersrand
-
D. G. Krige. A statistical approach to some basic mine valuation problems on the witwatersrand. in J. Chem. Metallurgical Mining Soc. South Africa, vol. 94, no. 3, 1951, pp. 95-111
-
(1951)
J. Chem. Metallurgical Mining Soc. South Africa
, vol.94
, Issue.3
, pp. 95-111
-
-
Krige, D.G.1
-
91
-
-
84998710865
-
A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise
-
H. J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Fluids Eng., vol. 86, no. 1, pp. 97-106, 1964
-
(1964)
J. Fluids Eng
, vol.86
, Issue.1
, pp. 97-106
-
-
Kushner, H.J.1
-
92
-
-
0002899547
-
Asymptotically efficient adaptive allocation rules
-
T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Adv. Appl. Math., vol. 6, no. 1, pp. 4-22, 1985
-
(1985)
Adv. Appl. Math
, vol.6
, Issue.1
, pp. 4-22
-
-
Lai, T.L.1
Robbins, H.2
-
93
-
-
77955513590
-
Marginalized neural network mixtures for large-scale regression
-
Aug
-
M. Lázaro-Gredilla and A. R. Figueiras-Vidal. Marginalized neural network mixtures for large-scale regression. IEEE Trans. Neural Netw., vol. 21, no. 8, pp. 1345-1351, Aug. 2010
-
(2010)
IEEE Trans. Neural Netw
, vol.21
, Issue.8
, pp. 1345-1351
-
-
Lázaro-Gredilla, M.1
Figueiras-Vidal, A.R.2
-
94
-
-
77954665893
-
Sparse spectrum Gaussian process regression
-
M. Lázaro-Gredilla, J. Quinnonero-Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal. Sparse spectrum Gaussian process regression. J. Mach. Learn. Res., vol. 11, pp. 1865-1881, 2010
-
(2010)
J. Mach. Learn. Res
, vol.11
, pp. 1865-1881
-
-
Lázaro-Gredilla, M.1
Quinnonero-Candela, J.2
Rasmussen, C.E.3
Figueiras-Vidal, A.R.4
-
96
-
-
84957035400
-
Learning the empirical hardness of optimization problems: The case of combinatorial auctions
-
Lecture Notes in Computer Science, Berlin, Germany: Springer-Verlag
-
K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the empirical hardness of optimization problems: The case of combinatorial auctions. in Principles and Practice of Constraint Programming, ser. Lecture Notes in Computer Science, Berlin, Germany: Springer-Verlag, 2002, pp. 556-572
-
(2002)
Principles and Practice of Constraint Programming, ser
, pp. 556-572
-
-
Leyton-Brown, K.1
Nudelman, E.2
Shoham, Y.3
-
97
-
-
77954641643
-
A contextual-bandit approach to personalized news article recommendation
-
L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news article recommendation. in Proc. World Wide Web, 2010, pp. 661-670
-
(2010)
Proc. World Wide Web
, pp. 661-670
-
-
Li, L.1
Chu, W.2
Langford, J.3
Schapire, R.E.4
-
98
-
-
0001249987
-
On a measure of the information provided by an experiment
-
D. V. Lindley. On a measure of the information provided by an experiment. Ann. Math. Stat., vol. 27, no. 4, pp. 986-1005, 1956
-
(1956)
Ann. Math. Stat
, vol.27
, Issue.4
, pp. 986-1005
-
-
Lindley, D.V.1
-
99
-
-
70349318390
-
-
Ph.D. dissertation, Univ. Alberta, Edmonton, AB, Canada
-
D. Lizotte. Practical Bayesian optimization. Ph.D. dissertation, Univ. Alberta, Edmonton, AB, Canada, 2008
-
(2008)
Practical Bayesian Optimization
-
-
Lizotte, D.1
-
100
-
-
84863783543
-
An experimental methodology for response surface optimization methods
-
D. Lizotte, R. Greiner, and D. Schuurmans. An experimental methodology for response surface optimization methods. J. Global Optim., vol. 53, pp. 1-38, 2011
-
(2011)
J. Global Optim
, vol.53
, pp. 1-38
-
-
Lizotte, D.1
Greiner, R.2
Schuurmans, D.3
-
101
-
-
84880890296
-
Automatic gait optimization with Gaussian process regression
-
D. Lizotte, T. Wang, M. Bowling, and D. Schuurmans. Automatic gait optimization with Gaussian process regression. in Proc. Int. Joint Conf. Artif. Intell., 2007, pp. 944-949
-
(2007)
Proc. Int. Joint Conf. Artif. Intell
, pp. 944-949
-
-
Lizotte, D.1
Wang, T.2
Bowling, M.3
Schuurmans, D.4
-
102
-
-
0001977314
-
Bayesian algorithms for one-dimensional global optimization
-
M. Locatelli. Bayesian algorithms for one-dimensional global optimization. J. Global Optim., vol. 10, pp. 57-76, 1997
-
(1997)
J. Global Optim
, vol.10
, pp. 57-76
-
-
Locatelli, M.1
-
103
-
-
80053452289
-
Variational heteroscedastic Gaussian process regression
-
ACM
-
M. Lzaro-gredilla and M. K. Titsias. Variational heteroscedastic Gaussian process regression. in Proc. Int. Conf. Mach. Learn., 2011, pp. 841-848, ACM
-
(2011)
Proc. Int. Conf. Mach. Learn
, pp. 841-848
-
-
Lzaro-Gredilla, M.1
Titsias, M.K.2
-
105
-
-
84954528329
-
Adaptive MCMC with Bayesian optimization
-
N. Mahendran, Z. Wang, F. Hamze, and N. De Freitas. Adaptive MCMC with Bayesian optimization. J. Mach. Learn. Res., vol. 22, pp. 751-760, 2012
-
(2012)
J. Mach. Learn. Res
, vol.22
, pp. 751-760
-
-
Mahendran, N.1
Wang, Z.2
Hamze, F.3
De Freitas, N.4
-
106
-
-
84872354504
-
Bayesian optimisation for intelligent environmental monitoring. in NIPS Workshop Bayesian Optim
-
R. Marchant and F. Ramos. Bayesian optimisation for intelligent environmental monitoring. in NIPS Workshop Bayesian Optim. Decision Making, 2012
-
(2012)
Decision Making
-
-
Marchant, R.1
Ramos, F.2
-
107
-
-
0001923944
-
Hoeffding races: Accelerating model selection search for classification and function approximation
-
O. Maron and A. W. Moore. Hoeffding races: Accelerating model selection search for classification and function approximation. Robot. Inst., vol. 6, pp. 59-66, 1993
-
(1993)
Robot. Inst
, vol.6
, pp. 59-66
-
-
Maron, O.1
Moore, A.W.2
-
108
-
-
70349325516
-
A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot
-
R.Martinez-Cantin, N. De Freitas, E. Brochu, J. Castellanos, and A. Doucet. A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Autonom. Robots, vol. 27, no. 2, pp. 93-103, 2009
-
(2009)
Autonom. Robots
, vol.27
, Issue.2
, pp. 93-103
-
-
Martinez-Cantin, R.1
De Freitas, N.2
Brochu, E.3
Castellanos, J.4
Doucet, A.5
-
109
-
-
84904632376
-
Bayesian optimization with an empirical hardness model for approximate nearest neighbour search
-
J. Martinez, J. J. Little, and N. De Freitas. Bayesian optimization with an empirical hardness model for approximate nearest neighbour search. in Proc. IEEE Winter Conf. Appl. Comput. Vis., 2014, pp. 588-595
-
(2014)
Proc IEEE Winter Conf. Appl. Comput. Vis
, pp. 588-595
-
-
Martinez, J.1
Little, J.J.2
De Freitas, N.3
-
110
-
-
84959309936
-
Active policy learning for robot planning and exploration under uncertainty
-
R.Martinez-Cantin, N. De Freitas, A. Doucet, and J. A. Castellanos. Active policy learning for robot planning and exploration under uncertainty. in Proc. Robot. Sci. Syst., pp. 321-328, 2007
-
(2007)
Proc. Robot. Sci. Syst
, pp. 321-328
-
-
Martinez-Cantin, R.1
De Freitas, N.2
Doucet, A.3
Castellanos, J.A.4
-
112
-
-
84860620509
-
-
Stat. Group, Schl. Math., Univ. Bristol, Bristol, U.K., Tech. Rep 11: 01
-
B. C. May, N. Korda, A. Lee, and D. S. Leslie. Optimistic Bayesian sampling in contextual bandit problems. Stat. Group, Schl. Math., Univ. Bristol, Bristol, U.K., Tech. Rep. 11: 01, 2011
-
(2011)
Optimistic Bayesian Sampling in Contextual Bandit Problems
-
-
May, B.C.1
Korda, N.2
Lee, A.3
Leslie, D.S.4
-
114
-
-
0012499686
-
Application of Bayesian approach to numerical methods of global and stochastic optimization
-
J. Močkus. Application of Bayesian approach to numerical methods of global and stochastic optimization. J. Global Optim., vol. 4, no. 4, pp. 347-365, 1994
-
(1994)
J. Global Optim
, vol.4
, Issue.4
, pp. 347-365
-
-
Močkus, J.1
-
115
-
-
0342813049
-
The application of Bayesian methods for seeking the extremum
-
L. Dixon and G. Szego, Eds. Amsterdam, The Netherlands: Elsevier
-
J. Močkus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking the extremum. in Toward Global Optimization, vol. 2, L. Dixon and G. Szego, Eds. Amsterdam, The Netherlands: Elsevier, 1978
-
(1978)
Toward Global Optimization
, vol.2
-
-
Močkus, J.1
Tiesis, V.2
Žilinskas, A.3
-
116
-
-
85162504694
-
Optimistic optimization of a deterministic function without the knowledge of its smoothness
-
R. Munos. Optimistic optimization of a deterministic function without the knowledge of its smoothness. in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 783-791
-
(2011)
Proc. Adv. Neural Inf. Process. Syst
, pp. 783-791
-
-
Munos, R.1
-
117
-
-
84955439192
-
From bandits to Monte-Carlo tree search: The optimistic principle applied to optimization and planning
-
R. Munos. From bandits to Monte-Carlo tree search: The optimistic principle applied to optimization and planning. INRIA Lille, France, Tech. Rep. hal-00747575, 2014
-
(2014)
INRIA Lille, France, Tech. Rep. Hal-00747575
-
-
Munos, R.1
-
118
-
-
0003611509
-
-
Ph.D. dissertation, Univ. Toronto, Toronto, ON, Canada
-
R. M. Neal. Bayesian learning for neural networks. Ph.D. dissertation, Univ. Toronto, Toronto, ON, Canada, 1995
-
(1995)
Bayesian Learning for Neural Networks
-
-
Neal, R.M.1
-
119
-
-
0001414179
-
Generalized linear models
-
J. Nelder and R. Wedderburn. Generalized linear models. J. Roy. Stat. Soc. A, vol. 135, no. 3, pp. 370-384, 1972
-
(1972)
J. Roy. Stat. Soc. A
, vol.135
, Issue.3
, pp. 370-384
-
-
Nelder, J.1
Wedderburn, R.2
-
120
-
-
77956033531
-
-
Berlin Germany: Springer-Verlag
-
M. A. Osborne, R. Garnett, and S. J. Roberts. Gaussian processes for global optimisation Learning and Intelligent Optimization, Berlin, Germany: Springer-Verlag, pp. 1-15, 2009
-
(2009)
Gaussian Processes for Global Optimisation Learning and Intelligent Optimization
, pp. 1-15
-
-
Osborne, M.A.1
Garnett, R.2
Roberts, S.J.3
-
121
-
-
84899028582
-
Nonstationary covariance functions for Gaussian process regression
-
C. Paciorek and M. Schervish. Nonstationary covariance functions for Gaussian process regression. in Proc. Adv. Neural Inf. Process. Syst., 2004, vol. 16, pp. 273-280
-
(2004)
Proc. Adv. Neural Inf. Process. Syst
, vol.16
, pp. 273-280
-
-
Paciorek, C.1
Schervish, M.2
-
122
-
-
84961749016
-
A nonstationary space-Time Gaussian process model for partially converged simulations
-
V. Picheny and D. Ginsbourger. A nonstationary space-Time Gaussian process model for partially converged simulations. SIAM/ASA J. Uncertainty Quantif., vol. 1, no. 1, pp. 57-78, 2013
-
(2013)
SIAM/ASA J. Uncertainty Quantif
, vol.1
, Issue.1
, pp. 57-78
-
-
Picheny, V.1
Ginsbourger, D.2
-
123
-
-
21444460810
-
Unconstrained parametrizations for variance-covariance matrices
-
J. C. Pinheiro and D. M. Bates. Unconstrained parametrizations for variance-covariance matrices. Stat. Comput., vol. 6, no. 3, pp. 289-296, 1996
-
(1996)
Stat. Comput
, vol.6
, Issue.3
, pp. 289-296
-
-
Pinheiro, J.C.1
Bates, D.M.2
-
124
-
-
29144453489
-
A unifying view of sparse approximate Gaussian process regression
-
J. Qui nonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res., vol. 6, pp. 1939-1959, 2005
-
(2005)
J. Mach. Learn. Res
, vol.6
, pp. 1939-1959
-
-
Nonero-Candela, Q.1
Rasmussen, C.E.2
-
127
-
-
84908172119
-
Learning to optimize via posterior sampling
-
D. Russo and B. Van Roy. Learning to optimize via posterior sampling. Math. Oper. Res., vol. 39, no. 4, pp. 1221-1243, 2014
-
(2014)
Math. Oper. Res
, vol.39
, Issue.4
, pp. 1221-1243
-
-
Russo, D.1
Van Roy, B.2
-
128
-
-
84972517827
-
Design and analysis of computer experiments
-
J. Sacks, W. J. Welch, T. J. Welch, and H. P. Wynn. Design and analysis of computer experiments. Stat. Sci., vol. 4, no. 4, pp. 409-423, 1989
-
(1989)
Stat. Sci
, vol.4
, Issue.4
, pp. 409-423
-
-
Sacks, J.1
Welch, W.J.2
Welch, T.J.3
Wynn, H.P.4
-
131
-
-
0003773699
-
-
Ph.D. dissertation, Univ. Michigan, Ann Arbor, MI, USA
-
M. J. Sasena. Flexibility and efficiency enhancement for constrained global design optimization with Kriging approximations. Ph.D. dissertation, Univ. Michigan, Ann Arbor, MI, USA, 2002
-
(2002)
Flexibility and Efficiency Enhancement for Constrained Global Design Optimization with Kriging Approximations
-
-
Sasena, M.J.1
-
132
-
-
0042171731
-
Bayesian inference for nonstationary spatial covariance structures via spatial deformations
-
A. M. Schmidt and A. O'Hagan. Bayesian inference for nonstationary spatial covariance structures via spatial deformations. J. Roy. Stat. Soc. B, vol. 65, pp. 743-758, 2003
-
(2003)
J. Roy. Stat. Soc. B
, vol.65
, pp. 743-758
-
-
Schmidt, A.M.1
O'Hagan, A.2
-
133
-
-
0003494437
-
-
Ph.D. dissertation, Univ. Waterloo, Waterloo, ON, Canada
-
M. Schonlau. Computer experiments and global optimization. Ph.D. dissertation, Univ. Waterloo, Waterloo, ON, Canada, 1997
-
(1997)
Computer Experiments and Global Optimization
-
-
Schonlau, M.1
-
134
-
-
0347131360
-
Global versus local search in constrained optimization of computer models
-
M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local search in constrained optimization of computer models. Lecture Notes-Monograph Series, vol. 34, pp. 11-25, 1998
-
(1998)
Lecture Notes-Monograph Series
, vol.34
, pp. 11-25
-
-
Schonlau, M.1
Welch, W.J.2
Jones, D.R.3
-
135
-
-
78650505735
-
A modern Bayesian look at the multi-Armed bandit
-
S. L. Scott. A modern Bayesian look at the multi-Armed bandit. Appl. Stochastic Models Business Ind., vol. 26, no. 6, pp. 639-658, 2010
-
(2010)
Appl. Stochastic Models Business Ind
, vol.26
, Issue.6
, pp. 639-658
-
-
Scott, S.L.1
-
137
-
-
33745987673
-
Fast forward selection to speed up sparse Gaussian process regression
-
M. Seeger, C. Williams, and N. Lawrence. Fast forward selection to speed up sparse Gaussian process regression. in Proc. Artif. Intell. Stat. 9, 2003, pp. 1-8
-
(2003)
Proc. Artif. Intell. Stat
, vol.9
, pp. 1-8
-
-
Seeger, M.1
Williams, C.2
Lawrence, N.3
-
139
-
-
85023624040
-
An entropy search portfolio
-
B. Shahriari, Z. Wang, M. W. Hoffman, A. Bouchard-Coˆté, and N. De Freitas. An entropy search portfolio. in Proc. NIPS Workshop Bayesian Optim., 2014
-
(2014)
Proc NIPS Workshop Bayesian Optim
-
-
Shahriari, B.1
Wang, Z.2
Hoffman, M.W.3
Bouchard-Coˆté, A.4
De Freitas, N.5
-
142
-
-
84919942400
-
-
Ph.D. dissertation, Univ. Toronto, Toronto, ON, Canada
-
J. Snoek. Bayesian optimization and semiparametric models with applications to assistive technology. Ph.D. dissertation, Univ. Toronto, Toronto, ON, Canada, 2013
-
(2013)
Bayesian Optimization and Semiparametric Models with Applications to Assistive Technology
-
-
Snoek, J.1
-
144
-
-
84970022032
-
Scalable Bayesian optimization using deep neural networks
-
J. Snoek., et al. Scalable Bayesian optimization using deep neural networks. in Proc. Int. Conf. Mach. Learn., 2015, pp. 2171-2180
-
(2015)
Proc. Int. Conf. Mach. Learn
, pp. 2171-2180
-
-
Snoek, J.1
-
145
-
-
84919794855
-
Input warping for Bayesian optimization of non-stationary functions
-
J. Snoek, K. Swersky, R. S. Zemel, and R. P. Adams. Input warping for Bayesian optimization of non-stationary functions. in Proc. Int. Conf. Mach. Learn., 2014, pp. 1674-1682
-
(2014)
Proc. Int. Conf. Mach. Learn
, pp. 1674-1682
-
-
Snoek, J.1
Swersky, K.2
Zemel, R.S.3
Adams, R.P.4
-
146
-
-
77956501313
-
Gaussian process optimization in the bandit setting: No regret and experimental design
-
N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. in Proc. Int. Conf. Mach. Learn., 2010, pp. 1015-1022
-
(2010)
Proc. Int. Conf. Mach. Learn
, pp. 1015-1022
-
-
Srinivas, N.1
Krause, A.2
Kakade, S.M.3
Seeger, M.4
-
150
-
-
0001395850
-
On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
-
W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, vol. 25, no. 3/4, pp. 285-294, 1933
-
(1933)
Biometrika
, vol.25
, Issue.3-4
, pp. 285-294
-
-
Thompson, W.R.1
-
151
-
-
85018371540
-
Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
-
C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. in Proc. Knowl. Disc. Data Mining, 2013, pp. 847-855
-
(2013)
Proc. Knowl. Disc. Data Mining
, pp. 847-855
-
-
Thornton, C.1
Hutter, F.2
Hoos, H.H.3
Leyton-Brown, K.4
-
152
-
-
84860609370
-
Variational learning of inducing variables in sparse Gaussian processes
-
M. K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. in Proc. Int. Conf. Artif. Intell. Stat., 2009, pp. 567-574
-
(2009)
Proc. Int. Conf. Artif. Intell. Stat
, pp. 567-574
-
-
Titsias, M.K.1
-
153
-
-
84908877512
-
Explore-exploit in top-N recommender systems via Gaussian processes
-
H. P. Vanchinathan, I. Nikolic, F. De Bona, and A. Krause. Explore-exploit in top-N recommender systems via Gaussian processes. in Proc. 8th ACM Conf. Recommender Syst., 2014, pp. 225-232
-
(2014)
Proc. 8th ACM Conf. Recommender Syst
, pp. 225-232
-
-
Vanchinathan, H.P.1
Nikolic, I.2
De Bona, F.3
Krause, A.4
-
154
-
-
77954033598
-
Convergence properties of the expected improvement algorithm with fixed mean and covariance functions
-
E. Vazquez and J. Bect. Convergence properties of the expected improvement algorithm with fixed mean and covariance functions. J. Stat. Planning Inference, vol. 140, no. 11, pp. 3088-3095, 2010
-
(2010)
J. Stat. Planning Inference
, vol.140
, Issue.11
, pp. 3088-3095
-
-
Vazquez, E.1
Bect, J.2
-
155
-
-
67650938640
-
An informational approach to the global optimization of expensive-To-evaluate functions
-
J. Villemonteix, E. Vazquez, and E. Walter. An informational approach to the global optimization of expensive-To-evaluate functions. J. Global Optim., vol. 44, no. 4, pp. 509-534, 2009
-
(2009)
J. Global Optim
, vol.44
, Issue.4
, pp. 509-534
-
-
Villemonteix, J.1
Vazquez, E.2
Walter, E.3
-
157
-
-
84955498823
-
Bayesian multi-scale optimistic optimization
-
Z. Wang, B. Shakibi, L. Jin, and N. De Freitas. Bayesian multi-scale optimistic optimization. in Proc. Int. Conf. Artif. Intell. Stat., 2014, pp. 1005-1014
-
(2014)
Proc. Int. Conf. Artif. Intell. Stat
, pp. 1005-1014
-
-
Wang, Z.1
Shakibi, B.2
Jin, L.3
De Freitas, N.4
-
158
-
-
84896058897
-
Bayesian optimization in high dimensions via random embeddings
-
Z. Wang, M. Zoghi, D. Matheson, F. Hutter, and N. De Freitas. Bayesian optimization in high dimensions via random embeddings. in Proc. Int. Joint Conf. Artif. Intell., 2013, pp. 1778-1784
-
(2013)
Proc. Int. Joint Conf. Artif. Intell
, pp. 1778-1784
-
-
Wang, Z.1
Zoghi, M.2
Matheson, D.3
Hutter, F.4
De Freitas, N.5
-
159
-
-
0034550055
-
Sequential design of computer experiments to minimize integrated response functions
-
B. J. Williams, T. J. Santner, and W. I. Notz. Sequential design of computer experiments to minimize integrated response functions. Statistica Sinica, vol. 10, pp. 1133-1152, 2000
-
(2000)
Statistica Sinica
, vol.10
, pp. 1133-1152
-
-
Williams, B.J.1
Santner, T.J.2
Notz, W.I.3
-
160
-
-
84955448572
-
Efficient transfer learning method for automatic hyperparameter tuning
-
D. Yogatama and G. Mann. Efficient transfer learning method for automatic hyperparameter tuning. in Proc. Int. Conf. Artif. Intell. Stat., 2014, pp. 1077-1085
-
(2014)
Proc. Int. Conf. Artif. Intell. Stat
, pp. 1077-1085
-
-
Yogatama, D.1
Mann, G.2
-
162
-
-
84959196836
-
Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction. in Proc
-
Y. Zhang, K. Sohn, R. Villegas, G. Pan, and H. Lee. Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction. in Proc. IEEE Comput. Vis. Pattern Recognit. Conf., 2015, pp. 249-258
-
(2015)
IEEE Comput. Vis. Pattern Recognit. Conf
, pp. 249-258
-
-
Zhang, Y.1
Sohn, K.2
Villegas, R.3
Pan, G.4
Lee, H.5
-
163
-
-
0036783418
-
Global optimization based on a statistical model and simplical partitioning
-
A. Zilinskas and J. Zilinskas. Global optimization based on a statistical model and simplical partitioning. Comput. Math. Appl., vol. 44, pp. 957-967, 2002
-
(2002)
Comput. Math. Appl
, vol.44
, pp. 957-967
-
-
Žilinskas, A.1
Žilinskas, J.2
|