메뉴 건너뛰기




Volumn 104, Issue 1, 2016, Pages 148-175

Taking the human out of the loop: A review of Bayesian optimization

Author keywords

decision making; design of experiments; genomic medicine; optimization; response surface methodology; statistical learning

Indexed keywords

APPLICATION PROGRAMS; DECISION MAKING; DESIGN OF EXPERIMENTS; DIGITAL STORAGE; OPTIMIZATION;

EID: 84949985138     PISSN: 00189219     EISSN: 15582256     Source Type: Journal    
DOI: 10.1109/JPROC.2015.2494218     Document Type: Review
Times cited : (5013)

References (163)
  • 1
    • 56449091550 scopus 로고    scopus 로고
    • Gaussian process product models for nonparametric nonstationarity
    • R. P. Adams and O. Stegle. Gaussian process product models for nonparametric nonstationarity. in Proc. Int. Conf. Mach. Learn., 2008, pp. 1-8
    • (2008) Proc. Int. Conf. Mach. Learn , pp. 1-8
    • Adams, R.P.1    Stegle, O.2
  • 2
    • 84897563832 scopus 로고    scopus 로고
    • Thompson sampling for contextual bandits with linear payoffs
    • S. Agrawal and N. Goyal. Thompson sampling for contextual bandits with linear payoffs. in Proc. Int. Conf. Mach. Learn., 2013, pp. 127-135
    • (2013) Proc. Int. Conf. Mach. Learn , pp. 127-135
    • Agrawal, S.1    Goyal, N.2
  • 3
    • 51049107702 scopus 로고    scopus 로고
    • Estimating deformations of isotropic Gaussian random fields on the plane
    • E. B. Anderes and M. L. Stein. Estimating deformations of isotropic Gaussian random fields on the plane. Ann. Stat., vol. 36, no. 2, pp. 719-741, 2008
    • (2008) Ann. Stat , vol.36 , Issue.2 , pp. 719-741
    • Anderes, E.B.1    Stein, M.L.2
  • 4
    • 0037262814 scopus 로고    scopus 로고
    • An introduction to MCMC for machine learning
    • C. Andrieu, N. De Freitas, A. Doucet, and M. I. Jordan. An introduction to MCMC for machine learning. Mach. Learn., vol. 50, no. 1-2, pp. 5-43, 2003
    • (2003) Mach. Learn , vol.50 , Issue.1-2 , pp. 5-43
    • Andrieu, C.1    De Freitas, N.2    Doucet, A.3    Jordan, M.I.4
  • 8
    • 0041966002 scopus 로고    scopus 로고
    • Using confidence bounds for exploitation-exploration trade-offs
    • P. Auer. Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res., vol. 3, pp. 397-422, 2003
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 397-422
    • Auer, P.1
  • 10
  • 13
    • 77956526263 scopus 로고    scopus 로고
    • Surrogating the surrogate: Accelerating Gaussian-processbased global optimization with a mixture cross-entropy algorithm
    • R. Bardenet and B. Kégl. Surrogating the surrogate: Accelerating Gaussian-processbased global optimization with a mixture cross-entropy algorithm. in Proc. Int. Conf. Mach. Learn., 2010, pp. 55-62
    • (2010) Proc. Int. Conf. Mach. Learn , pp. 55-62
    • Bardenet, R.1    Kégl, B.2
  • 15
    • 84867871496 scopus 로고    scopus 로고
    • Robust Gaussian process-based global optimization using a fully Bayesian expected improvement criterion
    • C. Coello, Ed. Berlin, Germany: Springer-Verlag
    • R. Benassi, J. Bect, and E. Vazquez. Robust Gaussian process-based global optimization using a fully Bayesian expected improvement criterion. in Learning and Intelligent Optimization, vol. 6683, C. Coello, Ed. Berlin, Germany: Springer-Verlag, 2011, pp. 176-190
    • (2011) Learning and Intelligent Optimization , vol.6683 , pp. 176-190
    • Benassi, R.1    Bect, J.2    Vazquez, E.3
  • 17
    • 84857855190 scopus 로고    scopus 로고
    • Random search for hyper-parameter optimization
    • J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. J. Mach. Learn. Res., vol. 13, pp. 281-305, 2012
    • (2012) J. Mach. Learn. Res , vol.13 , pp. 281-305
    • Bergstra, J.1    Bengio, Y.2
  • 19
    • 84897558007 scopus 로고    scopus 로고
    • Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures
    • J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. in Proc. Int. Conf. Mach. Learn., 2013, pp. 115-123
    • (2013) Proc. Int. Conf. Mach. Learn , pp. 115-123
    • Bergstra, J.1    Yamins, D.2    Cox, D.D.3
  • 22
    • 84862848995 scopus 로고    scopus 로고
    • Modeling nonstationary processes through dimension expansion
    • L. Bornn, G. Shaddick, and J. V. Zidek. Modeling nonstationary processes through dimension expansion. J. Amer. Stat. Soc., vol. 107, no. 497, 2012, pp. 281-289
    • (2012) J. Amer. Stat. Soc , vol.107 , Issue.497 , pp. 281-289
    • Bornn, L.1    Shaddick, G.2    Zidek, J.V.3
  • 24
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Mach. Learn., vol. 45, no. 1, pp. 5-32, 2001
    • (2001) Mach. Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 29
    • 84874045238 scopus 로고    scopus 로고
    • Regret analysis of stochastic and nonstochastic multi-Armed bandit problems
    • S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-Armed bandit problems. Found. Trends Mach. Learn., vol. 5, no. 1, pp. 1-122, 2012
    • (2012) Found. Trends Mach. Learn , vol.5 , Issue.1 , pp. 1-122
    • Bubeck, S.1    Cesa-Bianchi, N.2
  • 32
    • 80555140070 scopus 로고    scopus 로고
    • Convergence rates of efficient global optimization algorithms
    • A. D. Bull. Convergence rates of efficient global optimization algorithms. J. Mach. Learn. Res., vol. 12, pp. 2879-2904, 2011
    • (2011) J. Mach. Learn. Res , vol.12 , pp. 2879-2904
    • Bull, A.D.1
  • 33
    • 63749116574 scopus 로고    scopus 로고
    • Hierarchical adaptive experimental design for Gaussian process emulators
    • Jul
    • D. Busby. Hierarchical adaptive experimental design for Gaussian process emulators. Reliab. Eng. Syst. Safety, vol. 94, no. 7, pp. 1183-1193, Jul. 2009
    • (2009) Reliab. Eng. Syst. Safety , vol.94 , Issue.7 , pp. 1183-1193
    • Busby, D.1
  • 35
    • 84896062989 scopus 로고    scopus 로고
    • Bandit theory meets compressed sensing for high dimensional stochastic linear bandit
    • A. Carpentier and R. Munos. Bandit theory meets compressed sensing for high dimensional stochastic linear bandit. in Proc. 15th Int. Conf. Artif. Intell. Stat., 2012, pp. 190-198
    • (2012) Proc. 15th Int. Conf. Artif. Intell. Stat , pp. 190-198
    • Carpentier, A.1    Munos, R.2
  • 37
    • 84972528615 scopus 로고
    • Bayesian experimental design: A review
    • K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Stat. Sci., vol. 10, no. 3, pp. 273-304, 1995
    • (1995) Stat. Sci , vol.10 , Issue.3 , pp. 273-304
    • Chaloner, K.1    Verdinelli, I.2
  • 39
    • 84867136616 scopus 로고    scopus 로고
    • Joint optimization and variable selection of highdimensional Gaussian processes
    • B. Chen, R. Castro, and A. Krause. Joint optimization and variable selection of highdimensional Gaussian processes. in Proc. Int. Conf. Mach. Learn., 2012, pp. 1423-1430
    • (2012) Proc. Int. Conf. Mach. Learn , pp. 1423-1430
    • Chen, B.1    Castro, R.2    Krause, A.3
  • 42
    • 84859414659 scopus 로고    scopus 로고
    • Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning
    • A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends Comput. Graph. Vis., vol. 7, pp. 81-227, 2011
    • (2011) Found. Trends Comput. Graph. Vis , vol.7 , pp. 81-227
    • Criminisi, A.1    Shotton, J.2    Konukoglu, E.3
  • 43
    • 84867124523 scopus 로고    scopus 로고
    • Exponential regret bounds for Gaussian process bandits with deterministic observations
    • N. De Freitas, A. Smola, and M. Zoghi. Exponential regret bounds for Gaussian process bandits with deterministic observations. in Proc. Int. Conf. Mach. Learn., 2012, pp. 1743-1750
    • (2012) Proc. Int. Conf. Mach. Learn , pp. 1743-1750
    • De Freitas, N.1    Smola, A.2    Zoghi, M.3
  • 44
    • 84867478719 scopus 로고    scopus 로고
    • Learning where to attend with deep architectures for image tracking
    • M. Denil, L. Bazzani, H. Larochelle, and N. De Freitas. Learning where to attend with deep architectures for image tracking. Neural Comput., vol. 24, no. 8, pp. 2151-2184, 2012
    • (2012) Neural Comput , vol.24 , Issue.8 , pp. 2151-2184
    • Denil, M.1    Bazzani, L.2    Larochelle, H.3    De Freitas, N.4
  • 45
    • 84942597150 scopus 로고    scopus 로고
    • Parallelizing exploration-exploitation tradeoffs with Gaussian process bandit optimization
    • T. Desautels, A. Krause, and J. Burdick. Parallelizing exploration-exploitation tradeoffs with Gaussian process bandit optimization. J. Mach. Learn. Res., vol. 15, pp. 4053-4103, 2014
    • (2014) J. Mach. Learn. Res , vol.15 , pp. 4053-4103
    • Desautels, T.1    Krause, A.2    Burdick, J.3
  • 47
    • 84949921865 scopus 로고    scopus 로고
    • Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves
    • Jul
    • T. Domhan, J. T. Springenberg, and F. Hutter. Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves. in Proc. 24th Int. Joint Conf. Artif. Intell., Jul. 2015, pp. 3460-3468
    • (2015) Proc. 24th Int. Joint Conf. Artif. Intell , pp. 3460-3468
    • Domhan, T.1    Springenberg, J.T.2    Hutter, F.3
  • 49
    • 84959891641 scopus 로고    scopus 로고
    • Initializing Bayesian hyperparameter optimization via meta-learning
    • M. Feurer, T. Springenberg, and F. Hutter. Initializing Bayesian hyperparameter optimization via meta-learning. in Proc. Nat. Conf. Artif. Intell., 2015, pp. 1128-1135
    • (2015) Proc. Nat. Conf. Artif. Intell , pp. 1128-1135
    • Feurer, M.1    Springenberg, T.2    Hutter, F.3
  • 50
    • 84877730309 scopus 로고    scopus 로고
    • Best arm identification: A unified approach to fixed budget and fixed confidence
    • V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best arm identification: A unified approach to fixed budget and fixed confidence. in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 3212-3220
    • (2012) Proc. Adv. Neural Inf. Process. Syst , pp. 3212-3220
    • Gabillon, V.1    Ghavamzadeh, M.2    Lazaric, A.3
  • 54
    • 78149279501 scopus 로고    scopus 로고
    • Sequential Bayesian prediction in the presence of changepoints and faults
    • R. Garnett, M. A. Osborne, S. Reece, A. Rogers, and S. J. Roberts. Sequential Bayesian prediction in the presence of changepoints and faults. Comput. J., vol. 53, no. 9, pp. 1430-1446, 2010
    • (2010) Comput. J. , vol.53 , Issue.9 , pp. 1430-1446
    • Garnett, R.1    Osborne, M.A.2    Reece, S.3    Rogers, A.4    Roberts, S.J.5
  • 59
    • 0000169010 scopus 로고
    • Bandit processes and dynamic allocation indices J. Roy. Stat. Soc. B
    • J. C. Gittins. Bandit processes and dynamic allocation indices J. Roy. Stat. Soc. B, Methodol., vol. 2, pp. 148-177, 1979
    • (1979) Methodol , vol.2 , pp. 148-177
    • Gittins, J.C.1
  • 60
    • 17944394120 scopus 로고    scopus 로고
    • Geostatistics for Natural Resources Evaluation. Oxford
    • P. Goovaerts, Geostatistics for Natural Resources Evaluation. Oxford, U.K.: Oxford Univ. Press, 1997
    • (1997) U.K.: Oxford Univ. Press
    • Goovaerts, P.1
  • 65
    • 84873695090 scopus 로고    scopus 로고
    • Self-Avoiding random dynamics on integer complex systems
    • F. Hamze, Z. Wang, and N. De Freitas. Self-Avoiding random dynamics on integer complex systems. ACM Trans. Model. Comput. Simul., vol. 23, no. 1, p. 9, 2013
    • (2013) ACM Trans. Model. Comput. Simul , vol.23 , Issue.1 , pp. 9
    • Hamze, F.1    Wang, Z.2    De Freitas, N.3
  • 66
    • 0035377566 scopus 로고    scopus 로고
    • Completely derandomized self-Adaptation in evolution strategies
    • N. Hansen and A. Ostermeier. Completely derandomized self-Adaptation in evolution strategies. Evol. Comput, vol. 9, no. 2, pp. 159-195, 2001
    • (2001) Evol. Comput , vol.9 , Issue.2 , pp. 159-195
    • Hansen, N.1    Ostermeier, A.2
  • 67
    • 84864947871 scopus 로고    scopus 로고
    • Entropy search for information-efficient global optimization
    • P. Hennig and C. Schuler. Entropy search for information-efficient global optimization. J. Mach. Learn. Res., vol. 13, no. 1, pp. 1809-1837, 2012
    • (2012) J. Mach. Learn. Res , vol.13 , Issue.1 , pp. 1809-1837
    • Hennig, P.1    Schuler, C.2
  • 70
    • 0000439277 scopus 로고    scopus 로고
    • Non-stationary spatial modeling
    • D. Higdon, J. Swall, and J. Kern. Non-stationary spatial modeling. Bayesian Stat., vol. 6, 1998, pp. 761-768
    • (1998) Bayesian Stat , vol.6 , pp. 761-768
    • Higdon, D.1    Swall, J.2    Kern, J.3
  • 71
    • 85162037149 scopus 로고    scopus 로고
    • Using deep belief nets to learn covariance kernels for Gaussian processes
    • G. E. Hinton and R. Salakhutdinov. Using deep belief nets to learn covariance kernels for Gaussian processes. in Proc. Adv. Neural Inf. Process. Syst., 2008, pp. 1249-1256
    • (2008) Proc. Adv. Neural Inf. Process. Syst , pp. 1249-1256
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 72
    • 84955516630 scopus 로고    scopus 로고
    • On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning
    • M. Hoffman, B. Shahriari, and N. De Freitas. On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning. in Proc. 17th Int. Conf. Artif. Intell. Stat., 2014, pp. 365-374
    • (2014) Proc. 17th Int. Conf. Artif. Intell. Stat , pp. 365-374
    • Hoffman, M.1    Shahriari, B.2    De Freitas, N.3
  • 74
    • 84856827305 scopus 로고    scopus 로고
    • Programming by optimization
    • H. H. Hoos. Programming by optimization. Commun. ACM, vol. 55, no. 2, pp. 70-80, 2012
    • (2012) Commun ACM , vol.55 , Issue.2 , pp. 70-80
    • Hoos, H.H.1
  • 75
    • 33644791173 scopus 로고    scopus 로고
    • Global optimization of stochastic black-box systems via sequential Kriging meta-models
    • D. Huang, T. Allen, W. Notz, and N. Zeng. Global optimization of stochastic black-box systems via sequential Kriging meta-models. J. Global Optim., vol. 34, no. 3, pp. 441-466, 2006
    • (2006) J. Global Optim , vol.34 , Issue.3 , pp. 441-466
    • Huang, D.1    Allen, T.2    Notz, W.3    Zeng, N.4
  • 77
    • 84890938757 scopus 로고    scopus 로고
    • Identifying key algorithm parameters and instance features using forward selection
    • Berlin, Germany: Springer-Verlag
    • F. Hutter, H. Hoos, and K. Leyton-Brown. Identifying key algorithm parameters and instance features using forward selection. in Learning and Intelligent Optimization, vol. 7997, Berlin, Germany: Springer-Verlag, 2013, pp. 364-381
    • (2013) Learning and Intelligent Optimization , vol.7997 , pp. 364-381
    • Hutter, F.1    Hoos, H.2    Leyton-Brown, K.3
  • 78
    • 77955439544 scopus 로고    scopus 로고
    • Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems Berlin Germany: Springer-Verlag
    • F. Hutter, H. H. Hoos, and K. Leyton-Brown. Automated configuration of mixed integer programming solvers. in Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, Berlin, Germany: Springer-Verlag, 2010, pp. 186-202
    • (2010) Automated Configuration of Mixed Integer Programming Solvers , pp. 186-202
    • Hutter, F.1    Hoos, H.H.2    Leyton-Brown, K.3
  • 81
    • 0035577808 scopus 로고    scopus 로고
    • A taxonomy of global optimization methods based on response surfaces
    • D. Jones. A taxonomy of global optimization methods based on response surfaces. J. Global Optim., vol. 21, no. 4, pp. 345-383, 2001
    • (2001) J. Global Optim , vol.21 , Issue.4 , pp. 345-383
    • Jones, D.1
  • 82
    • 0000561424 scopus 로고    scopus 로고
    • Efficient global optimization of expensive black-box functions
    • D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black-box functions. J. Global Optim., vol. 13, no. 4, pp. 455-492, 1998
    • (1998) J. Global Optim , vol.13 , Issue.4 , pp. 455-492
    • Jones, D.1    Schonlau, M.2    Welch, W.3
  • 83
    • 0027678534 scopus 로고
    • Lipschitzian optimization without the Lipschitz constant
    • D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the Lipschitz constant. J. Optim. Theory Appl., vol. 79, no. 1, pp. 157-181, 1993
    • (1993) J. Optim. Theory Appl , vol.79 , Issue.1 , pp. 157-181
    • Jones, D.R.1    Perttunen, C.D.2    Stuckman, B.E.3
  • 85
    • 84867888479 scopus 로고    scopus 로고
    • Thompson sampling: An asymptotically optimal finite-Time analysis
    • Berlin, Germany: Springer-Verlag
    • E. Kaufmann, N. Korda, and R. Munos. Thompson sampling: An asymptotically optimal finite-Time analysis. in Algorithmic Learning Theory, vol. 7568, Berlin, Germany: Springer-Verlag, 2012, pp. 199-213
    • (2012) Algorithmic Learning Theory , vol.7568 , pp. 199-213
    • Kaufmann, E.1    Korda, N.2    Munos, R.3
  • 88
    • 57849115716 scopus 로고    scopus 로고
    • Controlled experiments on the web: Survey and practical guide
    • R. Kohavi, R. Longbotham, D. Sommerfield, and R. M. Henne. Controlled experiments on the web: Survey and practical guide. Data Mining Knowl. Disc., vol. 18, no. 1, pp. 140-181, 2009
    • (2009) Data Mining Knowl. Disc , vol.18 , Issue.1 , pp. 140-181
    • Kohavi, R.1    Longbotham, R.2    Sommerfield, D.3    Henne, R.M.4
  • 90
    • 0000455229 scopus 로고
    • A statistical approach to some basic mine valuation problems on the witwatersrand
    • D. G. Krige. A statistical approach to some basic mine valuation problems on the witwatersrand. in J. Chem. Metallurgical Mining Soc. South Africa, vol. 94, no. 3, 1951, pp. 95-111
    • (1951) J. Chem. Metallurgical Mining Soc. South Africa , vol.94 , Issue.3 , pp. 95-111
    • Krige, D.G.1
  • 91
    • 84998710865 scopus 로고
    • A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise
    • H. J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J. Fluids Eng., vol. 86, no. 1, pp. 97-106, 1964
    • (1964) J. Fluids Eng , vol.86 , Issue.1 , pp. 97-106
    • Kushner, H.J.1
  • 92
    • 0002899547 scopus 로고
    • Asymptotically efficient adaptive allocation rules
    • T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Adv. Appl. Math., vol. 6, no. 1, pp. 4-22, 1985
    • (1985) Adv. Appl. Math , vol.6 , Issue.1 , pp. 4-22
    • Lai, T.L.1    Robbins, H.2
  • 93
    • 77955513590 scopus 로고    scopus 로고
    • Marginalized neural network mixtures for large-scale regression
    • Aug
    • M. Lázaro-Gredilla and A. R. Figueiras-Vidal. Marginalized neural network mixtures for large-scale regression. IEEE Trans. Neural Netw., vol. 21, no. 8, pp. 1345-1351, Aug. 2010
    • (2010) IEEE Trans. Neural Netw , vol.21 , Issue.8 , pp. 1345-1351
    • Lázaro-Gredilla, M.1    Figueiras-Vidal, A.R.2
  • 96
    • 84957035400 scopus 로고    scopus 로고
    • Learning the empirical hardness of optimization problems: The case of combinatorial auctions
    • Lecture Notes in Computer Science, Berlin, Germany: Springer-Verlag
    • K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the empirical hardness of optimization problems: The case of combinatorial auctions. in Principles and Practice of Constraint Programming, ser. Lecture Notes in Computer Science, Berlin, Germany: Springer-Verlag, 2002, pp. 556-572
    • (2002) Principles and Practice of Constraint Programming, ser , pp. 556-572
    • Leyton-Brown, K.1    Nudelman, E.2    Shoham, Y.3
  • 97
    • 77954641643 scopus 로고    scopus 로고
    • A contextual-bandit approach to personalized news article recommendation
    • L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized news article recommendation. in Proc. World Wide Web, 2010, pp. 661-670
    • (2010) Proc. World Wide Web , pp. 661-670
    • Li, L.1    Chu, W.2    Langford, J.3    Schapire, R.E.4
  • 98
    • 0001249987 scopus 로고
    • On a measure of the information provided by an experiment
    • D. V. Lindley. On a measure of the information provided by an experiment. Ann. Math. Stat., vol. 27, no. 4, pp. 986-1005, 1956
    • (1956) Ann. Math. Stat , vol.27 , Issue.4 , pp. 986-1005
    • Lindley, D.V.1
  • 99
    • 70349318390 scopus 로고    scopus 로고
    • Ph.D. dissertation, Univ. Alberta, Edmonton, AB, Canada
    • D. Lizotte. Practical Bayesian optimization. Ph.D. dissertation, Univ. Alberta, Edmonton, AB, Canada, 2008
    • (2008) Practical Bayesian Optimization
    • Lizotte, D.1
  • 100
    • 84863783543 scopus 로고    scopus 로고
    • An experimental methodology for response surface optimization methods
    • D. Lizotte, R. Greiner, and D. Schuurmans. An experimental methodology for response surface optimization methods. J. Global Optim., vol. 53, pp. 1-38, 2011
    • (2011) J. Global Optim , vol.53 , pp. 1-38
    • Lizotte, D.1    Greiner, R.2    Schuurmans, D.3
  • 102
    • 0001977314 scopus 로고    scopus 로고
    • Bayesian algorithms for one-dimensional global optimization
    • M. Locatelli. Bayesian algorithms for one-dimensional global optimization. J. Global Optim., vol. 10, pp. 57-76, 1997
    • (1997) J. Global Optim , vol.10 , pp. 57-76
    • Locatelli, M.1
  • 103
    • 80053452289 scopus 로고    scopus 로고
    • Variational heteroscedastic Gaussian process regression
    • ACM
    • M. Lzaro-gredilla and M. K. Titsias. Variational heteroscedastic Gaussian process regression. in Proc. Int. Conf. Mach. Learn., 2011, pp. 841-848, ACM
    • (2011) Proc. Int. Conf. Mach. Learn , pp. 841-848
    • Lzaro-Gredilla, M.1    Titsias, M.K.2
  • 106
    • 84872354504 scopus 로고    scopus 로고
    • Bayesian optimisation for intelligent environmental monitoring. in NIPS Workshop Bayesian Optim
    • R. Marchant and F. Ramos. Bayesian optimisation for intelligent environmental monitoring. in NIPS Workshop Bayesian Optim. Decision Making, 2012
    • (2012) Decision Making
    • Marchant, R.1    Ramos, F.2
  • 107
    • 0001923944 scopus 로고
    • Hoeffding races: Accelerating model selection search for classification and function approximation
    • O. Maron and A. W. Moore. Hoeffding races: Accelerating model selection search for classification and function approximation. Robot. Inst., vol. 6, pp. 59-66, 1993
    • (1993) Robot. Inst , vol.6 , pp. 59-66
    • Maron, O.1    Moore, A.W.2
  • 108
    • 70349325516 scopus 로고    scopus 로고
    • A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot
    • R.Martinez-Cantin, N. De Freitas, E. Brochu, J. Castellanos, and A. Doucet. A Bayesian exploration-exploitation approach for optimal online sensing and planning with a visually guided mobile robot. Autonom. Robots, vol. 27, no. 2, pp. 93-103, 2009
    • (2009) Autonom. Robots , vol.27 , Issue.2 , pp. 93-103
    • Martinez-Cantin, R.1    De Freitas, N.2    Brochu, E.3    Castellanos, J.4    Doucet, A.5
  • 109
    • 84904632376 scopus 로고    scopus 로고
    • Bayesian optimization with an empirical hardness model for approximate nearest neighbour search
    • J. Martinez, J. J. Little, and N. De Freitas. Bayesian optimization with an empirical hardness model for approximate nearest neighbour search. in Proc. IEEE Winter Conf. Appl. Comput. Vis., 2014, pp. 588-595
    • (2014) Proc IEEE Winter Conf. Appl. Comput. Vis , pp. 588-595
    • Martinez, J.1    Little, J.J.2    De Freitas, N.3
  • 114
    • 0012499686 scopus 로고
    • Application of Bayesian approach to numerical methods of global and stochastic optimization
    • J. Močkus. Application of Bayesian approach to numerical methods of global and stochastic optimization. J. Global Optim., vol. 4, no. 4, pp. 347-365, 1994
    • (1994) J. Global Optim , vol.4 , Issue.4 , pp. 347-365
    • Močkus, J.1
  • 115
    • 0342813049 scopus 로고
    • The application of Bayesian methods for seeking the extremum
    • L. Dixon and G. Szego, Eds. Amsterdam, The Netherlands: Elsevier
    • J. Močkus, V. Tiesis, and A. Zilinskas. The application of Bayesian methods for seeking the extremum. in Toward Global Optimization, vol. 2, L. Dixon and G. Szego, Eds. Amsterdam, The Netherlands: Elsevier, 1978
    • (1978) Toward Global Optimization , vol.2
    • Močkus, J.1    Tiesis, V.2    Žilinskas, A.3
  • 116
    • 85162504694 scopus 로고    scopus 로고
    • Optimistic optimization of a deterministic function without the knowledge of its smoothness
    • R. Munos. Optimistic optimization of a deterministic function without the knowledge of its smoothness. in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 783-791
    • (2011) Proc. Adv. Neural Inf. Process. Syst , pp. 783-791
    • Munos, R.1
  • 117
    • 84955439192 scopus 로고    scopus 로고
    • From bandits to Monte-Carlo tree search: The optimistic principle applied to optimization and planning
    • R. Munos. From bandits to Monte-Carlo tree search: The optimistic principle applied to optimization and planning. INRIA Lille, France, Tech. Rep. hal-00747575, 2014
    • (2014) INRIA Lille, France, Tech. Rep. Hal-00747575
    • Munos, R.1
  • 119
    • 0001414179 scopus 로고
    • Generalized linear models
    • J. Nelder and R. Wedderburn. Generalized linear models. J. Roy. Stat. Soc. A, vol. 135, no. 3, pp. 370-384, 1972
    • (1972) J. Roy. Stat. Soc. A , vol.135 , Issue.3 , pp. 370-384
    • Nelder, J.1    Wedderburn, R.2
  • 121
    • 84899028582 scopus 로고    scopus 로고
    • Nonstationary covariance functions for Gaussian process regression
    • C. Paciorek and M. Schervish. Nonstationary covariance functions for Gaussian process regression. in Proc. Adv. Neural Inf. Process. Syst., 2004, vol. 16, pp. 273-280
    • (2004) Proc. Adv. Neural Inf. Process. Syst , vol.16 , pp. 273-280
    • Paciorek, C.1    Schervish, M.2
  • 122
    • 84961749016 scopus 로고    scopus 로고
    • A nonstationary space-Time Gaussian process model for partially converged simulations
    • V. Picheny and D. Ginsbourger. A nonstationary space-Time Gaussian process model for partially converged simulations. SIAM/ASA J. Uncertainty Quantif., vol. 1, no. 1, pp. 57-78, 2013
    • (2013) SIAM/ASA J. Uncertainty Quantif , vol.1 , Issue.1 , pp. 57-78
    • Picheny, V.1    Ginsbourger, D.2
  • 123
    • 21444460810 scopus 로고    scopus 로고
    • Unconstrained parametrizations for variance-covariance matrices
    • J. C. Pinheiro and D. M. Bates. Unconstrained parametrizations for variance-covariance matrices. Stat. Comput., vol. 6, no. 3, pp. 289-296, 1996
    • (1996) Stat. Comput , vol.6 , Issue.3 , pp. 289-296
    • Pinheiro, J.C.1    Bates, D.M.2
  • 124
    • 29144453489 scopus 로고    scopus 로고
    • A unifying view of sparse approximate Gaussian process regression
    • J. Qui nonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res., vol. 6, pp. 1939-1959, 2005
    • (2005) J. Mach. Learn. Res , vol.6 , pp. 1939-1959
    • Nonero-Candela, Q.1    Rasmussen, C.E.2
  • 127
    • 84908172119 scopus 로고    scopus 로고
    • Learning to optimize via posterior sampling
    • D. Russo and B. Van Roy. Learning to optimize via posterior sampling. Math. Oper. Res., vol. 39, no. 4, pp. 1221-1243, 2014
    • (2014) Math. Oper. Res , vol.39 , Issue.4 , pp. 1221-1243
    • Russo, D.1    Van Roy, B.2
  • 128
    • 84972517827 scopus 로고
    • Design and analysis of computer experiments
    • J. Sacks, W. J. Welch, T. J. Welch, and H. P. Wynn. Design and analysis of computer experiments. Stat. Sci., vol. 4, no. 4, pp. 409-423, 1989
    • (1989) Stat. Sci , vol.4 , Issue.4 , pp. 409-423
    • Sacks, J.1    Welch, W.J.2    Welch, T.J.3    Wynn, H.P.4
  • 132
    • 0042171731 scopus 로고    scopus 로고
    • Bayesian inference for nonstationary spatial covariance structures via spatial deformations
    • A. M. Schmidt and A. O'Hagan. Bayesian inference for nonstationary spatial covariance structures via spatial deformations. J. Roy. Stat. Soc. B, vol. 65, pp. 743-758, 2003
    • (2003) J. Roy. Stat. Soc. B , vol.65 , pp. 743-758
    • Schmidt, A.M.1    O'Hagan, A.2
  • 134
    • 0347131360 scopus 로고    scopus 로고
    • Global versus local search in constrained optimization of computer models
    • M. Schonlau, W. J. Welch, and D. R. Jones. Global versus local search in constrained optimization of computer models. Lecture Notes-Monograph Series, vol. 34, pp. 11-25, 1998
    • (1998) Lecture Notes-Monograph Series , vol.34 , pp. 11-25
    • Schonlau, M.1    Welch, W.J.2    Jones, D.R.3
  • 135
    • 78650505735 scopus 로고    scopus 로고
    • A modern Bayesian look at the multi-Armed bandit
    • S. L. Scott. A modern Bayesian look at the multi-Armed bandit. Appl. Stochastic Models Business Ind., vol. 26, no. 6, pp. 639-658, 2010
    • (2010) Appl. Stochastic Models Business Ind , vol.26 , Issue.6 , pp. 639-658
    • Scott, S.L.1
  • 137
    • 33745987673 scopus 로고    scopus 로고
    • Fast forward selection to speed up sparse Gaussian process regression
    • M. Seeger, C. Williams, and N. Lawrence. Fast forward selection to speed up sparse Gaussian process regression. in Proc. Artif. Intell. Stat. 9, 2003, pp. 1-8
    • (2003) Proc. Artif. Intell. Stat , vol.9 , pp. 1-8
    • Seeger, M.1    Williams, C.2    Lawrence, N.3
  • 144
    • 84970022032 scopus 로고    scopus 로고
    • Scalable Bayesian optimization using deep neural networks
    • J. Snoek., et al. Scalable Bayesian optimization using deep neural networks. in Proc. Int. Conf. Mach. Learn., 2015, pp. 2171-2180
    • (2015) Proc. Int. Conf. Mach. Learn , pp. 2171-2180
    • Snoek, J.1
  • 145
  • 146
    • 77956501313 scopus 로고    scopus 로고
    • Gaussian process optimization in the bandit setting: No regret and experimental design
    • N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process optimization in the bandit setting: No regret and experimental design. in Proc. Int. Conf. Mach. Learn., 2010, pp. 1015-1022
    • (2010) Proc. Int. Conf. Mach. Learn , pp. 1015-1022
    • Srinivas, N.1    Krause, A.2    Kakade, S.M.3    Seeger, M.4
  • 150
    • 0001395850 scopus 로고
    • On the likelihood that one unknown probability exceeds another in view of the evidence of two samples
    • W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika, vol. 25, no. 3/4, pp. 285-294, 1933
    • (1933) Biometrika , vol.25 , Issue.3-4 , pp. 285-294
    • Thompson, W.R.1
  • 151
    • 85018371540 scopus 로고    scopus 로고
    • Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms
    • C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms. in Proc. Knowl. Disc. Data Mining, 2013, pp. 847-855
    • (2013) Proc. Knowl. Disc. Data Mining , pp. 847-855
    • Thornton, C.1    Hutter, F.2    Hoos, H.H.3    Leyton-Brown, K.4
  • 152
    • 84860609370 scopus 로고    scopus 로고
    • Variational learning of inducing variables in sparse Gaussian processes
    • M. K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. in Proc. Int. Conf. Artif. Intell. Stat., 2009, pp. 567-574
    • (2009) Proc. Int. Conf. Artif. Intell. Stat , pp. 567-574
    • Titsias, M.K.1
  • 154
    • 77954033598 scopus 로고    scopus 로고
    • Convergence properties of the expected improvement algorithm with fixed mean and covariance functions
    • E. Vazquez and J. Bect. Convergence properties of the expected improvement algorithm with fixed mean and covariance functions. J. Stat. Planning Inference, vol. 140, no. 11, pp. 3088-3095, 2010
    • (2010) J. Stat. Planning Inference , vol.140 , Issue.11 , pp. 3088-3095
    • Vazquez, E.1    Bect, J.2
  • 155
    • 67650938640 scopus 로고    scopus 로고
    • An informational approach to the global optimization of expensive-To-evaluate functions
    • J. Villemonteix, E. Vazquez, and E. Walter. An informational approach to the global optimization of expensive-To-evaluate functions. J. Global Optim., vol. 44, no. 4, pp. 509-534, 2009
    • (2009) J. Global Optim , vol.44 , Issue.4 , pp. 509-534
    • Villemonteix, J.1    Vazquez, E.2    Walter, E.3
  • 159
    • 0034550055 scopus 로고    scopus 로고
    • Sequential design of computer experiments to minimize integrated response functions
    • B. J. Williams, T. J. Santner, and W. I. Notz. Sequential design of computer experiments to minimize integrated response functions. Statistica Sinica, vol. 10, pp. 1133-1152, 2000
    • (2000) Statistica Sinica , vol.10 , pp. 1133-1152
    • Williams, B.J.1    Santner, T.J.2    Notz, W.I.3
  • 160
    • 84955448572 scopus 로고    scopus 로고
    • Efficient transfer learning method for automatic hyperparameter tuning
    • D. Yogatama and G. Mann. Efficient transfer learning method for automatic hyperparameter tuning. in Proc. Int. Conf. Artif. Intell. Stat., 2014, pp. 1077-1085
    • (2014) Proc. Int. Conf. Artif. Intell. Stat , pp. 1077-1085
    • Yogatama, D.1    Mann, G.2
  • 162
    • 84959196836 scopus 로고    scopus 로고
    • Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction. in Proc
    • Y. Zhang, K. Sohn, R. Villegas, G. Pan, and H. Lee. Improving object detection with deep convolutional networks via Bayesian optimization and structured prediction. in Proc. IEEE Comput. Vis. Pattern Recognit. Conf., 2015, pp. 249-258
    • (2015) IEEE Comput. Vis. Pattern Recognit. Conf , pp. 249-258
    • Zhang, Y.1    Sohn, K.2    Villegas, R.3    Pan, G.4    Lee, H.5
  • 163
    • 0036783418 scopus 로고    scopus 로고
    • Global optimization based on a statistical model and simplical partitioning
    • A. Zilinskas and J. Zilinskas. Global optimization based on a statistical model and simplical partitioning. Comput. Math. Appl., vol. 44, pp. 957-967, 2002
    • (2002) Comput. Math. Appl , vol.44 , pp. 957-967
    • Žilinskas, A.1    Žilinskas, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.