메뉴 건너뛰기




Volumn 2016-June, Issue , 2016, Pages 3118-3125

Recurrent Neural Networks for driver activity anticipation via sensory-fusion architecture

Author keywords

[No Author keywords available]

Indexed keywords

NETWORK ARCHITECTURE; ROBOTICS;

EID: 84977476000     PISSN: 10504729     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICRA.2016.7487478     Document Type: Conference Paper
Times cited : (286)

References (41)
  • 1
    • 84977546556 scopus 로고    scopus 로고
    • Accessed: 2015-04-23
    • Bosch urban. http: //bit. ly/1feM3JM. Accessed: 2015-04-23.
    • Bosch Urban
  • 2
    • 84866704163 scopus 로고    scopus 로고
    • Are we ready for autonomous driving the kitti vision benchmark suite
    • A. Andreas, P. Lenz, and R. Urtasun. Are we ready for autonomous driving the kitti vision benchmark suite. In CVPR, 2012.
    • (2012) CVPR
    • Andreas, A.1    Lenz, P.2    Urtasun, R.3
  • 3
    • 84897521682 scopus 로고    scopus 로고
    • Constrained local neural fields for robust facial landmark detection in the wild
    • T. Baltrusaitis, P. Robinson, and L-P. Morency. Constrained local neural fields for robust facial landmark detection in the wild. In ICCV Workshop, 2013.
    • (2013) ICCV Workshop
    • Baltrusaitis, T.1    Robinson, P.2    Morency, L.-P.3
  • 4
    • 80054108245 scopus 로고    scopus 로고
    • On the expressive power of deep architectures
    • Y. Bengio and O. Delalleau. On the expressive power of deep architectures. In Algorithmic Learning Theory, pages 18-36, 2011.
    • (2011) Algorithmic Learning Theory , pp. 18-36
    • Bengio, Y.1    Delalleau, O.2
  • 5
    • 0000971250 scopus 로고
    • An input output hmm architecture
    • Y. Bengio and O. Frasconi. An input output hmm architecture. NIPS, 1995.
    • (1995) NIPS
    • Bengio, Y.1    Frasconi, O.2
  • 6
    • 11444257830 scopus 로고    scopus 로고
    • Learning motion patterns of people for compliant robot motion
    • M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun. Learning motion patterns of people for compliant robot motion. IJRR, 2005.
    • (2005) IJRR
    • Bennewitz, M.1    Burgard, W.2    Cielniak, G.3    Thrun, S.4
  • 9
    • 79960968738 scopus 로고    scopus 로고
    • On-road prediction of driver's intent with multimodal sensory cues
    • A. Doshi, B. Morris, and M. M. Trivedi. On-road prediction of driver's intent with multimodal sensory cues. IEEE Pervasive Computing, 2011.
    • (2011) IEEE Pervasive Computing
    • Doshi, A.1    Morris, B.2    Trivedi, M.M.3
  • 10
    • 84875736850 scopus 로고    scopus 로고
    • Formalizing assistive teleoperation
    • A. Dragan and S. Srinivasa. Formalizing assistive teleoperation. In RSS, 2012.
    • (2012) RSS
    • Dragan, A.1    Srinivasa, S.2
  • 11
    • 84938244177 scopus 로고    scopus 로고
    • Improved driver modeling for human-in-the-loop vehicular control
    • K. Driggs-Campbell, V. Shia, and R. Bajcsy. Improved driver modeling for human-in-the-loop vehicular control. In ICRA, 2015.
    • (2015) ICRA
    • Driggs-Campbell, K.1    Shia, V.2    Bajcsy, R.3
  • 12
    • 84959217041 scopus 로고    scopus 로고
    • Hierarchical recurrent neural network for skeleton based action recognition
    • Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neural network for skeleton based action recognition. In CVPR, 2015.
    • (2015) CVPR
    • Du, Y.1    Wang, W.2    Wang, L.3
  • 14
    • 20744434392 scopus 로고    scopus 로고
    • Correlating driver gaze with the road scene for driver assistance systems
    • L. Fletcher, G. Loy, N. Barnes, and A. Zelinsky. Correlating driver gaze with the road scene for driver assistance systems. RAS, 52 (1), 2005.
    • (2005) RAS , vol.52 , Issue.1
    • Fletcher, L.1    Loy, G.2    Barnes, N.3    Zelinsky, A.4
  • 18
    • 84977490127 scopus 로고    scopus 로고
    • A. Jain. Neuralmodels. https: //github. com/ asheshjain399/NeuralModels, 2015.
    • (2015) Neuralmodels
    • Jain, A.1
  • 19
    • 84973865256 scopus 로고    scopus 로고
    • Car that knows before you do: Anticipating maneuvers via learning temporal driving models
    • A. Jain, H. S. Koppula, B. Raghavan, S. Soh, and A. Saxena. Car that knows before you do: Anticipating maneuvers via learning temporal driving models. In ICCV, 2015.
    • (2015) ICCV
    • Jain, A.1    Koppula, H.S.2    Raghavan, B.3    Soh, S.4    Saxena, A.5
  • 21
    • 84893770737 scopus 로고    scopus 로고
    • Anticipating human activities using object affordances for reactive robotic response
    • H. Koppula and A. Saxena. Anticipating human activities using object affordances for reactive robotic response. In RSS, 2013.
    • (2013) RSS
    • Koppula, H.1    Saxena, A.2
  • 22
    • 84880311243 scopus 로고    scopus 로고
    • Learning human activities and object affordances from rgb-d videos
    • H. Koppula, R. Gupta, and A. Saxena. Learning human activities and object affordances from rgb-d videos. IJRR, 32 (8), 2013.
    • (2013) IJRR , vol.32 , Issue.8
    • Koppula, H.1    Gupta, R.2    Saxena, A.3
  • 23
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 84887272971 scopus 로고    scopus 로고
    • Featurebased prediction of trajectories for socially compliant navigation
    • M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard. Featurebased prediction of trajectories for socially compliant navigation. In RSS, 2012.
    • (2012) RSS
    • Kuderer, M.1    Kretzschmar, H.2    Sprunk, C.3    Burgard, W.4
  • 25
    • 84893755074 scopus 로고    scopus 로고
    • Human-robot collaborative manipulation planning using early prediction of human motion
    • J. Mainprice and D. Berenson. Human-robot collaborative manipulation planning using early prediction of human motion. In IROS, 2013.
    • (2013) IROS
    • Mainprice, J.1    Berenson, D.2
  • 26
    • 85063309561 scopus 로고    scopus 로고
    • Tell me dave: Contextsensitive grounding of natural language to manipulation instructions
    • D. K. Misra, J. Sung, K. Lee, and A. Saxena. Tell me dave: Contextsensitive grounding of natural language to manipulation instructions. RSS, 2014.
    • (2014) RSS
    • Misra, D.K.1    Sung, J.2    Lee, K.3    Saxena, A.4
  • 27
    • 84973905398 scopus 로고    scopus 로고
    • Lane change intent prediction for driver assistance: On-road design and evaluation
    • B. Morris, A. Doshi, and M. Trivedi. Lane change intent prediction for driver assistance: On-road design and evaluation. In IEEE IVS, 2011.
    • (2011) IEEE IVS
    • Morris, B.1    Doshi, A.2    Trivedi, M.3
  • 31
    • 84856688144 scopus 로고    scopus 로고
    • Human activity prediction: Early recognition of ongoing activities from streaming videos
    • M. S. Ryoo. Human activity prediction: Early recognition of ongoing activities from streaming videos. In ICCV, 2011.
    • (2011) ICCV
    • Ryoo, M.S.1
  • 32
    • 0028112849 scopus 로고
    • Good features to track
    • J. Shi and C. Tomasi. Good features to track. In CVPR, 1994.
    • (1994) CVPR
    • Shi, J.1    Tomasi, C.2
  • 34
    • 84943758031 scopus 로고    scopus 로고
    • Robobarista: Object partbased transfer of manipulation trajectories from crowd-sourcing in 3d pointclouds
    • J. Sung, S. H. Jin, and A. Saxena. Robobarista: Object partbased transfer of manipulation trajectories from crowd-sourcing in 3d pointclouds. In ISRR, 2015.
    • (2015) ISRR
    • Sung, J.1    Jin, S.H.2    Saxena, A.3
  • 35
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In NIPS, 2014.
    • (2014) NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 36
    • 84973889105 scopus 로고    scopus 로고
    • Looking-in and looking-out vision for urban intelligent assistance: Estimation of driver attentive state and dynamic surround for safe merging and braking
    • A. Tawari, S. Sivaraman, M. Trivedi, T. Shannon, and M. Tippelhofer. Looking-in and looking-out vision for urban intelligent assistance: Estimation of driver attentive state and dynamic surround for safe merging and braking. In IEEE IVS, 2014.
    • (2014) IEEE IVS
    • Tawari, A.1    Sivaraman, S.2    Trivedi, M.3    Shannon, T.4    Tippelhofer, M.5
  • 37
    • 33847734794 scopus 로고    scopus 로고
    • Looking-in and looking-out of a vehicle: Computer-vision-based enhanced vehicle safety
    • M. Trivedi, T. Gandhi, and J. McCall. Looking-in and looking-out of a vehicle: Computer-vision-based enhanced vehicle safety. IEEE Trans. on ITS, 8 (1), 2007.
    • (2007) IEEE Trans. on ITS , vol.8 , Issue.1
    • Trivedi, M.1    Gandhi, T.2    McCall, J.3
  • 39
    • 84931075884 scopus 로고    scopus 로고
    • Action recognition with improved trajectories
    • H. Wang and C. Schmid. Action recognition with improved trajectories. In CVPR, 2013.
    • (2013) CVPR
    • Wang, H.1    Schmid, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.