메뉴 건너뛰기




Volumn 3, Issue January, 2014, Pages 2141-2149

Improved multimodal deep learning with variation of information

Author keywords

[No Author keywords available]

Indexed keywords

CHARACTER RECOGNITION; INFORMATION SCIENCE; NETWORK CODING;

EID: 84937873395     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (161)

References (34)
  • 3
    • 84899017362 scopus 로고    scopus 로고
    • Generalized denoising auto-encoders as generative models
    • Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto-encoders as generative models. In NIPS, 2013.
    • (2013) NIPS
    • Bengio, Y.1    Yao, L.2    Alain, G.3    Vincent, P.4
  • 4
    • 50649101132 scopus 로고    scopus 로고
    • Image classification using random forests and ferns
    • A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and ferns. In ICCV, 2007.
    • (2007) ICCV
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 8
    • 77956006653 scopus 로고    scopus 로고
    • Multimodal semi-supervised learning for image classification
    • M. Guillaumin, J. Verbeek, and C. Schmid. Multimodal semi-supervised learning for image classification. In CVPR, 2010.
    • (2010) CVPR
    • Guillaumin, M.1    Verbeek, J.2    Schmid, C.3
  • 10
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 11
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 13
    • 84890465549 scopus 로고    scopus 로고
    • Audio-visual deep learning for noise robust speech recognition
    • J. Huang and B. Kingsbury. Audio-visual deep learning for noise robust speech recognition. In ICASSP, 2013.
    • (2013) ICASSP
    • Huang, J.1    Kingsbury, B.2
  • 14
    • 70449621223 scopus 로고    scopus 로고
    • The MIR flickr retrieval evaluation
    • M. J. Huiskes and M. S. Lew. The MIR Flickr retrieval evaluation. In ICMIR, 2008.
    • (2008) ICMIR
    • Huiskes, M.J.1    Lew, M.S.2
  • 15
    • 77952328425 scopus 로고    scopus 로고
    • New trends and ideas in visual concept detection: The MIR flickr retrieval evaluation initiative
    • M. J. Huiskes, B. Thomee, and M. S. Lew. New trends and ideas in visual concept detection: The MIR Flickr retrieval evaluation initiative. In ICMIR, 2010.
    • (2010) ICMIR
    • Huiskes, M.J.1    Thomee, B.2    Lew, M.S.3
  • 16
    • 84890526379 scopus 로고    scopus 로고
    • Deep learning for robust feature generation in audiovisual emotion recognition
    • Y. Kim, H. Lee, and E. M. Provost. Deep learning for robust feature generation in audiovisual emotion recognition. In ICASSP, 2013.
    • (2013) ICASSP
    • Kim, Y.1    Lee, H.2    Provost, E.M.3
  • 17
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 18
    • 84893243194 scopus 로고    scopus 로고
    • RGB-D object recognition: Features, algorithms, and a large scale benchmark
    • Springer
    • K. Lai, L. Bo, X. Ren, and D. Fox. RGB-D object recognition: Features, algorithms, and a large scale benchmark. In Consumer Depth Cameras for Computer Vision, pages 167-192. Springer, 2013.
    • (2013) Consumer Depth Cameras for Computer Vision , pp. 167-192
    • Lai, K.1    Bo, L.2    Ren, X.3    Fox, D.4
  • 19
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 20
    • 84893741253 scopus 로고    scopus 로고
    • Deep learning for detecting robotic grasps
    • I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. In RSS, 2013.
    • (2013) RSS
    • Lenz, I.1    Lee, H.2    Saxena, A.3
  • 21
    • 0001915899 scopus 로고
    • Composite likelihood methods
    • B. G. Lindsay. Composite likelihood methods. Contemporary Mathematics, 80(1):221-39, 1988.
    • (1988) Contemporary Mathematics , vol.80 , Issue.1 , pp. 221-239
    • Lindsay, B.G.1
  • 23
    • 80053146489 scopus 로고    scopus 로고
    • Conditional restricted boltzmann machines for structured output prediction
    • V. Mnih, H. Larochelle, and G. E. Hinton. Conditional restricted Boltzmann machines for structured output prediction. In UAI, 2011.
    • (2011) UAI
    • Mnih, V.1    Larochelle, H.2    Hinton, G.E.3
  • 25
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3):145-175, 2001.
    • (2001) International Journal of Computer Vision , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 28
    • 77956556686 scopus 로고    scopus 로고
    • Replicated softmax: An undirected topic model
    • R. Salakhutdinov and G. E. Hinton. Replicated softmax: an undirected topic model. In NIPS, 2009.
    • (2009) NIPS
    • Salakhutdinov, R.1    Hinton, G.E.2
  • 30
    • 84877724347 scopus 로고    scopus 로고
    • Multimodal learning with deep boltzmann machines
    • N. Srivastava and R. Salakhutdinov. Multimodal learning with deep Boltzmann machines. In NIPS, 2012.
    • (2012) NIPS
    • Srivastava, N.1    Salakhutdinov, R.2
  • 31
    • 84898957541 scopus 로고    scopus 로고
    • Discriminative transfer learning with tree-based priors
    • N. Srivastava and R. Salakhutdinov. Discriminative transfer learning with tree-based priors. In NIPS, 2013.
    • (2013) NIPS
    • Srivastava, N.1    Salakhutdinov, R.2
  • 32
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted boltzmann machines using approximations to the likelihood gradient
    • T. Tieleman. Training restricted Boltzmann machines using approximations to the likelihood gradient. In ICML, 2008.
    • (2008) ICML
    • Tieleman, T.1
  • 34
    • 84928501500 scopus 로고    scopus 로고
    • Multi-modal unsupervised feature learning for RGB-D scene labeling
    • Springer
    • A. Wang, J. Lu, G. Wang, J. Cai, and T.-J. Cham. Multi-modal unsupervised feature learning for RGB-D scene labeling. In ECCV. Springer, 2014.
    • (2014) ECCV
    • Wang, A.1    Lu, J.2    Wang, G.3    Cai, J.4    Cham, T.-J.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.