-
3
-
-
84899017362
-
Generalized denoising auto-encoders as generative models
-
Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto-encoders as generative models. In NIPS, 2013.
-
(2013)
NIPS
-
-
Bengio, Y.1
Yao, L.2
Alain, G.3
Vincent, P.4
-
4
-
-
50649101132
-
Image classification using random forests and ferns
-
A. Bosch, A. Zisserman, and X. Munoz. Image classification using random forests and ferns. In ICCV, 2007.
-
(2007)
ICCV
-
-
Bosch, A.1
Zisserman, A.2
Munoz, X.3
-
5
-
-
85198028989
-
ImageNet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.4
Li, K.5
Fei-Fei, L.6
-
6
-
-
84919881041
-
DeCAF: A deep convolutional activation feature for generic visual recognition
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. DeCAF: A deep convolutional activation feature for generic visual recognition. In ICML, 2014.
-
(2014)
ICML
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
8
-
-
77956006653
-
Multimodal semi-supervised learning for image classification
-
M. Guillaumin, J. Verbeek, and C. Schmid. Multimodal semi-supervised learning for image classification. In CVPR, 2010.
-
(2010)
CVPR
-
-
Guillaumin, M.1
Verbeek, J.2
Schmid, C.3
-
9
-
-
0002123103
-
Dependency networks for inference, collaborative filtering, and data visualization
-
D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency networks for inference, collaborative filtering, and data visualization. The Journal of Machine Learning Research, 1:49-75, 2001.
-
(2001)
The Journal of Machine Learning Research
, vol.1
, pp. 49-75
-
-
Heckerman, D.1
Chickering, D.M.2
Meek, C.3
Rounthwaite, R.4
Kadie, C.5
-
10
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771-1800, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
11
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.2
-
13
-
-
84890465549
-
Audio-visual deep learning for noise robust speech recognition
-
J. Huang and B. Kingsbury. Audio-visual deep learning for noise robust speech recognition. In ICASSP, 2013.
-
(2013)
ICASSP
-
-
Huang, J.1
Kingsbury, B.2
-
14
-
-
70449621223
-
The MIR flickr retrieval evaluation
-
M. J. Huiskes and M. S. Lew. The MIR Flickr retrieval evaluation. In ICMIR, 2008.
-
(2008)
ICMIR
-
-
Huiskes, M.J.1
Lew, M.S.2
-
15
-
-
77952328425
-
New trends and ideas in visual concept detection: The MIR flickr retrieval evaluation initiative
-
M. J. Huiskes, B. Thomee, and M. S. Lew. New trends and ideas in visual concept detection: The MIR Flickr retrieval evaluation initiative. In ICMIR, 2010.
-
(2010)
ICMIR
-
-
Huiskes, M.J.1
Thomee, B.2
Lew, M.S.3
-
16
-
-
84890526379
-
Deep learning for robust feature generation in audiovisual emotion recognition
-
Y. Kim, H. Lee, and E. M. Provost. Deep learning for robust feature generation in audiovisual emotion recognition. In ICASSP, 2013.
-
(2013)
ICASSP
-
-
Kim, Y.1
Lee, H.2
Provost, E.M.3
-
17
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
18
-
-
84893243194
-
RGB-D object recognition: Features, algorithms, and a large scale benchmark
-
Springer
-
K. Lai, L. Bo, X. Ren, and D. Fox. RGB-D object recognition: Features, algorithms, and a large scale benchmark. In Consumer Depth Cameras for Computer Vision, pages 167-192. Springer, 2013.
-
(2013)
Consumer Depth Cameras for Computer Vision
, pp. 167-192
-
-
Lai, K.1
Bo, L.2
Ren, X.3
Fox, D.4
-
19
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
20
-
-
84893741253
-
Deep learning for detecting robotic grasps
-
I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. In RSS, 2013.
-
(2013)
RSS
-
-
Lenz, I.1
Lee, H.2
Saxena, A.3
-
21
-
-
0001915899
-
Composite likelihood methods
-
B. G. Lindsay. Composite likelihood methods. Contemporary Mathematics, 80(1):221-39, 1988.
-
(1988)
Contemporary Mathematics
, vol.80
, Issue.1
, pp. 221-239
-
-
Lindsay, B.G.1
-
22
-
-
0035365392
-
Color and texture descriptors
-
B. S. Manjunath, J.-R. Ohm, V. V. Vasudevan, and A. Yamada. Color and texture descriptors. IEEE Transactions on Circuits and Systems for Video Technology, 11(6):703-715, 2001.
-
(2001)
IEEE Transactions on Circuits and Systems for Video Technology
, vol.11
, Issue.6
, pp. 703-715
-
-
Manjunath, B.S.1
Ohm, J.-R.2
Vasudevan, V.V.3
Yamada, A.4
-
23
-
-
80053146489
-
Conditional restricted boltzmann machines for structured output prediction
-
V. Mnih, H. Larochelle, and G. E. Hinton. Conditional restricted Boltzmann machines for structured output prediction. In UAI, 2011.
-
(2011)
UAI
-
-
Mnih, V.1
Larochelle, H.2
Hinton, G.E.3
-
24
-
-
80053437179
-
Multimodal deep learning
-
J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng. Multimodal deep learning. In ICML, 2011.
-
(2011)
ICML
-
-
Ngiam, J.1
Khosla, A.2
Kim, M.3
Nam, J.4
Lee, H.5
Ng, A.Y.6
-
25
-
-
0035328421
-
Modeling the shape of the scene: A holistic representation of the spatial envelope
-
A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3):145-175, 2001.
-
(2001)
International Journal of Computer Vision
, vol.42
, Issue.3
, pp. 145-175
-
-
Oliva, A.1
Torralba, A.2
-
26
-
-
84929191679
-
Multimodal learning for autonomous underwater vehicles from visual and bathymetric data
-
D. Rao, M. D. Deuge, N. Nourani-Vatani, B. Douillard, S. B. Williams, and O. Pizarro. Multimodal learning for autonomous underwater vehicles from visual and bathymetric data. In ICRA, 2014.
-
(2014)
ICRA
-
-
Rao, D.1
Deuge, M.D.2
Nourani-Vatani, N.3
Douillard, B.4
Williams, S.B.5
Pizarro, O.6
-
28
-
-
77956556686
-
Replicated softmax: An undirected topic model
-
R. Salakhutdinov and G. E. Hinton. Replicated softmax: an undirected topic model. In NIPS, 2009.
-
(2009)
NIPS
-
-
Salakhutdinov, R.1
Hinton, G.E.2
-
29
-
-
84879853539
-
Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data
-
H.-C. Shin, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach. Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1930-1943, 2013.
-
(2013)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.35
, Issue.8
, pp. 1930-1943
-
-
Shin, H.-C.1
Orton, M.R.2
Collins, D.J.3
Doran, S.J.4
Leach, M.O.5
-
30
-
-
84877724347
-
Multimodal learning with deep boltzmann machines
-
N. Srivastava and R. Salakhutdinov. Multimodal learning with deep Boltzmann machines. In NIPS, 2012.
-
(2012)
NIPS
-
-
Srivastava, N.1
Salakhutdinov, R.2
-
31
-
-
84898957541
-
Discriminative transfer learning with tree-based priors
-
N. Srivastava and R. Salakhutdinov. Discriminative transfer learning with tree-based priors. In NIPS, 2013.
-
(2013)
NIPS
-
-
Srivastava, N.1
Salakhutdinov, R.2
-
32
-
-
56449086223
-
Training restricted boltzmann machines using approximations to the likelihood gradient
-
T. Tieleman. Training restricted Boltzmann machines using approximations to the likelihood gradient. In ICML, 2008.
-
(2008)
ICML
-
-
Tieleman, T.1
-
34
-
-
84928501500
-
Multi-modal unsupervised feature learning for RGB-D scene labeling
-
Springer
-
A. Wang, J. Lu, G. Wang, J. Cai, and T.-J. Cham. Multi-modal unsupervised feature learning for RGB-D scene labeling. In ECCV. Springer, 2014.
-
(2014)
ECCV
-
-
Wang, A.1
Lu, J.2
Wang, G.3
Cai, J.4
Cham, T.-J.5
|