메뉴 건너뛰기




Volumn 2014, Issue , 2014, Pages 125-136

Medical image retrieval: A multimodal approach

Author keywords

Content based image retrieval; Deep boltzmann machine; Deep learning; Extended probabilistic latent semantic analysis; Multi modal and content based medical image retrieval

Indexed keywords

DIAGNOSTIC IMAGING; EXPERIMENTAL MODEL; IMAGE RETRIEVAL; JOINT; LEARNING; MACHINE; STATISTICAL MODEL;

EID: 84981714705     PISSN: None     EISSN: 11769351     Source Type: Journal    
DOI: 10.4137/CIN.S14053     Document Type: Article
Times cited : (61)

References (73)
  • 1
    • 0034610766 scopus 로고    scopus 로고
    • Looking back on the Millennium in medicine
    • Marcia A, Kassirer P, Relman A. Looking back on the Millennium in medicine. N Engl J Med. 2000; 342: 42-9.
    • (2000) N Engl J Med , vol.342 , pp. 42-49
    • Marcia, A.1    Kassirer, P.2    Relman, A.3
  • 3
    • 77957799827 scopus 로고    scopus 로고
    • Radiation-reduction strategies in cardiac computed tomographic angiography
    • Roobottom C, Mitchell G, Morgan-Hughes G. Radiation-reduction strategies in cardiac computed tomographic angiography. Clin Radiol. 2010; 65 (11): 859-67.
    • (2010) Clin Radiol , vol.65 , Issue.11 , pp. 859-867
    • Roobottom, C.1    Mitchell, G.2    Morgan-Hughes, G.3
  • 5
    • 4444331717 scopus 로고    scopus 로고
    • Transforming the radiological interpretation process (TRIP)
    • Morin RL. Transforming the radiological interpretation process (TRIP). J Digital Imaging. 2004; 17 (2): 78-9.
    • (2004) J Digital Imaging , vol.17 , Issue.2 , pp. 78-79
    • Morin, R.L.1
  • 8
    • 0037600549 scopus 로고    scopus 로고
    • Automated storage and retrieval of thin-section CT images to assist diagnosis: System description and preliminary assessment
    • Aisen AM, Broderick LS, Winer-Muram H, et al. Automated storage and retrieval of thin-section CT images to assist diagnosis: system description and preliminary assessment. Radiology. 2003; 228 (1): 265-70.
    • (2003) Radiology , vol.228 , Issue.1 , pp. 265-270
    • Aisen, A.M.1    Broderick, L.S.2    Winer-Muram, H.3
  • 9
    • 1242318724 scopus 로고    scopus 로고
    • A review of content-based image retrieval systems in medicine-clinical benefits and future directions
    • Müller H, Michoux N, Bandon D, Geissbuhler A. A review of content-based image retrieval systems in medicine-clinical benefits and future directions. Int J Med Inform. 2004; 73: 1-23.
    • (2004) Int J Med Inform , vol.73 , pp. 1-23
    • Müller, H.1    Michoux, N.2    Bandon, D.3    Geissbuhler, A.4
  • 10
    • 5644301139 scopus 로고    scopus 로고
    • Content-based image retrieval in medical applications
    • Lehmann TM, Güld MO, Thies C, et al. Content-based image retrieval in medical applications. Methods Inf Med. 2004; 43 (4): 354-61.
    • (2004) Methods Inf Med , vol.43 , Issue.4 , pp. 354-361
    • Lehmann, T.M.1    Güld, M.O.2    Thies, C.3
  • 13
    • 85001875279 scopus 로고    scopus 로고
    • Analyzing the content out of context-features and gaps in medical image retrieval
    • Müller H, Kalpathy-Cramer J. Analyzing the content out of context-features and gaps in medical image retrieval. J Healthcare Inf Sys Inf. 2009; 4 (1): 88-98.
    • (2009) J Healthcare Inf Sys Inf , vol.4 , Issue.1 , pp. 88-98
    • Müller, H.1    Kalpathy-Cramer, J.2
  • 14
    • 58449125014 scopus 로고    scopus 로고
    • Natural language processing versus content-based image analysis for medical document retrieval
    • Névéol A, Deserno TM, Darmoni SJ, Güld MO, Aronson AR. Natural language processing versus content-based image analysis for medical document retrieval. J Am Soc Inf Sci Technol. 2009; 60 (1): 123-34.
    • (2009) J am Soc Inf Sci Technol , vol.60 , Issue.1 , pp. 123-134
    • Névéol, A.1    Deserno, T.M.2    Darmoni, S.J.3    Güld, M.O.4    Aronson, A.R.5
  • 22
    • 84952779919 scopus 로고    scopus 로고
    • Overview of the Third Workshop on Medical Content-Based Retrieval for Clinical Decision Support (MCBR—CDS 2012)
    • Berlin: Springer
    • Müller H, Greenspan H. Overview of the Third Workshop on Medical Content-Based Retrieval for Clinical Decision Support (MCBR—CDS 2012). Medical Content-Based Retrieval for Clinical Decision Support. Berlin: Springer; 2012: 1-9.
    • (2012) Medical Content-Based Retrieval for Clinical Decision Support , pp. 1-9
    • Müller, H.1    Greenspan, H.2
  • 28
    • 43249093335 scopus 로고    scopus 로고
    • Image retrieval: Ideas, influences, and trends of the new age
    • Datta R, Joshi D, Li J, Wang JZ. Image retrieval: Ideas, influences, and trends of the new age. ACM Comput Surv. 2008; 40 (2): 5, 1-60.
    • (2008) ACM Comput Surv , vol.40 , Issue.2 , pp. 5
    • Datta, R.1    Joshi, D.2    Li, J.3    Wang, J.Z.4
  • 30
    • 34047162370 scopus 로고    scopus 로고
    • Medical image categorization and retrieval for PACS using the GMM-KL framework
    • Greenspan H, Pinhas AT. Medical image categorization and retrieval for PACS using the GMM-KL framework. IEEE Trans Inf Technol Biomed. 2007; 11 (2): 190-202.
    • (2007) IEEE Trans Inf Technol Biomed , vol.11 , Issue.2 , pp. 190-202
    • Greenspan, H.1    Pinhas, A.T.2
  • 31
    • 77953944169 scopus 로고    scopus 로고
    • Automated retrieval of CT images of liver lesions on the basis of image similarity: Method and preliminary results 1
    • Napel SA, Beaulieu CF, Rodriguez C, et al. Automated retrieval of CT images of liver lesions on the basis of image similarity: method and preliminary results 1. Radiology. 2010; 256 (1): 243-52.
    • (2010) Radiology , vol.256 , Issue.1 , pp. 243-252
    • Napel, S.A.1    Beaulieu, C.F.2    Rodriguez, C.3
  • 33
  • 34
    • 0035354093 scopus 로고    scopus 로고
    • The Radiological Society of North America’s medical image resource center: An update
    • Siegel E, Reiner B. The Radiological Society of North America’s medical image resource center: an update. J Digital Imaging. 2001; 14 (1): 77-9.
    • (2001) J Digital Imaging , vol.14 , Issue.1 , pp. 77-79
    • Siegel, E.1    Reiner, B.2
  • 35
    • 84920271344 scopus 로고    scopus 로고
    • Evaluating performance of biomedical image retrieval systems-an overview of the medical image retrieval task at ImageCLEF 2004-2013
    • Kalpathy-Cramer J, de Herrera AGS, Demner-Fushman D, Antani S, Bedrick S, Müller H. Evaluating performance of biomedical image retrieval systems-an overview of the medical image retrieval task at ImageCLEF 2004-2013. Comput Med Imaging Graph. 2015; 39: 55-61.
    • (2015) Comput Med Imaging Graph , vol.39 , pp. 55-61
    • Kalpathy-Cramer, J.1    De Herrera, A.2    Demner-Fushman, D.3    Antani, S.4    Bedrick, S.5    Müller, H.6
  • 37
    • 84860499356 scopus 로고    scopus 로고
    • Automatic detection of arrow annotation overlays in biomedical images
    • Cheng B, Stanley RJ, De S, Antani S, Thoma GR. Automatic detection of arrow annotation overlays in biomedical images. IJHISI. 2011; 6 (4): 23-41.
    • (2011) IJHISI , vol.6 , Issue.4 , pp. 23-41
    • Cheng, B.1    Stanley, R.J.2    De, S.3    Antani, S.4    Thoma, G.R.5
  • 39
    • 34249914510 scopus 로고    scopus 로고
    • GoldMiner: A radiology image search engine
    • Charles E, Kahn J, Thao C. GoldMiner: a radiology image search engine. Am J Roentgenol. 2007; 188: 1475-8.
    • (2007) Am J Roentgenol , vol.188 , pp. 1475-1478
    • Charles, E.1    Kahn, J.2    Thao, C.3
  • 40
    • 84888203094 scopus 로고    scopus 로고
    • Content-based medical image retrieval: A survey of applications to multidimensional and multimodality data
    • Kumar A, Kim J, Cai W, Fulham M, Feng D. Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. J Digital Imaging. 2013; 26 (6): 1025-39.
    • (2013) J Digital Imaging , vol.26 , Issue.6 , pp. 1025-1039
    • Kumar, A.1    Kim, J.2    Cai, W.3    Fulham, M.4    Feng, D.5
  • 41
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006; 313 (5786): 504-7.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 42
    • 84981726362 scopus 로고    scopus 로고
    • New York Times, Available at
    • Scientists see promise in deep-learning programs, by John Markoff. New York Times. 2012. Available at: http://www.nytimes.com/2012/11/24/science/scientists-see-advances-in-deep-learning-a-part-of-artificial-intelligence.html.
    • (2012) Scientists See Promise in Deep-Learning Programs, by John Markoff
  • 58
    • 79952507150 scopus 로고    scopus 로고
    • Spatial pyramid matching
    • Dickinson S, Leonardis A, Schiele B, Tarr M, eds., Cambridge, UK: Cambridge University Press
    • Lazebnik S, Schmid C, Ponce J. Spatial pyramid matching. In: Dickinson S, Leonardis A, Schiele B, Tarr M, eds. Object Categorization: Computer and Human Vision Perspectives. Cambridge, UK: Cambridge University Press; 2009: 401-5.
    • (2009) Object Categorization: Computer and Human Vision Perspectives , pp. 401-405
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 59
    • 67349266616 scopus 로고    scopus 로고
    • Supervised learning of quantizer codebooks by information loss minimization
    • Lazebnik S, Raginsky M. Supervised learning of quantizer codebooks by information loss minimization. IEEE Trans Pattern Anal Mach Intell. 2009; 31 (7): 1294-309.
    • (2009) IEEE Trans Pattern Anal Mach Intell , vol.31 , Issue.7 , pp. 1294-1309
    • Lazebnik, S.1    Raginsky, M.2
  • 60
    • 48049095024 scopus 로고    scopus 로고
    • Randomized clustering forests for image classification
    • Moosmann F, Nowak E, Jurie F. Randomized clustering forests for image classification. Trans Pattern Anal Mach Intell. 2008; 30 (9): 1632-46.
    • (2008) Trans Pattern Anal Mach Intell , vol.30 , Issue.9 , pp. 1632-1646
    • Moosmann, F.1    Nowak, E.2    Jurie, F.3
  • 61
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004; 60 (2): 91-110.
    • (2004) Int J Comput Vis , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 64
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton GE, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006; 18 (7): 1527-54.
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 65
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning-a new frontier in artificial intelligence research [research frontier]
    • Arel I, Rose DC, Karnowski TP. Deep machine learning-a new frontier in artificial intelligence research [research frontier]. IEEE Comput Intell Mag. 2010; 5 (4): 13-8.
    • (2010) IEEE Comput Intell Mag , vol.5 , Issue.4 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 66
    • 84937730674 scopus 로고
    • Explaining the Gibbs sampler
    • Casella G, George EI. Explaining the Gibbs sampler. Am Stat. 1992; 46 (3): 167-74.
    • (1992) Am Stat , vol.46 , Issue.3 , pp. 167-174
    • Casella, G.1    George, E.I.2
  • 70
    • 79960078876 scopus 로고    scopus 로고
    • Content-based image retrieval in radiology: Current status and future directions
    • Akgül CB, Napel DLRS, Beaulieu CF, Greenspan H, Acar B. Content-based image retrieval in radiology: current status and future directions. J Digital Imaging. 2011; 24 (2): 208-22.
    • (2011) J Digital Imaging , vol.24 , Issue.2 , pp. 208-222
    • Akgül, C.B.1    Napel, D.2    Beaulieu, C.F.3    Greenspan, H.4    Acar, B.5
  • 72
    • 84908046081 scopus 로고    scopus 로고
    • Overview of the ImageCLEF 2013 medical tasks
    • de Herrera AGS, Kalpathy—Cramer J, Demner-Fushman D, Antani S, Müller H. Overview of the ImageCLEF 2013 medical tasks. In: Working notes of CLEF; 2013.
    • (2013) Working Notes of CLEF
    • De Herrera, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.