-
1
-
-
84873371070
-
Fast global convergence of gradient methods for highdimensional statistical recovery
-
Agarwal A, Negahban S, Wainwright MJ. 2012a. Fast global convergence of gradient methods for highdimensional statistical recovery. Ann. Stat. 40(5):2452-82
-
(2012)
Ann. Stat.
, vol.40
, Issue.5
, pp. 2452-2482
-
-
Agarwal, A.1
Negahban, S.2
Wainwright, M.J.3
-
2
-
-
84872015802
-
Noisy matrix decomposition via convex relaxation: Optimal rates in high dimensions
-
Agarwal A, Negahban S,Wainwright MJ. 2012b. Noisy matrix decomposition via convex relaxation: optimal rates in high dimensions. Ann. Stat. 40(2):1171-97
-
(2012)
Ann. Stat.
, vol.40
, Issue.2
, pp. 1171-1197
-
-
Agarwal, A.1
Negahban, S.2
Wainwright, M.J.3
-
3
-
-
69049101180
-
High-dimensional analysis of semidefinite relaxations for sparse principal component analysis
-
Amini AA, Wainwright MJ. 2009. High-dimensional analysis of semidefinite relaxations for sparse principal component analysis. Ann. Stat. 37(5B):2877-921
-
(2009)
Ann. Stat.
, vol.37
, Issue.5 B
, pp. 2877-2921
-
-
Amini, A.A.1
Wainwright, M.J.2
-
4
-
-
46249124832
-
Consistency of trace norm minimization
-
Bach F. 2008. Consistency of trace norm minimization. J. Mach. Learn. Res. 9:1019-48
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1019-1048
-
-
Bach, F.1
-
5
-
-
84857710417
-
Optimization with sparsity-inducing penalties
-
Bach F, Jenatton R,Mairal J, ObozinskiG. 2012. Optimization with sparsity-inducing penalties. Found. Trends Mach. Learn. 4(1):1-106
-
(2012)
Found. Trends Mach. Learn.
, vol.4
, Issue.1
, pp. 1-106
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozinski, G.4
-
6
-
-
77950244328
-
Model-based compressive sensing
-
Baraniuk RG, Cevher V, Duarte MF, Hegde C. 2010. Model-based compressive sensing. IEEE Trans. Inf. Theory 56(4):1982-2001
-
(2010)
IEEE Trans. Inf. Theory
, vol.56
, Issue.4
, pp. 1982-2001
-
-
Baraniuk, R.G.1
Cevher, V.2
Duarte, M.F.3
Hegde, C.4
-
7
-
-
84893322123
-
Computational lower bounds for sparse PCA
-
Princeton Univ., Princeton, NJ.
-
BerthetQ, Rigollet P. 2013. Computational lower bounds for sparse PCA.Tech. Rep., Princeton Univ., Princeton, NJ.http://arxiv1304.0828
-
(2013)
Tech. Rep.
-
-
Berthet, Q.1
Rigollet, P.2
-
9
-
-
33845678003
-
Regularization in statistics
-
Bickel P, Li B. 2006. Regularization in statistics. TEST 15(2):271-344
-
(2006)
TEST
, vol.15
, Issue.2
, pp. 271-344
-
-
Bickel, P.1
Li, B.2
-
10
-
-
68649086910
-
Simultaneous analysis of Lasso and Dantzig selector
-
Bickel P, Ritov Y, Tsybakov A. 2009. Simultaneous analysis of Lasso and Dantzig selector. Ann. Stat. 37(4):1705-32
-
(2009)
Ann. Stat.
, vol.37
, Issue.4
, pp. 1705-1732
-
-
Bickel, P.1
Ritov, Y.2
Tsybakov, A.3
-
12
-
-
57349100926
-
Linear convergence of iterative soft thresholding
-
BrediesK, Lorenz DA. 2008. Linear convergence of iterative soft thresholding. J. Fourier Anal. Appl. 14:813-37
-
(2008)
J. Fourier Anal. Appl.
, vol.14
, pp. 813-837
-
-
Bredies, K.1
Lorenz, D.A.2
-
15
-
-
79960110811
-
A constrained ℓ1-minimization approach to sparse precision matrix estimation
-
Cai T, Liu W, Luo X. 2011. A constrained ℓ1-minimization approach to sparse precision matrix estimation. J. Am. Stat. Assoc. 106:594-607
-
(2011)
J. Am. Stat. Assoc.
, vol.106
, pp. 594-607
-
-
Cai, T.1
Liu, W.2
Luo, X.3
-
16
-
-
84906890159
-
Estimating sparse precision matrices: Optimal rates of convergence and adaptive estimation
-
Pennsylvania, PA.
-
Cai TT, Liu W, Zhou HH. 2012. Estimating sparse precision matrices: optimal rates of convergence and adaptive estimation. Tech. Rep.,Wharton Sch., Univ. Pa., Pennsylvania, PA. http://arxiv1212.2882
-
(2012)
Tech. Rep.,Wharton Sch., Univ. Pa.
-
-
Cai, T.T.1
Liu, W.2
Zhou, H.H.3
-
18
-
-
79952823272
-
Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements
-
Cand̀es EJ, Plan Y. 2011. Tight oracle bounds for low-rank matrix recovery from a minimal number of random measurements. IEEE Trans. Inf. Theory 57(4):2342-59
-
(2011)
IEEE Trans. Inf. Theory
, vol.57
, Issue.4
, pp. 2342-2359
-
-
Cand̀es, E.J.1
Plan, Y.2
-
19
-
-
71049116435
-
Exact matrix completion via convex optimization
-
Cand̀es EJ,Recht B. 2009. Exact matrix completion via convex optimization. Found. Comput. Math. 9(6):717-72
-
(2009)
Found. Comput. Math.
, vol.9
, Issue.6
, pp. 717-772
-
-
Cand̀es, E.J.1
Recht, B.2
-
20
-
-
34548275795
-
The Dantzig selector: Statistical estimation when p is much larger than n
-
Cand̀es EJ, Tao T. 2007. The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat. 35(6):2313-51
-
(2007)
Ann. Stat.
, vol.35
, Issue.6
, pp. 2313-2351
-
-
Cand̀es, E.J.1
Tao, T.2
-
21
-
-
84871998365
-
Latent variable graphical model selection via convex optimization
-
Chandrasekaran V, Parrilo PA,Willsky AS. 2012. Latent variable graphical model selection via convex optimization. Ann. Stat. 40(4):1935-67
-
(2012)
Ann. Stat.
, vol.40
, Issue.4
, pp. 1935-1967
-
-
Chandrasekaran, V.1
Parrilo, P.A.2
Willsky, A.S.3
-
24
-
-
57349181932
-
Compressed sensing and best k-term approximation
-
Cohen A, Dahmen W, DeVore R. 2009. Compressed sensing and best k-term approximation. J. Am. Math. Soc. 22(1):211-31
-
(2009)
J. Am. Math. Soc.
, vol.22
, Issue.1
, pp. 211-231
-
-
Cohen, A.1
Dahmen, W.2
Devore, R.3
-
26
-
-
33645712892
-
Compressed sensing
-
Donoho DL. 2006. Compressed sensing. IEEE Trans. Inf. Theory 52(4):1289-306
-
(2006)
IEEE Trans. Inf. Theory
, vol.52
, Issue.4
, pp. 1289-1306
-
-
Donoho, D.L.1
-
27
-
-
57349138185
-
Counting faces of randomly-projected polytopes when the projection radically lowers dimension
-
Donoho DL,Tanner JM. 2008. Counting faces of randomly-projected polytopes when the projection radically lowers dimension. J. Am. Math. Soc. 22:1-53
-
(2008)
J. Am. Math. Soc.
, vol.22
, pp. 1-53
-
-
Donoho, D.L.1
Tanner, J.M.2
-
28
-
-
56449092085
-
Efficient projections onto the ℓ1 -ball for learning in high dimensions
-
25th, Helsinki, Finland
-
Duchi J, Shalev-Shwartz S, Singer Y, Chandra T. 2008. Efficient projections onto the ℓ1 -ball for learning in high dimensions. Presented at Int. Conf. Mach. Learn., 25th, Helsinki, Finland
-
(2008)
Presented at Int. Conf. Mach. Learn.
-
-
Duchi, J.1
Shalev-Shwartz, S.2
Singer, Y.3
Chandra, T.4
-
29
-
-
1542784498
-
Variable selection via non-concave penalized likelihood and its oracle properties
-
Fan J, Li R. 2001. Variable selection via non-concave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456):1348-60
-
(2001)
J. Am. Stat. Assoc.
, vol.96
, Issue.456
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
30
-
-
0142257025
-
-
PhD Thesis, Stanford Univ., Stanford, CA
-
Fazel M. 2002. Matrix rank minimization with applications. PhD Thesis, Stanford Univ., Stanford, CA. http://faculty.washington.edu/mfazel/thesis-final. pdf
-
(2002)
Matrix Rank Minimization with Applications.
-
-
Fazel, M.1
-
31
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
Friedman J, Hastie T, Tibshirani R. 2008. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9:432-41
-
(2008)
Biostatistics
, vol.9
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
32
-
-
0032361278
-
Penalized regression: The bridge versus the Lasso
-
Fu WJ. 2001. Penalized regression: the bridge versus the Lasso. J. Comput. Graph. Stat. 7(3):397-416
-
(2001)
J. Comput. Graph. Stat.
, vol.7
, Issue.3
, pp. 397-416
-
-
Fu, W.J.1
-
33
-
-
31344454903
-
Persistency in high dimensional linear predictor-selection and the virtue of over-parametrization
-
Greenshtein E, Ritov Y. 2004. Persistency in high dimensional linear predictor-selection and the virtue of over-parametrization. Bernoulli 10:971-88
-
(2004)
Bernoulli
, vol.10
, pp. 971-988
-
-
Greenshtein, E.1
Ritov, Y.2
-
34
-
-
79951886985
-
Recovering low-rank matrices from few coefficients in any basis
-
Gross D. 2011. Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inf. Theory 57(3):1548-66
-
(2011)
IEEE Trans. Inf. Theory
, vol.57
, Issue.3
, pp. 1548-1566
-
-
Gross, D.1
-
36
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
Hoerl AE, Kennard RW. 1970. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12:55-67
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
37
-
-
81255189015
-
Robust matrix decomposition with sparse corruptions
-
Hsu D, Kakade SM, Zhang T. 2011. Robust matrix decomposition with sparse corruptions. IEEE Trans. Inf. Theory 57(11):7221-34
-
(2011)
IEEE Trans. Inf. Theory
, vol.57
, Issue.11
, pp. 7221-7234
-
-
Hsu, D.1
Kakade, S.M.2
Zhang, T.3
-
38
-
-
77955136689
-
The benefit of group sparsity
-
Huang J, Zhang T. 2010. The benefit of group sparsity. Ann. Stat. 38(4):1978-2004
-
(2010)
Ann. Stat.
, vol.38
, Issue.4
, pp. 1978-2004
-
-
Huang, J.1
Zhang, T.2
-
41
-
-
84891904619
-
Hypothesis testing in high-dimensional regression under the Gaussian random design model: Asymptotic theory
-
Stanford, CA
-
Javanmard A, Montanari A. 2013. Hypothesis testing in high-dimensional regression under the Gaussian random design model: asymptotic theory. Tech. Rep., Stanford Univ., Stanford, CA. http://arxiv1301.4240
-
(2013)
Tech. Rep., Stanford Univ.
-
-
Javanmard, A.1
Montanari, A.2
-
42
-
-
33746126624
-
Blockwise sparse regression
-
Kim Y, Kim J, Kim Y. 2006. Blockwise sparse regression. Stat. Sin. 16(2):375-90
-
(2006)
.Stat. Sin.
, vol.16
, Issue.2
, pp. 375-390
-
-
Kim, Y.1
Kim, J.2
Kim, Y.3
-
43
-
-
82655171609
-
Nuclear-norm penalization and optimal rates for noisy lowrank matrix completion
-
Koltchinskii V, Lounici K, Tsybakov AB. 2011. Nuclear-norm penalization and optimal rates for noisy lowrank matrix completion. Ann. Stat. 39:2302-29
-
(2011)
Ann. Stat.
, vol.39
, pp. 2302-2329
-
-
Koltchinskii, V.1
Lounici, K.2
Tsybakov, A.B.3
-
44
-
-
84860650487
-
Sparse recovery in large ensembles of kernel machines
-
Theory, 21st, Helsinki, Finland
-
Koltchinskii V, Yuan M. 2008. Sparse recovery in large ensembles of kernel machines. Presented at Annu. Conf. Learn. Theory, 21st, Helsinki, Finland
-
(2008)
Presented at Annu. Conf. Learn
-
-
Koltchinskii, V.1
Yuan, M.2
-
45
-
-
78650166948
-
Sparsity in multiple kernel learning
-
Koltchinskii V, Yuan M. 2010. Sparsity in multiple kernel learning. Ann. Stat. 38:3660-95
-
(2010)
Ann. Stat.
, vol.38
, pp. 3660-3695
-
-
Koltchinskii, V.1
Yuan, M.2
-
46
-
-
73949122606
-
Sparsistency and rates of convergence in large covariance matrix estimation
-
Lam C, Fan J. 2009. Sparsistency and rates of convergence in large covariance matrix estimation. Ann. Stat. 37:4254-78
-
(2009)
Ann. Stat.
, vol.37
, pp. 4254-4278
-
-
Lam, C.1
Fan, J.2
-
47
-
-
33847350805
-
Component selection and smoothing in multivariate nonparametric regression
-
Lin Y, Zhang HH. 2006. Component selection and smoothing in multivariate nonparametric regression. Ann. Stat. 34:2272-97
-
(2006)
Ann. Stat.
, vol.34
, pp. 2272-2297
-
-
Lin, Y.1
Zhang, H.H.2
-
48
-
-
70450277253
-
The nonparanormal: Semiparametric estimation of high-dimensional undirected graphs
-
Liu H, Lafferty J,Wasserman L. 2009. The nonparanormal: semiparametric estimation of high-dimensional undirected graphs. J. Mach. Learn. Res. 10:1-37
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 1-37
-
-
Liu, H.1
Lafferty, J.2
Wasserman, L.3
-
49
-
-
84872078104
-
High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity
-
Loh P, WainwrightMJ. 2012. High-dimensional regression with noisy and missing data: provable guarantees with non-convexity. Ann. Stat. 40(3):1637-64
-
(2012)
Ann. Stat.
, vol.40
, Issue.3
, pp. 1637-1664
-
-
Loh, P.1
Wainwright, M.J.2
-
50
-
-
84855412474
-
Oracle inequalities and optimal inference under group sparsity
-
Lounici K, Pontil M, Tsybakov AB, van de Geer S. 2011. Oracle inequalities and optimal inference under group sparsity. Ann. Stat. 39(4):2164-204
-
(2011)
Ann. Stat.
, vol.39
, Issue.4
, pp. 2164-2204
-
-
Lounici, K.1
Pontil, M.2
Tsybakov, A.B.3
Van De Geer, S.4
-
51
-
-
77956944781
-
Spectral regularization algorithms for learning large incomplete matrices
-
Mazumder R, Hastie T, Tibshirani R. 2010. Spectral regularization algorithms for learning large incomplete matrices. J. Mach. Learn. Res. 11:2287-322
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2287-2322
-
-
Mazumder, R.1
Hastie, T.2
Tibshirani, R.3
-
53
-
-
33747163541
-
High-dimensional graphs and variable selection with the Lasso
-
Meinshausen N, B̈uhlmann P. 2006. High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34:1436-62
-
(2006)
Ann. Stat.
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
B̈uhlmann, P.2
-
55
-
-
84871600478
-
A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers
-
Negahban S, Ravikumar P,Wainwright MJ, Yu B. 2012. A unified framework for high-dimensional analysis of M-estimators with decomposable regularizers. Stat. Sci. 27(4):538-57
-
(2012)
Stat. Sci.
, vol.27
, Issue.4
, pp. 538-557
-
-
Negahban, S.1
Ravikumar, P.2
Wainwright, M.J.3
Yu, B.4
-
56
-
-
79952934740
-
Estimation of (near) low-rank matrices with noise and high-dimensional scaling
-
Negahban S, WainwrightMJ. 2011a. Estimation of (near) low-rank matrices with noise and high-dimensional scaling. Ann. Stat. 39(2):1069-97
-
(2011)
Ann. Stat.
, vol.39
, Issue.2
, pp. 1069-1097
-
-
Negahban, S.1
Wainwright, M.J.2
-
57
-
-
79957634445
-
Simultaneous support recovery in high-dimensional regression: Benefits and perils of ℓ1,8-regularization
-
Negahban S, WainwrightMJ. 2011b. Simultaneous support recovery in high-dimensional regression: benefits and perils of ℓ1,8-regularization. IEEE Trans. Inf. Theory 57(6):3841-63
-
(2011)
IEEE Trans. Inf. Theory
, vol.57
, Issue.6
, pp. 3841-3863
-
-
Negahban, S.1
Wainwright, M.J.2
-
58
-
-
84862020232
-
Restricted strong convexity and (weighted) matrix completion: Optimal bounds with noise
-
Negahban S, Wainwright MJ. 2012. Restricted strong convexity and (weighted) matrix completion: optimal bounds with noise. J. Mach. Learn. Res. 13:1665-97
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 1665-1697
-
-
Negahban, S.1
Wainwright, M.J.2
-
60
-
-
67651063011
-
Gradient methods for minimizing composite objective function
-
Cent. Oper. Res. Econom., Catholic Univ., Louvain, Belg
-
Nesterov Y. 2007. Gradient methods for minimizing composite objective function. Tech. Rep. 76, Cent. Oper. Res. Econom., Catholic Univ., Louvain, Belg.
-
(2007)
Tech. Rep.
, vol.76
-
-
Nesterov, Y.1
-
61
-
-
84865692149
-
Efficiency of coordinate descent methods on huge-scale optimization problems
-
Nesterov Y. 2012. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22(2):341-62
-
(2012)
SIAM J. Optim.
, vol.22
, Issue.2
, pp. 341-362
-
-
Nesterov, Y.1
-
62
-
-
79551607002
-
Union support recovery in high-dimensional multivariate regression
-
Obozinski G, Wainwright MJ, Jordan MI. 2011. Union support recovery in high-dimensional multivariate regression. Ann. Stat. 39(1):1-47
-
(2011)
Ann. Stat.
, vol.39
, Issue.1
, pp. 1-47
-
-
Obozinski, G.1
Wainwright, M.J.2
Jordan, M.I.3
-
63
-
-
84891361314
-
Simultaneously structured models with applications to sparse and low-rank matrices
-
Pasadena, CA
-
Oymak S, Jalali A, Fazel M, Eldar YC, Hassibi B. 2012. Simultaneously structured models with applications to sparse and low-rank matrices. Tech. Rep., Calif. Inst. Technol., Pasadena, CA. http://arxiv1212.3753
-
(2012)
Tech. Rep., Calif. Inst. Technol
-
-
Oymak, S.1
Jalali, A.2
Fazel, M.3
Eldar, Y.C.4
Hassibi, B.5
-
64
-
-
77956925453
-
Restricted eigenvalue conditions for correlated Gaussian designs
-
Raskutti G, Wainwright MJ, Yu B. 2010. Restricted eigenvalue conditions for correlated Gaussian designs. J. Mach. Learn. Res. 11:2241-59
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2241-2259
-
-
Raskutti, G.1
Wainwright, M.J.2
Yu, B.3
-
65
-
-
80053974183
-
Minimax rates of estimation for high-dimensional linear regression over ℓq -balls
-
Raskutti G, Wainwright MJ, Yu B. 2011. Minimax rates of estimation for high-dimensional linear regression over ℓq -balls. IEEE Trans. Inf. Theory 57(10):6976-94
-
(2011)
IEEE Trans. Inf. Theory
, vol.57
, Issue.10
, pp. 6976-6994
-
-
Raskutti, G.1
Wainwright, M.J.2
Yu, B.3
-
66
-
-
84857824105
-
Minimax-optimal rates for sparse additive models over kernel classes via convex programming
-
Raskutti G, WainwrightMJ, Yu B. 2012. Minimax-optimal rates for sparse additive models over kernel classes via convex programming. J. Mach. Learn. Res. 12:389-427
-
(2012)
J. Mach. Learn. Res.
, vol.12
, pp. 389-427
-
-
Raskutti, G.1
Wainwright, M.J.2
Yu, B.3
-
67
-
-
70350092487
-
SpAM: Sparse additive models
-
Ravikumar P, Liu H, Lafferty J, Wasserman L. 2009. SpAM: sparse additive models. J. R. Stat. Soc. Ser. B 71(5):1009-30
-
(2009)
J. R. Stat. Soc. Ser.B
, vol.71
, Issue.5
, pp. 1009-1030
-
-
Ravikumar, P.1
Liu, H.2
Lafferty, J.3
Wasserman, L.4
-
68
-
-
80555142374
-
High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence
-
RavikumarP,WainwrightMJ, Raskutti G, Yu B. 2011. High-dimensional covariance estimation by minimizing ℓ1-penalized log-determinant divergence. Electron. J. Stat. 5:935-80
-
(2010)
Electron. J. Stat.
, vol.5
, pp. 935-980
-
-
Ravikumar, P.1
Wainwright, M.J.2
Raskutti, G.3
Yu, B.4
-
69
-
-
84856009825
-
A simpler approach to matrix completion
-
Recht B. 2011. A simpler approach to matrix completion. J. Mach. Learn. Res. 12:3413-30
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 3413-3430
-
-
Recht, B.1
-
70
-
-
78549288866
-
Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization
-
Recht B, FazelM, Parrilo P. 2010. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev. 52(3):471-501
-
(2010)
SIAM Rev.
, vol.52
, Issue.3
, pp. 471-501
-
-
Recht, B.1
Fazel, M.2
Parrilo, P.3
-
71
-
-
79952902758
-
Estimation of high-dimensional low-rank matrices
-
Rohde A, Tsybakov A. 2011. Estimation of high-dimensional low-rank matrices. Ann. Stat. 39(2):887-930
-
(2011)
Ann. Stat.
, vol.39
, Issue.2
, pp. 887-930
-
-
Rohde, A.1
Tsybakov, A.2
-
73
-
-
84877881209
-
Reconstruction from anisotropic random measurements
-
Rudelson M, Zhou S. 2012. Reconstruction from anisotropic random measurements. IEEE Trans. Inf. Theory 59:3434-47
-
(2012)
IEEE Trans. Inf. Theory
, vol.59
, pp. 3434-3447
-
-
Rudelson, M.1
Zhou, S.2
-
74
-
-
26944475424
-
Generalization error bounds for collaborative prediction with low-rank matrices
-
17th, Vancouver
-
Srebro N, Alon N, Jaakkola TS. 2005. Generalization error bounds for collaborative prediction with low-rank matrices. Presented at Neural Inf. Proc. Syst., 17th, Vancouver
-
(2005)
Presented at Neural Inf. Proc. Syst.
-
-
Srebro, N.1
Alon, N.2
Jaakkola, T.S.3
-
76
-
-
68249141421
-
On the reconstruction of block-sparse signals with an optimal number of measurements
-
StojnicM, Parvaresh F, Hassibi B. 2009. On the reconstruction of block-sparse signals with an optimal number of measurements. IEEE Trans. Signal Process. 57(8):3075-85
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.8
, pp. 3075-3385
-
-
Stojnic, M.1
Parvaresh, F.2
Hassibi, B.3
-
77
-
-
0000439527
-
Optimal global rates of convergence for non-parametric regression
-
Stone CJ. 1982. Optimal global rates of convergence for non-parametric regression. Ann. Stat. 10(4):1040-53
-
(1982)
Ann. Stat.
, vol.10
, Issue.4
, pp. 1040-1053
-
-
Stone, C.J.1
-
78
-
-
0001227575
-
Additive regression and other non-parametric models
-
Stone CJ. 1985. Additive regression and other non-parametric models. Ann. Stat. 13(2):689-705
-
(1985)
Ann. Stat.
, vol.13
, Issue.2
, pp. 689-705
-
-
Stone, C.J.1
-
79
-
-
0001287271
-
Regression shrinkage and selection via the Lasso
-
Tibshirani R. 1996. Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58(1):267-88
-
(1996)
J. R. Stat. Soc. Ser. B
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
80
-
-
0000418073
-
On the stability of inverse problems. C. R. (Doklady)
-
Tikhonov AN. 1943. On the stability of inverse problems. C. R. (Doklady) Acad. Sci. SSSR 39:176-79
-
(1943)
Acad. Sci. SSSR
, vol.39
, pp. 176-179
-
-
Tikhonov, A.N.1
-
81
-
-
33645712308
-
Just relax: Convex programming methods for identifying sparse signals in noise
-
Tropp JA. 2006. Just relax: convex programming methods for identifying sparse signals in noise. IEEE Trans. Inf. Theory 52(3):1030-51
-
(2006)
IEEE Trans. Inf. Theory
, vol.52
, Issue.3
, pp. 1030-1051
-
-
Tropp, J.A.1
-
82
-
-
30844445842
-
Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit
-
Tropp JA, Gilbert AC, Strauss MJ. 2006. Algorithms for simultaneous sparse approximation. Part I: greedy pursuit. Signal Process. 86:572-88
-
(2006)
Signal Process
, vol.86
, pp. 572-588
-
-
Tropp, J.A.1
Gilbert, A.C.2
Strauss, M.J.3
-
83
-
-
0035533631
-
Convergence of block coordinate descent method for nondifferentiable maximization
-
Tseng P. 2001. Convergence of block coordinate descent method for nondifferentiable maximization. J. Opt. Theory Appl. 109(3):474-94
-
(2001)
J. Opt. Theory Appl.
, vol.109
, Issue.3
, pp. 474-494
-
-
Tseng, P.1
-
84
-
-
60349101047
-
A block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization
-
Tseng P, Yun S. 2009. A block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization. J. Optim. Theory Appl. 140:513-35
-
(2009)
J. Optim. Theory Appl.
, vol.140
, pp. 513-535
-
-
Tseng, P.1
Yun, S.2
-
87
-
-
51049121146
-
High-dimensional generalized linear models and the Lasso
-
van de Geer S. 2008. High-dimensional generalized linear models and the Lasso. Ann. Stat. 36:614-45
-
(2008)
Ann. Stat.
, vol.36
, pp. 614-645
-
-
Van De Geer, S.1
-
88
-
-
84898994592
-
Weakly decomposable regularization penalties and structured sparsity
-
van de Geer S. 2012. Weakly decomposable regularization penalties and structured sparsity. Tech. Rep., ETH Zurich, Switz. http://arxiv1204.4813v2
-
(2012)
Tech. Rep., ETH Zurich, Switz
-
-
Van De Geer, S.1
-
89
-
-
77955054299
-
On the conditions used to prove oracle results for the Lasso. Electron
-
van de Geer S, Buhlmann P. 2009. On the conditions used to prove oracle results for the Lasso. Electron. J. Stat. 3:1360-92
-
(2009)
J. Stat.
, vol.3
, pp. 1360-1392
-
-
Van De Geer, S.1
Buhlmann, P.2
-
90
-
-
84897740465
-
On asymptotically optimal confidence regions and tests for highdimensional models
-
van de Geer S, Buhlmann P, Ritov Y. 2013. On asymptotically optimal confidence regions and tests for highdimensional models. Tech. Rep., ETH Zurich, Switz. http://arxiv1303.0518
-
(2013)
Tech. Rep., ETH Zurich, Switz.
-
-
Van De Geer, S.1
Buhlmann, P.2
Ritov, Y.3
-
91
-
-
65749083666
-
Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ1-constrained quadratic programming (Lasso)
-
WainwrightMJ. 2009. Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ1-constrained quadratic programming (Lasso). IEEE Trans. Inf. Theory 55:2183-202
-
(2009)
IEEE Trans. Inf. Theory
, vol.55
, pp. 2183-2202
-
-
Wainwright, M.J.1
-
92
-
-
84863879353
-
Coordinate descent algorithms for Lasso-penalized regression
-
Wu TT, Lange K. 2008. Coordinate descent algorithms for Lasso-penalized regression. Ann. Appl. Stat. 2(1):224-44
-
(2008)
Ann. Appl. Stat.
, vol.2
, Issue.1
, pp. 224-244
-
-
Wu, T.T.1
Lange, K.2
-
94
-
-
77956916683
-
High-dimensional inverse covariance matrix estimation via linear programming
-
Yuan M. 2010. High-dimensional inverse covariance matrix estimation via linear programming. J. Mach. Learn. Res. 11:2261-86
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2261-2286
-
-
Yuan, M.1
-
95
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan M, Lin Y. 2006. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. B 68:49-67
-
(2006)
J. R. Stat. Soc. B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
96
-
-
50949096321
-
The sparsity and bias of the Lasso selection in high-dimensional linear regression
-
Zhang CH, Huang J. 2008. The sparsity and bias of the Lasso selection in high-dimensional linear regression. Ann. Stat. 36(4):1567-94
-
(2008)
Ann. Stat.
, vol.36
, Issue.4
, pp. 1567-1594
-
-
Zhang, C.H.1
Huang, J.2
-
97
-
-
84866857887
-
Confidence intervals for low-dimensional parameters with high-dimensional data
-
New Brunswick, NJ
-
ZhangCH, Zhang SS. 2011. Confidence intervals for low-dimensional parameters with high-dimensional data. Tech. Rep., Rutgers Univ., New Brunswick, NJ. http://arxiv1110.2563
-
(2011)
Tech. Rep., Rutgers Univ.
-
-
Zhang, C.H.1
Zhang, S.S.2
-
98
-
-
84871532743
-
A general theory of concave regularization for high-dimensional sparse estimation problems
-
Zhang CH, ZhangT. 2012. A general theory of concave regularization for high-dimensional sparse estimation problems. Stat. Sci. 27(4):576-93
-
(2012)
Stat. Sci.
, vol.27
, Issue.4
, pp. 576-593
-
-
Zhang, C.H.1
Zhang, T.2
-
99
-
-
69949155103
-
Grouped and hierarchical model selection through composite absolute penalties
-
Zhao P, RochaG,Yu B. 2009. Grouped and hierarchical model selection through composite absolute penalties. Ann. Stat. 37(6A):3468-97
-
(2009)
Ann. Stat.
, vol.37
, Issue.6 A
, pp. 3468-3497
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
100
-
-
33845263263
-
On model selection consistency of Lasso
-
Zhao P, Yu B. 2006. On model selection consistency of Lasso. J. Mach. Learn. Res. 7:2541-67
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2541-2567
-
-
Zhao, P.1
Yu, B.2
|