-
1
-
-
33846077160
-
Energy harvesting vibration sources for microsystems applications
-
Beeby, S.P., Tudor, M.J., White, N., Energy harvesting vibration sources for microsystems applications. Meas Sci Technol, 17(12), 2006, R175.
-
(2006)
Meas Sci Technol
, vol.17
, Issue.12
, pp. R175
-
-
Beeby, S.P.1
Tudor, M.J.2
White, N.3
-
2
-
-
0033618637
-
Thermoelectric cooling and power generation
-
DiSalvo, F.J., Thermoelectric cooling and power generation. Science 285:5428 (1999), 703–706.
-
(1999)
Science
, vol.285
, Issue.5428
, pp. 703-706
-
-
DiSalvo, F.J.1
-
3
-
-
84910116297
-
Pyroelectric materials and devices for energy harvesting applications
-
Bowen, C., Taylor, J., LeBoulbar, E., Zabek, D., Chauhan, A., Vaish, R., Pyroelectric materials and devices for energy harvesting applications. Energy Environ Sci 7:12 (2014), 3836–3856.
-
(2014)
Energy Environ Sci
, vol.7
, Issue.12
, pp. 3836-3856
-
-
Bowen, C.1
Taylor, J.2
LeBoulbar, E.3
Zabek, D.4
Chauhan, A.5
Vaish, R.6
-
4
-
-
84974605210
-
Designing thermoelectric generators for self-powered wearable electronics
-
Suarez, F., Nozariasbmarz, A., Vashaee, D., Öztürk, M.C., Designing thermoelectric generators for self-powered wearable electronics. Energy Environ Sci 9:6 (2016), 2099–2113.
-
(2016)
Energy Environ Sci
, vol.9
, Issue.6
, pp. 2099-2113
-
-
Suarez, F.1
Nozariasbmarz, A.2
Vashaee, D.3
Öztürk, M.C.4
-
5
-
-
24644452464
-
Generating electricity while walking with loads
-
Rome, L.C., Flynn, L., Goldman, E.M., Yoo, T.D., Generating electricity while walking with loads. Science 309:5741 (2005), 1725–1728.
-
(2005)
Science
, vol.309
, Issue.5741
, pp. 1725-1728
-
-
Rome, L.C.1
Flynn, L.2
Goldman, E.M.3
Yoo, T.D.4
-
6
-
-
38949118719
-
Biomechanical energy harvesting: generating electricity during walking with minimal user effort
-
Donelan, J.M., Li, Q., Naing, V., Hoffer, J., Weber, D., Kuo, A.D., Biomechanical energy harvesting: generating electricity during walking with minimal user effort. Science 319:5864 (2008), 807–810.
-
(2008)
Science
, vol.319
, Issue.5864
, pp. 807-810
-
-
Donelan, J.M.1
Li, Q.2
Naing, V.3
Hoffer, J.4
Weber, D.5
Kuo, A.D.6
-
7
-
-
84991384612
-
Energy harvesting from human motion: materials and techniques
-
Invernizzi, F., Dulio, S., Patrini, M., Guizzetti, G., Mustarelli, P., Energy harvesting from human motion: materials and techniques. Chem Soc Rev 45:20 (2016), 5455–5473.
-
(2016)
Chem Soc Rev
, vol.45
, Issue.20
, pp. 5455-5473
-
-
Invernizzi, F.1
Dulio, S.2
Patrini, M.3
Guizzetti, G.4
Mustarelli, P.5
-
8
-
-
27044432604
-
A biometric study of human basal metabolism
-
Harris, J.A., Benedict, F.G., A biometric study of human basal metabolism. Proc Natl Acad Sci 4:12 (1918), 370–373.
-
(1918)
Proc Natl Acad Sci
, vol.4
, Issue.12
, pp. 370-373
-
-
Harris, J.A.1
Benedict, F.G.2
-
9
-
-
0003398086
-
Metabolic regulation: a human perspective
-
John Wiley & Sons Chichester, U.K.
-
Frayn, K.N., Metabolic regulation: a human perspective. 2009, John Wiley & Sons, Chichester, U.K.
-
(2009)
-
-
Frayn, K.N.1
-
10
-
-
79961091187
-
compendium of physical activities: a second update of codes and met values
-
Ainsworth, B.E., Haskell, W.L., Herrmann, S.D., Meckes, N., Bassett, D.R. Jr, Tudor-Locke, C., et al. compendium of physical activities: a second update of codes and met values. Med Sci Sports Exerc 43:8 (2011), 1575–1581.
-
(2011)
Med Sci Sports Exerc
, vol.43
, Issue.8
, pp. 1575-1581
-
-
Ainsworth, B.E.1
Haskell, W.L.2
Herrmann, S.D.3
Meckes, N.4
Bassett, D.R.5
Tudor-Locke, C.6
-
11
-
-
0003459160
-
Exercise physiology: nutrition, energy, and human performance
-
Lippincott Williams & Wilkins Baltimore, MD
-
McArdle, W.D., Katch, F.I., Katch, V.L., Exercise physiology: nutrition, energy, and human performance. 2010, Lippincott Williams & Wilkins, Baltimore, MD.
-
(2010)
-
-
McArdle, W.D.1
Katch, F.I.2
Katch, V.L.3
-
13
-
-
0030408129
-
Human-powered wearable computing
-
Starner, T., Human-powered wearable computing. IBM Syst J 35:3.4 (1996), 618–629.
-
(1996)
IBM Syst J
, vol.35
, Issue.3.4
, pp. 618-629
-
-
Starner, T.1
-
14
-
-
44849089005
-
Hypothermia therapy after traumatic brain injury in children
-
Hutchison, J.S., Ward, R.E., Lacroix, J., Hebert, P.C., Barnes, M.A., Bohn, D.J., et al. Hypothermia therapy after traumatic brain injury in children. New Engl J Med 358:23 (2008), 2447–2456.
-
(2008)
New Engl J Med
, vol.358
, Issue.23
, pp. 2447-2456
-
-
Hutchison, J.S.1
Ward, R.E.2
Lacroix, J.3
Hebert, P.C.4
Barnes, M.A.5
Bohn, D.J.6
-
15
-
-
0001060737
-
The range and variability of the blood flow in the human fingers and the vasomotor regulation of body temperature
-
Burton, A., The range and variability of the blood flow in the human fingers and the vasomotor regulation of body temperature. Am J Physiol-Leg Content 127:3 (1939), 437–453.
-
(1939)
Am J Physiol-Leg Content
, vol.127
, Issue.3
, pp. 437-453
-
-
Burton, A.1
-
16
-
-
33845953018
-
Body temperature variability (part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging
-
Kelly, G., Body temperature variability (part 1): a review of the history of body temperature and its variability due to site selection, biological rhythms, fitness, and aging. Altern Med Rev, 11(4), 2006, 278.
-
(2006)
Altern Med Rev
, vol.11
, Issue.4
, pp. 278
-
-
Kelly, G.1
-
17
-
-
0015625798
-
Calculation of temperature distribution in the human body
-
Huckaba, C.E., Hansen, L.W., Downey, J.A., Darling, R.C., Calculation of temperature distribution in the human body. AIChE J 19:3 (1973), 527–532.
-
(1973)
AIChE J
, vol.19
, Issue.3
, pp. 527-532
-
-
Huckaba, C.E.1
Hansen, L.W.2
Downey, J.A.3
Darling, R.C.4
-
18
-
-
0026524164
-
Temperatures of skin, subcutaneous tissue, muscle and core in resting men in cold, comfortable and hot conditions
-
Webb, P., Temperatures of skin, subcutaneous tissue, muscle and core in resting men in cold, comfortable and hot conditions. Eur J Appl Physiol Occup Physiol 64:5 (1992), 471–476.
-
(1992)
Eur J Appl Physiol Occup Physiol
, vol.64
, Issue.5
, pp. 471-476
-
-
Webb, P.1
-
19
-
-
84880227377
-
Human machine and thermoelectric energy scavenging for wearable devices
-
Leonov, V., Human machine and thermoelectric energy scavenging for wearable devices. ISRN Renew Energy, 2011.
-
(2011)
ISRN Renew Energy
-
-
Leonov, V.1
-
20
-
-
0027994213
-
Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men
-
Krauchi, K., Wirz-Justice, A., Circadian rhythm of heat production, heart rate, and skin and core temperature under unmasking conditions in men. Am J Physiol-Regul, Integr Comp Physiol 267:3 (1994), R819–R829.
-
(1994)
Am J Physiol-Regul, Integr Comp Physiol
, vol.267
, Issue.3
, pp. R819-R829
-
-
Krauchi, K.1
Wirz-Justice, A.2
-
21
-
-
0026732708
-
A critical appraisal of 98.6f, the upper limit of the normal body temperature, and other legacies of carl reinhold august wunderlich
-
Mackowiak, P.A., Wasserman, S.S., Levine, M.M., A critical appraisal of 98.6f, the upper limit of the normal body temperature, and other legacies of carl reinhold august wunderlich. Jama 268:12 (1992), 1578–1580.
-
(1992)
Jama
, vol.268
, Issue.12
, pp. 1578-1580
-
-
Mackowiak, P.A.1
Wasserman, S.S.2
Levine, M.M.3
-
22
-
-
85152049760
-
-
Energy harvesting from arterial blood pressure for embedded brain sensing. in: Proceedings of international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, ASME 2016, pp. V003T11A015-V003T11A015.
-
Nanda A, Karami MA. Energy harvesting from arterial blood pressure for embedded brain sensing. in: Proceedings of international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, ASME 2016, pp. V003T11A015-V003T11A015.
-
-
-
Nanda, A.1
Karami, M.A.2
-
23
-
-
0004327352
-
Dynamics of human gait
-
Human Kinetics Publishers Champaign, Illinois
-
Vaughan, C.L., Davis, B.L., O'connor, J.C., Dynamics of human gait. 1992, Human Kinetics Publishers, Champaign, Illinois.
-
(1992)
-
-
Vaughan, C.L.1
Davis, B.L.2
O'connor, J.C.3
-
24
-
-
0004062342
-
Human walking
-
Williams & Wilkins Baltimore
-
Inman, V.T., Ralston, H.J., Todd, F., Human walking. 1981, Williams & Wilkins, Baltimore.
-
(1981)
-
-
Inman, V.T.1
Ralston, H.J.2
Todd, F.3
-
25
-
-
0025329202
-
Biomechanical walking pattern changes in the fit and healthy elderly
-
Winter, D.A., Patla, A.E., Frank, J.S., Walt, S.E., Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther 70:6 (1990), 340–347.
-
(1990)
Phys Ther
, vol.70
, Issue.6
, pp. 340-347
-
-
Winter, D.A.1
Patla, A.E.2
Frank, J.S.3
Walt, S.E.4
-
26
-
-
84965056274
-
Guyton and Hall textbook of medical physiology
-
Hall, J.E., Guyton and Hall textbook of medical physiology. Elsevier Health Sci, 2015.
-
(2015)
Elsevier Health Sci
-
-
Hall, J.E.1
-
27
-
-
0004212171
-
Physiology of the heart
-
Lippincott Williams & Wilkins Philadelphia
-
Katz, A.M., Physiology of the heart. 2010, Lippincott Williams & Wilkins, Philadelphia.
-
(2010)
-
-
Katz, A.M.1
-
28
-
-
79955103117
-
Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions
-
Riemer, R., Shapiro, A., Biomechanical energy harvesting from human motion: theory, state of the art, design guidelines, and future directions. J Neuroeng Rehabil, 8(1), 2011, 1.
-
(2011)
J Neuroeng Rehabil
, vol.8
, Issue.1
, pp. 1
-
-
Riemer, R.1
Shapiro, A.2
-
29
-
-
8744314747
-
-
Evaluation of motions and actuation methods for biomechanical energy harvesting. in: Proceedings of 35th annual power electronics specialists conference. PESC 04. 2004 IEEE
-
Niu P, Chapman P, Riemer R, Zhang X. Evaluation of motions and actuation methods for biomechanical energy harvesting. in: Proceedings of 35th annual power electronics specialists conference, 2004. PESC 04. 2004 IEEE, vol. 3, p. 2100–6.
-
(2004)
, vol.3
, pp. 2100-6
-
-
Niu, P.1
Chapman, P.2
Riemer, R.3
Zhang, X.4
-
30
-
-
0003724744
-
Electrodynamics of continuous media
-
elsevier New York
-
Landau, L.D., Bell, J., Kearsley, M., Pitaevskii, L., Lifshitz, E., Sykes, J., Electrodynamics of continuous media. 8, 2013, elsevier, New York.
-
(2013)
, vol.8
-
-
Landau, L.D.1
Bell, J.2
Kearsley, M.3
Pitaevskii, L.4
Lifshitz, E.5
Sykes, J.6
-
31
-
-
0003735159
-
Semiconductor thermoelements, and thermoelectric cooling
-
Infosearch, ltd. London
-
Ioffe, A.F., Semiconductor thermoelements, and thermoelectric cooling. 1957, Infosearch, ltd., London.
-
(1957)
-
-
Ioffe, A.F.1
-
32
-
-
0000170279
-
The use of semiconductors in thermoelectric refrigeration
-
Goldsmid, H., Douglas, R., The use of semiconductors in thermoelectric refrigeration. Br J Appl Phys, 5(11), 1954, 386.
-
(1954)
Br J Appl Phys
, vol.5
, Issue.11
, pp. 386
-
-
Goldsmid, H.1
Douglas, R.2
-
33
-
-
33645397162
-
Thermoelectric materials for space and automotive power generation
-
Yang, J., Caillat, T., Thermoelectric materials for space and automotive power generation. MRS Bull 31:03 (2006), 224–229.
-
(2006)
MRS Bull
, vol.31
, Issue.3
, pp. 224-229
-
-
Yang, J.1
Caillat, T.2
-
34
-
-
33748263468
-
Thermoelectrics handbook: macro to nano
-
CRC Press Boca Raton
-
Rowe, D.M., Thermoelectrics handbook: macro to nano. 2005, CRC Press, Boca Raton.
-
(2005)
-
-
Rowe, D.M.1
-
35
-
-
71649083187
-
Realization of a wearable miniaturized thermoelectric generator for human body applications
-
Wang, Z., Leonov, V., Fiorini, P., Van Hoof, C., Realization of a wearable miniaturized thermoelectric generator for human body applications. Sens Actuators A: Phys 156:1 (2009), 95–102.
-
(2009)
Sens Actuators A: Phys
, vol.156
, Issue.1
, pp. 95-102
-
-
Wang, Z.1
Leonov, V.2
Fiorini, P.3
Van Hoof, C.4
-
36
-
-
51749114885
-
Cooling, heating, generating power, and recovering waste heat with thermoelectric systems
-
Bell, L.E., Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:5895 (2008), 1457–1461.
-
(2008)
Science
, vol.321
, Issue.5895
, pp. 1457-1461
-
-
Bell, L.E.1
-
37
-
-
34250689394
-
New directions for low-dimensional thermoelectric materials
-
Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R., Lee, H., Wang, D., et al. New directions for low-dimensional thermoelectric materials. Adv Mater 19:8 (2007), 1043–1053.
-
(2007)
Adv Mater
, vol.19
, Issue.8
, pp. 1043-1053
-
-
Dresselhaus, M.S.1
Chen, G.2
Tang, M.Y.3
Yang, R.4
Lee, H.5
Wang, D.6
-
38
-
-
85015740854
-
Organic thermoelectric materials for energy harvesting and temperature control
-
Russ, B., Glaudell, A., Urban, J.J., Chabinyc, M.L., Segalman, R.A., Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater, 1, 2016, 16050.
-
(2016)
Nat Rev Mater
, vol.1
, pp. 16050
-
-
Russ, B.1
Glaudell, A.2
Urban, J.J.3
Chabinyc, M.L.4
Segalman, R.A.5
-
39
-
-
0037439322
-
Nanoscale thermal transport
-
Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., et al. Nanoscale thermal transport. J Appl Phys 93:2 (2003), 793–818.
-
(2003)
J Appl Phys
, vol.93
, Issue.2
, pp. 793-818
-
-
Cahill, D.G.1
Ford, W.K.2
Goodson, K.E.3
Mahan, G.D.4
Majumdar, A.5
Maris, H.J.6
-
40
-
-
38849174818
-
Complex thermoelectric materials
-
Snyder, G.J., Toberer, E.S., Complex thermoelectric materials. Nat Mater 7:2 (2008), 105–114.
-
(2008)
Nat Mater
, vol.7
, Issue.2
, pp. 105-114
-
-
Snyder, G.J.1
Toberer, E.S.2
-
41
-
-
77957560335
-
Nanostructured thermoelectriacs: big efficiency gains from small features
-
Vineis, C.J., Shakouri, A., Majumdar, A., Kanatzidis, M.G., Nanostructured thermoelectriacs: big efficiency gains from small features. Adv Mater 22:36 (2010), 3970–3980.
-
(2010)
Adv Mater
, vol.22
, Issue.36
, pp. 3970-3980
-
-
Vineis, C.J.1
Shakouri, A.2
Majumdar, A.3
Kanatzidis, M.G.4
-
42
-
-
2742536443
-
The electrical conductivity and thermoelectric power of bismuth telluride
-
Goldsmid, H., The electrical conductivity and thermoelectric power of bismuth telluride. Proc Phys Soc, 71(4), 1958, 633.
-
(1958)
Proc Phys Soc
, vol.71
, Issue.4
, pp. 633
-
-
Goldsmid, H.1
-
43
-
-
46449085036
-
High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys
-
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:5876 (2008), 634–638.
-
(2008)
Science
, vol.320
, Issue.5876
, pp. 634-638
-
-
Poudel, B.1
Hao, Q.2
Ma, Y.3
Lan, Y.4
Minnich, A.5
Yu, B.6
-
44
-
-
0035846181
-
Thin-film thermoelectric devices with high room-temperature figures of merit
-
Venkatasubramanian, R., Siivola, E., Colpitts, T., O'quinn, B., Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:6856 (2001), 597–602.
-
(2001)
Nature
, vol.413
, Issue.6856
, pp. 597-602
-
-
Venkatasubramanian, R.1
Siivola, E.2
Colpitts, T.3
O'quinn, B.4
-
45
-
-
67749133795
-
Bulk nanostructured thermoelectric materials: current research and future prospects
-
Minnich, A., Dresselhaus, M., Ren, Z., Chen, G., Bulk nanostructured thermoelectric materials: current research and future prospects. Energy Environ Sci 2:5 (2009), 466–479.
-
(2009)
Energy Environ Sci
, vol.2
, Issue.5
, pp. 466-479
-
-
Minnich, A.1
Dresselhaus, M.2
Ren, Z.3
Chen, G.4
-
46
-
-
84943772001
-
Flexible thermoelectric materials and device optimization for wearable energy harvesting
-
Bahk, J.-H., Fang, H., Yazawa, K., Shakouri, A., Flexible thermoelectric materials and device optimization for wearable energy harvesting. J Mater Chem C 3:40 (2015), 10362–10374.
-
(2015)
J Mater Chem C
, vol.3
, Issue.40
, pp. 10362-10374
-
-
Bahk, J.-H.1
Fang, H.2
Yazawa, K.3
Shakouri, A.4
-
47
-
-
84867627544
-
Towards polymer-based organic thermoelectric generators
-
Bubnova, O., Crispin, X., Towards polymer-based organic thermoelectric generators. Energy Environ Sci 5:11 (2012), 9345–9362.
-
(2012)
Energy Environ Sci
, vol.5
, Issue.11
, pp. 9345-9362
-
-
Bubnova, O.1
Crispin, X.2
-
48
-
-
84901320250
-
A wearable thermoelectric generator fabricated on a glass fabric
-
Kim, S.J., We, J.H., Cho, B.J., A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ Sci 7:6 (2014), 1959–1965.
-
(2014)
Energy Environ Sci
, vol.7
, Issue.6
, pp. 1959-1965
-
-
Kim, S.J.1
We, J.H.2
Cho, B.J.3
-
49
-
-
0033298277
-
-
Micro thermoelectric modules and their application to wristwatches as an energy source. In: IEEE;
-
Kishi M, Nemoto H, Hamao T, Yamamoto M, Sudou S, Mandai M, Yamamoto S. Micro thermoelectric modules and their application to wristwatches as an energy source. In: Proceedings of the eighteenth international conference on thermoelectrics, IEEE; 1999, p. 301–7.
-
(1999)
Proceedings of the eighteenth international conference on thermoelectrics
, pp. 301-7
-
-
Kishi, M.1
Nemoto, H.2
Hamao, T.3
Yamamoto, M.4
Sudou, S.5
Mandai, M.6
Yamamoto, S.7
-
50
-
-
17044365390
-
Energy scavenging for mobile and wireless electronics
-
Paradiso, J.A., Starner, T., Energy scavenging for mobile and wireless electronics. IEEE Pervasive Comput 4:1 (2005), 18–27.
-
(2005)
IEEE Pervasive Comput
, vol.4
, Issue.1
, pp. 18-27
-
-
Paradiso, J.A.1
Starner, T.2
-
51
-
-
77955930289
-
Wearable electronics self-powered by using human body heat: The state of the art and the perspective
-
Leonov, V., Vullers, R.J., Wearable electronics self-powered by using human body heat: The state of the art and the perspective. J Renew Sustain Energy, 1(6), 2009, 062701.
-
(2009)
J Renew Sustain Energy
, vol.1
, Issue.6
, pp. 062701
-
-
Leonov, V.1
Vullers, R.J.2
-
52
-
-
50149118646
-
-
Gyselinckx B. Body-heat powered autonomous pulse oximeter. In: Proceedings of the 5th IEEE conference on sensors, IEEE
-
Torfs T, Leonov V, Van Hoof C, Gyselinckx B. Body-heat powered autonomous pulse oximeter. In: Proceedings of the 5th IEEE conference on sensors, IEEE, 2006, p. 427–30.
-
(2006)
, pp. 427-30
-
-
Torfs, T.1
Leonov, V.2
Van Hoof, C.3
-
53
-
-
85152001511
-
-
Gyselinckx B. Wearable autonomous wireless electro-encephalography system fully powered by human body heat. in: Sensors, IEEE;
-
Torfs T, Leonov V, Yazicioglu RF, Merken P, Van Hoof C, Vullers RJ, Gyselinckx B. Wearable autonomous wireless electro-encephalography system fully powered by human body heat. in: Sensors, IEEE; 2008, p. 1269–72.
-
(2008)
, pp. 1269-72
-
-
Torfs, T.1
Leonov, V.2
Yazicioglu, R.F.3
Merken, P.4
Van Hoof, C.5
Vullers, R.J.6
-
54
-
-
76949087999
-
Smart wireless sensors integrated in clothing: an electrocardiography system in a shirt powered using human body heat
-
Leonov, V., Torfs, T., Van Hoof, C., Vullers, R.J., Smart wireless sensors integrated in clothing: an electrocardiography system in a shirt powered using human body heat. Sens Transducers, 107(8), 2009, 165.
-
(2009)
Sens Transducers
, vol.107
, Issue.8
, pp. 165
-
-
Leonov, V.1
Torfs, T.2
Van Hoof, C.3
Vullers, R.J.4
-
55
-
-
84872106855
-
A batteryless 19 w mics/ism-band energy harvesting body sensor node soc for exg applications
-
Zhang, Y., Zhang, F., Shakhsheer, Y., Silver, J.D., Klinefelter, A., Nagaraju, M., et al. A batteryless 19 w mics/ism-band energy harvesting body sensor node soc for exg applications. IEEE J Solid-State Circuits 48:1 (2013), 199–213.
-
(2013)
IEEE J Solid-State Circuits
, vol.48
, Issue.1
, pp. 199-213
-
-
Zhang, Y.1
Zhang, F.2
Shakhsheer, Y.3
Silver, J.D.4
Klinefelter, A.5
Nagaraju, M.6
-
56
-
-
33747391611
-
-
Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors. in: ICT 2005. Proceedings of the 24th International Conference on Thermoelectrics, IEEE
-
Watkins C, Shen B, Venkatasubramanian R. Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors. in: ICT 2005. Proceedings of the 24th International Conference on Thermoelectrics, 2005, IEEE, 2005, pp. 265–267.
-
(2005)
, pp. 265-267
-
-
Watkins, C.1
Shen, B.2
Venkatasubramanian, R.3
-
57
-
-
46449123703
-
Human body energy harvesting thermogenerator for sensing applications
-
Sensor Technologies and Applications. SensorComm 2007. International Conference on, IEEE
-
Mateu L, Codrea C, Lucas N, Pollak M, Spies P. Human body energy harvesting thermogenerator for sensing applications, in: Sensor Technologies and Applications, 2007. SensorComm 2007. International Conference on, IEEE, 2007, pp. 366–372.
-
(2007)
, pp. 366-372
-
-
Mateu, L.1
Codrea, C.2
Lucas, N.3
Pollak, M.4
Spies, P.5
-
58
-
-
76849099714
-
Thermoelectric microconverter for energy harvesting systems
-
Carmo, J.P., Gonçalves, L.M., Correia, J.H., Thermoelectric microconverter for energy harvesting systems. IEEE Trans Ind Electron 57:3 (2010), 861–867.
-
(2010)
IEEE Trans Ind Electron
, vol.57
, Issue.3
, pp. 861-867
-
-
Carmo, J.P.1
Gonçalves, L.M.2
Correia, J.H.3
-
59
-
-
70449671408
-
-
Thermoelectric generator design based on power from body heat for biomedical autonomous devices. in: Proceedings of IEEE international workshop on medical measurements and applications. MeMeA 2009. IEEE;
-
Lay-Ekuakille A, Vendramin G, Trotta A, Mazzotta G. Thermoelectric generator design based on power from body heat for biomedical autonomous devices. in: Proceedings of IEEE international workshop on medical measurements and applications. MeMeA 2009. IEEE; 2009, p. 1–4.
-
(2009)
, pp. 1-4
-
-
Lay-Ekuakille, A.1
Vendramin, G.2
Trotta, A.3
Mazzotta, G.4
-
60
-
-
67649435976
-
Development of a thermoelectric energy harvester with thermal isolation cavity by standard cmos process
-
Yang, S.-M., Lee, T., Jeng, C., Development of a thermoelectric energy harvester with thermal isolation cavity by standard cmos process. Sens Actuators A: Phys 153:2 (2009), 244–250.
-
(2009)
Sens Actuators A: Phys
, vol.153
, Issue.2
, pp. 244-250
-
-
Yang, S.-M.1
Lee, T.2
Jeng, C.3
-
61
-
-
77950595789
-
Design, fabrication, and characterization of cmos mems-based thermoelectric power generators
-
Xie, J., Lee, C., Feng, H., Design, fabrication, and characterization of cmos mems-based thermoelectric power generators. J Micro Syst 19:2 (2010), 317–324.
-
(2010)
J Micro Syst
, vol.19
, Issue.2
, pp. 317-324
-
-
Xie, J.1
Lee, C.2
Feng, H.3
-
62
-
-
33751087552
-
Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics
-
Weber, J., Potje-Kamloth, K., Haase, F., Detemple, P., Völklein, F., Doll, T., Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics. Sens Actuators A: Phys 132:1 (2006), 325–330.
-
(2006)
Sens Actuators A: Phys
, vol.132
, Issue.1
, pp. 325-330
-
-
Weber, J.1
Potje-Kamloth, K.2
Haase, F.3
Detemple, P.4
Völklein, F.5
Doll, T.6
-
63
-
-
84880891378
-
Towards high-performance polymer-based thermoelectric materials
-
He, M., Qiu, F., Lin, Z., Towards high-performance polymer-based thermoelectric materials. Energy Environ Sci 6:5 (2013), 1352–1361.
-
(2013)
Energy Environ Sci
, vol.6
, Issue.5
, pp. 1352-1361
-
-
He, M.1
Qiu, F.2
Lin, Z.3
-
64
-
-
80053588457
-
Dispenser-printed planar thick-film thermoelectric energy generators
-
Chen, A., Madan, D., Wright, P., Evans, J., Dispenser-printed planar thick-film thermoelectric energy generators. J Micromech Microeng, 21(10), 2011, 104006.
-
(2011)
J Micromech Microeng
, vol.21
, Issue.10
, pp. 104006
-
-
Chen, A.1
Madan, D.2
Wright, P.3
Evans, J.4
-
65
-
-
84889257327
-
3 flexible thermoelectric generators for powering wireless sensor networks
-
Madan, D., Wang, Z., Chen, A., Wright, P.K., Evans, J.W., High-performance dispenser printed ma p-type bi0.5sb1.5te3 flexible thermoelectric generators for powering wireless sensor networks. ACS Appl Mater Interfaces 5:22 (2013), 11872–11876.
-
(2013)
ACS Appl Mater Interfaces
, vol.5
, Issue.22
, pp. 11872-11876
-
-
Madan, D.1
Wang, Z.2
Chen, A.3
Wright, P.K.4
Evans, J.W.5
-
66
-
-
33751097537
-
Optimization and fabrication of thick flexible polymer based micro thermoelectric generator
-
Glatz, W., Muntwyler, S., Hierold, C., Optimization and fabrication of thick flexible polymer based micro thermoelectric generator. Sens Actuators A: Phys 132:1 (2006), 337–345.
-
(2006)
Sens Actuators A: Phys
, vol.132
, Issue.1
, pp. 337-345
-
-
Glatz, W.1
Muntwyler, S.2
Hierold, C.3
-
67
-
-
84905746604
-
Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator
-
We, J.H., Kim, S.J., Cho, B.J., Hybrid composite of screen-printed inorganic thermoelectric film and organic conducting polymer for flexible thermoelectric power generator. Energy 73 (2014), 506–512.
-
(2014)
Energy
, vol.73
, pp. 506-512
-
-
We, J.H.1
Kim, S.J.2
Cho, B.J.3
-
68
-
-
84891703790
-
-
Wearable thermoelectric generator for human clothing applications. In: Proceedings of the 17th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS & EUROSENSORS XXVII): IEEE
-
Kim MK, Kim M, Jo S, Kim H, Lee S, Kim Y. Wearable thermoelectric generator for human clothing applications. In: Proceedings of the 17th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS & EUROSENSORS XXVII): IEEE, 2013, p. 1376–9.
-
(2013)
, pp. 1376-9
-
-
Kim, M.K.1
Kim, M.2
Jo, S.3
Kim, H.4
Lee, S.5
Kim, Y.6
-
69
-
-
84889642882
-
Flexible and semi-transparent thermoelectric energy harvesters from low cost bulk silicon (100)
-
Sevilla, G.A.T., Inayat, S.B., Rojas, J.P., Hussain, A.M., Hussain, M.M., Flexible and semi-transparent thermoelectric energy harvesters from low cost bulk silicon (100). Small 9:23 (2013), 3916–3921.
-
(2013)
Small
, vol.9
, Issue.23
, pp. 3916-3921
-
-
Sevilla, G.A.T.1
Inayat, S.B.2
Rojas, J.P.3
Hussain, A.M.4
Hussain, M.M.5
-
70
-
-
78751635985
-
Flexible thermoelectric generator for ambient assisted living wearable biometric sensors
-
Francioso, L., De Pascali, C., Farella, I., Martucci, C., Cretí, P., Siciliano, P., et al. Flexible thermoelectric generator for ambient assisted living wearable biometric sensors. J Power Sources 196:6 (2011), 3239–3243.
-
(2011)
J Power Sources
, vol.196
, Issue.6
, pp. 3239-3243
-
-
Francioso, L.1
De Pascali, C.2
Farella, I.3
Martucci, C.4
Cretí, P.5
Siciliano, P.6
-
71
-
-
84866844507
-
Flexible thermoelectric generator for human body heat energy harvesting
-
Jo, S., Kim, M., Kim, M., Kim, Y., Flexible thermoelectric generator for human body heat energy harvesting. Electron Lett 48:16 (2012), 1013–1015.
-
(2012)
Electron Lett
, vol.48
, Issue.16
, pp. 1013-1015
-
-
Jo, S.1
Kim, M.2
Kim, M.3
Kim, Y.4
-
72
-
-
84891817679
-
Screen printed flexible based thermoelectric generator
-
IOP Publishing
-
Cao, Z., Koukharenko, E., Tudor, M., Torah, R., Beeby, S., Screen printed flexible based thermoelectric generator. J Phys: Conf Ser, 476, 2013, 012031 IOP Publishing.
-
(2013)
J Phys: Conf Ser
, vol.476
, pp. 012031
-
-
Cao, Z.1
Koukharenko, E.2
Tudor, M.3
Torah, R.4
Beeby, S.5
-
73
-
-
84886875592
-
Flexible and lightweight thermoelectric generators composed of carbon nanotube-polystyrene composites printed on film substrate
-
Suemori, K., Hoshino, S., Kamata, T., Flexible and lightweight thermoelectric generators composed of carbon nanotube-polystyrene composites printed on film substrate. Appl Phys Lett, 103(15), 2013, 153902.
-
(2013)
Appl Phys Lett
, vol.103
, Issue.15
, pp. 153902
-
-
Suemori, K.1
Hoshino, S.2
Kamata, T.3
-
74
-
-
85152036256
-
-
Thermoelectric fabrics: Toward power generating clothing, Scientific reports 5.
-
Du Y, Cai K, Chen S, Wang H, Shen SZ, Donelson R, Lin T. Thermoelectric fabrics: Toward power generating clothing, Scientific reports 5.
-
-
-
Du, Y.1
Cai, K.2
Chen, S.3
Wang, H.4
Shen, S.Z.5
Donelson, R.6
Lin, T.7
-
75
-
-
85152049965
-
-
Design of a wearable thermoelectric generator for harvesting human body energy. in: Wearable Sensors and Robots, Springer
-
Liu H, Wang Y, Mei D, Shi Y, Chen Z. Design of a wearable thermoelectric generator for harvesting human body energy. in: Wearable Sensors and Robots, Springer, 2017, pp. 55–66.
-
(2017)
, pp. 55-66
-
-
Liu, H.1
Wang, Y.2
Mei, D.3
Shi, Y.4
Chen, Z.5
-
76
-
-
84991275671
-
Thermal energy harvesting from the human body using flexible thermoelectric generator (fteg) fabricated by a dispenser printing technique
-
Siddique, A.R.M., Rabari, R., Mahmud, S., Van Heyst, B., Thermal energy harvesting from the human body using flexible thermoelectric generator (fteg) fabricated by a dispenser printing technique. Energy 115 (2016), 1081–1091.
-
(2016)
Energy
, vol.115
, pp. 1081-1091
-
-
Siddique, A.R.M.1
Rabari, R.2
Mahmud, S.3
Van Heyst, B.4
-
77
-
-
84971003277
-
Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators
-
Oh, J.Y., Lee, J.H., Han, S.W., Chae, S.S., Bae, E.J., Kang, Y.H., et al. Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ Sci 9:5 (2016), 1696–1705.
-
(2016)
Energy Environ Sci
, vol.9
, Issue.5
, pp. 1696-1705
-
-
Oh, J.Y.1
Lee, J.H.2
Han, S.W.3
Chae, S.S.4
Bae, E.J.5
Kang, Y.H.6
-
78
-
-
85151953001
-
-
Flexible thermoelectric foil for wearable energy harvesting, Nano Energy.
-
Wan C, Tian R, Azizi AB, Huang Y, Wei Q, Sasai R, Wasusate S, Ishida T, Koumoto K, Flexible thermoelectric foil for wearable energy harvesting, Nano Energy.
-
-
-
Wan, C.1
Tian, R.2
Azizi, A.B.3
Huang, Y.4
Wei, Q.5
Sasai, R.6
Wasusate, S.7
Ishida, T.8
Koumoto, K.9
-
79
-
-
84949655728
-
Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body
-
Lu, Z., Zhang, H., Mao, C., Li, C.M., Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body. Appl Energy 164 (2016), 57–63.
-
(2016)
Appl Energy
, vol.164
, pp. 57-63
-
-
Lu, Z.1
Zhang, H.2
Mao, C.3
Li, C.M.4
-
80
-
-
84954175944
-
Micro-scale energy harvesting devices: Review of methodological performances in the last decade
-
Selvan, K.V., Ali, M.S.M., Micro-scale energy harvesting devices: Review of methodological performances in the last decade. Renew Sustain Energy Rev 54 (2016), 1035–1047.
-
(2016)
Renew Sustain Energy Rev
, vol.54
, pp. 1035-1047
-
-
Selvan, K.V.1
Ali, M.S.M.2
-
81
-
-
84948437290
-
Energy harvesting in wireless sensor networks: a comprehensive review
-
Shaikh, F.K., Zeadally, S., Energy harvesting in wireless sensor networks: a comprehensive review. Renew Sustain Energy Rev 55 (2016), 1041–1054.
-
(2016)
Renew Sustain Energy Rev
, vol.55
, pp. 1041-1054
-
-
Shaikh, F.K.1
Zeadally, S.2
-
82
-
-
23744484471
-
Pyroelectricity: from ancient curiosity to modern imaging tool
-
Lang, S.B., Pyroelectricity: from ancient curiosity to modern imaging tool. Phys Today, 58(8), 2005, 31.
-
(2005)
Phys Today
, vol.58
, Issue.8
, pp. 31
-
-
Lang, S.B.1
-
83
-
-
0004031650
-
Electroceramics: materials, properties, applications
-
John Wiley & Sons Chichester
-
Moulson, A.J., Herbert, J.M., Electroceramics: materials, properties, applications. 2003, John Wiley & Sons, Chichester.
-
(2003)
-
-
Moulson, A.J.1
Herbert, J.M.2
-
84
-
-
85151929541
-
-
Properties of materials: anisotropy, symmetry, structure, Oxford University Press on Demand.
-
Newnham RE. Properties of materials: anisotropy, symmetry, structure, Oxford University Press on Demand, 2005.
-
(2005)
-
-
Newnham, R.E.1
-
85
-
-
67649211086
-
The contributions of the acoustic modes and optical modes to the primary pyroelectric coefficient of gan
-
Yan, W., Zhang, R., Xie, Z., Xiu, X., Zheng, Y., Liu, Z., et al. The contributions of the acoustic modes and optical modes to the primary pyroelectric coefficient of gan. Appl Phys Lett, 94(24), 2009, 242111.
-
(2009)
Appl Phys Lett
, vol.94
, Issue.24
, pp. 242111
-
-
Yan, W.1
Zhang, R.2
Xie, Z.3
Xiu, X.4
Zheng, Y.5
Liu, Z.6
-
86
-
-
0001672397
-
Pyroelectric properties of aln
-
Fuflyigin, V., Salley, E., Osinsky, A., Norris, P., Pyroelectric properties of aln. Appl Phys Lett 77:19 (2000), 3075–3077.
-
(2000)
Appl Phys Lett
, vol.77
, Issue.19
, pp. 3075-3077
-
-
Fuflyigin, V.1
Salley, E.2
Osinsky, A.3
Norris, P.4
-
87
-
-
80052787232
-
A self-sustaining micro thermomechanic-pyroelectric generator
-
Ravindran, S., Huesgen, T., Kroener, M., Woias, P., A self-sustaining micro thermomechanic-pyroelectric generator. Appl Phys Lett, 99(10), 2011, 104102.
-
(2011)
Appl Phys Lett
, vol.99
, Issue.10
, pp. 104102
-
-
Ravindran, S.1
Huesgen, T.2
Kroener, M.3
Woias, P.4
-
88
-
-
79951586471
-
Pyroelectric energy harvesting using olsen cycles in purified and porous poly (vinylidene fluoride-trifluoroethylene) [p(vdf-trfe)] thin films
-
Navid, A., Pilon, L., Pyroelectric energy harvesting using olsen cycles in purified and porous poly (vinylidene fluoride-trifluoroethylene) [p(vdf-trfe)] thin films. Smart Mater Struct, 20(2), 2011, 025012.
-
(2011)
Smart Mater Struct
, vol.20
, Issue.2
, pp. 025012
-
-
Navid, A.1
Pilon, L.2
-
89
-
-
78650602813
-
Pyroelectric effect in pzt thick films for thermal energy harvesting in low-power sensors
-
Dalola, S., Ferrari, V., Marioli, D., Pyroelectric effect in pzt thick films for thermal energy harvesting in low-power sensors. Procedia Eng 5 (2010), 685–688.
-
(2010)
Procedia Eng
, vol.5
, pp. 685-688
-
-
Dalola, S.1
Ferrari, V.2
Marioli, D.3
-
90
-
-
84898480151
-
Nano/microscale pyroelectric energy harvesting: challenges and opportunities
-
Lingam, D., Parikh, A.R., Huang, J., Jain, A., Minary-Jolandan, M., Nano/microscale pyroelectric energy harvesting: challenges and opportunities. Int J Smart Nano Mater 4:4 (2013), 229–245.
-
(2013)
Int J Smart Nano Mater
, vol.4
, Issue.4
, pp. 229-245
-
-
Lingam, D.1
Parikh, A.R.2
Huang, J.3
Jain, A.4
Minary-Jolandan, M.5
-
91
-
-
84870858623
-
Pyroelectric nanogenerators for driving wireless sensors
-
Yang, Y., Wang, S., Zhang, Y., Wang, Z.L., Pyroelectric nanogenerators for driving wireless sensors. Nano Lett 12:12 (2012), 6408–6413.
-
(2012)
Nano Lett
, vol.12
, Issue.12
, pp. 6408-6413
-
-
Yang, Y.1
Wang, S.2
Zhang, Y.3
Wang, Z.L.4
-
92
-
-
85151992578
-
-
Toward heat energy harvesting using pyroelectric material, Journal of Intelligent Material Systems and Structures.
-
Guyomar D, Sebald G, Lefeuvre E, Khodayari A. Toward heat energy harvesting using pyroelectric material, Journal of Intelligent Material Systems and Structures.
-
-
-
Guyomar, D.1
Sebald, G.2
Lefeuvre, E.3
Khodayari, A.4
-
93
-
-
84959363517
-
Flexible pyroelectric generators for scavenging ambient thermal energy and as self-powered thermosensors
-
Zhang, H., Xie, Y., Li, X., Huang, Z., Zhang, S., Su, Y., et al. Flexible pyroelectric generators for scavenging ambient thermal energy and as self-powered thermosensors. Energy 101 (2016), 202–210.
-
(2016)
Energy
, vol.101
, pp. 202-210
-
-
Zhang, H.1
Xie, Y.2
Li, X.3
Huang, Z.4
Zhang, S.5
Su, Y.6
-
94
-
-
33645152394
-
Partial-electroded zno pyroelectric sensors for responsivity improvement
-
Wei, C., Lin, Y., Hu, Y., Wu, C., Shih, C.-K., Huang, C., et al. Partial-electroded zno pyroelectric sensors for responsivity improvement. Sens Actuators A: Phys 128:1 (2006), 18–24.
-
(2006)
Sens Actuators A: Phys
, vol.128
, Issue.1
, pp. 18-24
-
-
Wei, C.1
Lin, Y.2
Hu, Y.3
Wu, C.4
Shih, C.-K.5
Huang, C.6
-
95
-
-
84856254574
-
Improvement of pyroelectric cells for thermal energy harvesting
-
Hsiao, C.-C., Siao, A.-S., Ciou, J.-C., Improvement of pyroelectric cells for thermal energy harvesting. Sensors 12:1 (2012), 534–548.
-
(2012)
Sensors
, vol.12
, Issue.1
, pp. 534-548
-
-
Hsiao, C.-C.1
Siao, A.-S.2
Ciou, J.-C.3
-
96
-
-
77955295856
-
Harvesting nanoscale thermal radiation using pyroelectric materials
-
Fang, J., Frederich, H., Pilon, L., Harvesting nanoscale thermal radiation using pyroelectric materials. J Heat Transf, 132(9), 2010, 092701.
-
(2010)
J Heat Transf
, vol.132
, Issue.9
, pp. 092701
-
-
Fang, J.1
Frederich, H.2
Pilon, L.3
-
97
-
-
85151995987
-
-
A finite element model of self-resonating bimorph microcantilever for fast temperature cycling in a pyroelectric energy harvester. in: MRS Proceedings, Cambridge Univ Press, pp. mrss11-1325.
-
Mostafa S, Lavrik N, Bannuru T, Rajic S, Islam SK, Datskos PG, Hunter SR. A finite element model of self-resonating bimorph microcantilever for fast temperature cycling in a pyroelectric energy harvester. in: MRS Proceedings, vol. 1325, Cambridge Univ Press, 2011, pp. mrss11-1325.
-
(2011)
, vol.1325
-
-
Mostafa, S.1
Lavrik, N.2
Bannuru, T.3
Rajic, S.4
Islam, S.K.5
Datskos, P.G.6
Hunter, S.R.7
-
98
-
-
84870525177
-
Pyroelectric energy harvesting using liquid-based switchable thermal interfaces
-
Cha, G., Ju, Y.S., Pyroelectric energy harvesting using liquid-based switchable thermal interfaces. Sens Actuators A: Phys 189 (2013), 100–107.
-
(2013)
Sens Actuators A: Phys
, vol.189
, pp. 100-107
-
-
Cha, G.1
Ju, Y.S.2
-
99
-
-
78049432887
-
Detailed study of a micro heat engine for thermal energy harvesting
-
Huesgen, T., Ruhhammer, J., Biancuzzi, G., Woias, P., Detailed study of a micro heat engine for thermal energy harvesting. J Micromech Microeng, 20(10), 2010, 104004.
-
(2010)
J Micromech Microeng
, vol.20
, Issue.10
, pp. 104004
-
-
Huesgen, T.1
Ruhhammer, J.2
Biancuzzi, G.3
Woias, P.4
-
100
-
-
84880698843
-
Thermal pulse energy harvesting
-
McKay, I.S., Wang, E.N., Thermal pulse energy harvesting. Energy 57 (2013), 632–640.
-
(2013)
Energy
, vol.57
, pp. 632-640
-
-
McKay, I.S.1
Wang, E.N.2
-
101
-
-
51649122440
-
Energy harvesting from human and machine motion for wireless electronic devices
-
Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., Green, T.C., Energy harvesting from human and machine motion for wireless electronic devices. Proc IEEE 96:9 (2008), 1457–1486.
-
(2008)
Proc IEEE
, vol.96
, Issue.9
, pp. 1457-1486
-
-
Mitcheson, P.D.1
Yeatman, E.M.2
Rao, G.K.3
Holmes, A.S.4
Green, T.C.5
-
102
-
-
14744303295
-
Energy scavenging for wireless sensor networks
-
Springer Boston
-
Roundy, S., Wright, P.K., Rabaey, J.M., Energy scavenging for wireless sensor networks. 2003, Springer, Boston.
-
(2003)
-
-
Roundy, S.1
Wright, P.K.2
Rabaey, J.M.3
-
103
-
-
84989881975
-
State-of-the-art in vibration-based electrostatic energy harvesting
-
Khan, F.U., Qadir, M.U., State-of-the-art in vibration-based electrostatic energy harvesting. J Micromech Microeng, 26(10), 2016, 103001.
-
(2016)
J Micromech Microeng
, vol.26
, Issue.10
, pp. 103001
-
-
Khan, F.U.1
Qadir, M.U.2
-
104
-
-
84938385576
-
Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
-
Wang, Z.L., Chen, J., Lin, L., Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ Sci 8:8 (2015), 2250–2282.
-
(2015)
Energy Environ Sci
, vol.8
, Issue.8
, pp. 2250-2282
-
-
Wang, Z.L.1
Chen, J.2
Lin, L.3
-
105
-
-
70350686621
-
Fabrication, characterization and modelling of electrostatic micro-generators
-
Hoffmann, D., Folkmer, B., Manoli, Y., Fabrication, characterization and modelling of electrostatic micro-generators. J Micromech Microeng, 19(9), 2009, 094001.
-
(2009)
J Micromech Microeng
, vol.19
, Issue.9
, pp. 094001
-
-
Hoffmann, D.1
Folkmer, B.2
Manoli, Y.3
-
106
-
-
84903387348
-
Nonlinear behaviour of membrane type electromagnetic energy harvester under harmonic and random vibrations
-
Khan, F., Sassani, F., Stoeber, B., Nonlinear behaviour of membrane type electromagnetic energy harvester under harmonic and random vibrations. Microsyst Technol 20:7 (2014), 1323–1335.
-
(2014)
Microsyst Technol
, vol.20
, Issue.7
, pp. 1323-1335
-
-
Khan, F.1
Sassani, F.2
Stoeber, B.3
-
107
-
-
85152010021
-
-
Electrostatic conversion for vibration energy harvesting, arXiv:1210.5191.
-
Boisseau S, Despesse G, Seddik BA. Electrostatic conversion for vibration energy harvesting, arXiv:1210.5191.
-
-
-
Boisseau, S.1
Despesse, G.2
Seddik, B.A.3
-
108
-
-
33747588746
-
Mems inertial power generators for biomedical applications
-
Miao, P., Mitcheson, P., Holmes, A., Yeatman, E., Green, T., Stark, B., Mems inertial power generators for biomedical applications. Microsyst Technol 12:10–11 (2006), 1079–1083.
-
(2006)
Microsyst Technol
, vol.12
, Issue.10-11
, pp. 1079-1083
-
-
Miao, P.1
Mitcheson, P.2
Holmes, A.3
Yeatman, E.4
Green, T.5
Stark, B.6
-
109
-
-
85151980794
-
-
Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging. in: Proceedings of design, test, integration and packaging of MEMS and MOEMS
-
Despesse G, Jager T, Jean-Jacques C, Léger J-M, Vassilev A, Basrour S, Charlot B. Fabrication and characterization of high damping electrostatic micro devices for vibration energy scavenging. in: Proceedings of design, test, integration and packaging of MEMS and MOEMS, 2005, p. 386–90.
-
(2005)
, pp. 386-90
-
-
Despesse, G.1
Jager, T.2
Jean-Jacques, C.3
Léger, J.-M.4
Vassilev, A.5
Basrour, S.6
Charlot, B.7
-
110
-
-
4944239558
-
-
Micro-machined variable capacitors for power generation. in: Conference Series-Institute Of Physics, Philadelphia; Institute of Physics; 1999
-
Miao P, Holmes A, Yeatman E, Green T, Mitcheson P. Micro-machined variable capacitors for power generation. in: Conference Series-Institute Of Physics, vol. 178, Philadelphia; Institute of Physics; 1999, 2004, pp. 53–58.
-
(2004)
, vol.178
, pp. 53-58
-
-
Miao, P.1
Holmes, A.2
Yeatman, E.3
Green, T.4
Mitcheson, P.5
-
111
-
-
84055165131
-
Energy harvesting systems
-
Springer Boston
-
Kazmierski, T.J., Beeby, S., Energy harvesting systems. 2014, Springer, Boston.
-
(2014)
-
-
Kazmierski, T.J.1
Beeby, S.2
-
112
-
-
35649001997
-
Review of microscale magnetic power generation
-
Arnold, D.P., Review of microscale magnetic power generation. IEEE Trans Magn 43:11 (2007), 3940–3951.
-
(2007)
IEEE Trans Magn
, vol.43
, Issue.11
, pp. 3940-3951
-
-
Arnold, D.P.1
-
113
-
-
0030400026
-
-
Micro-turbo-generator design and fabrication: a preliminary study. In: Proceedings of the 31st intersociety energy conversion engineering conference, IECEC 96., IEEE; 1996
-
Wiegele TG. Micro-turbo-generator design and fabrication: a preliminary study. In: Proceedings of the 31st intersociety energy conversion engineering conference, IECEC 96. vol. 4, IEEE; 1996, p. 2308–13.
-
, vol.4
, pp. 2308-13
-
-
Wiegele, T.G.1
-
114
-
-
14144254710
-
Axial-flux permanent magnet machines for micropower generation
-
Holmes, A.S., Hong, G., Pullen, K.R., Axial-flux permanent magnet machines for micropower generation. J Micro Syst 14:1 (2005), 54–62.
-
(2005)
J Micro Syst
, vol.14
, Issue.1
, pp. 54-62
-
-
Holmes, A.S.1
Hong, G.2
Pullen, K.R.3
-
115
-
-
33747208672
-
Microfabricated high-speed axial-flux multiwatt permanent-magnet generators 8212; Part ii: Design, fabrication, and testing
-
Arnold, D.P., Das, S., Park, J.-W., Zana, I., Lang, J.H., Allen, M.G., Microfabricated high-speed axial-flux multiwatt permanent-magnet generators 8212; Part ii: Design, fabrication, and testing. J Micro Syst 15:5 (2006), 1351–1363.
-
(2006)
J Micro Syst
, vol.15
, Issue.5
, pp. 1351-1363
-
-
Arnold, D.P.1
Das, S.2
Park, J.-W.3
Zana, I.4
Lang, J.H.5
Allen, M.G.6
-
116
-
-
33747260812
-
Design optimization of an 8 w, microscale, axial-flux, permanent-magnet generator
-
Arnold, D.P., Herrault, F., Zana, I., Galle, P., Park, J.-W., Das, S., et al. Design optimization of an 8 w, microscale, axial-flux, permanent-magnet generator. J Micromech Microeng, 16(9), 2006, S290.
-
(2006)
J Micromech Microeng
, vol.16
, Issue.9
, pp. S290
-
-
Arnold, D.P.1
Herrault, F.2
Zana, I.3
Galle, P.4
Park, J.-W.5
Das, S.6
-
117
-
-
50049121881
-
-
Ultraminiaturized milliwatt-scale permanent magnet generators. in: Proceedings of International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS 2007–2007, IEEE
-
Herrault F, Ji C-H, Shafer R, Kim S-H, Allen M. Ultraminiaturized milliwatt-scale permanent magnet generators. in: Proceedings of International Solid-State Sensors, Actuators and Microsystems Conference, TRANSDUCERS 2007–2007, IEEE, 2007, p. 899–902.
-
(2007)
, pp. 899-902
-
-
Herrault, F.1
Ji, C.-H.2
Shafer, R.3
Kim, S.-H.4
Allen, M.5
-
118
-
-
34047094556
-
Design and optimization of a linear vibration-driven electromagnetic micro-power generator
-
von Büren, T., Tröster, G., Design and optimization of a linear vibration-driven electromagnetic micro-power generator. Sens Actuators A: Phys 135:2 (2007), 765–775.
-
(2007)
Sens Actuators A: Phys
, vol.135
, Issue.2
, pp. 765-775
-
-
von Büren, T.1
Tröster, G.2
-
119
-
-
0038712492
-
Development of an axial microturbine for a portable gas turbine generator
-
Peirs, J., Reynaerts, D., Verplaetsen, F., Development of an axial microturbine for a portable gas turbine generator. J Micromech Microeng, 13(4), 2003, S190.
-
(2003)
J Micromech Microeng
, vol.13
, Issue.4
, pp. S190
-
-
Peirs, J.1
Reynaerts, D.2
Verplaetsen, F.3
-
120
-
-
2942657372
-
A microturbine for electric power generation
-
Peirs, J., Reynaerts, D., Verplaetsen, F., A microturbine for electric power generation. Sens Actuators A: Phys 113:1 (2004), 86–93.
-
(2004)
Sens Actuators A: Phys
, vol.113
, Issue.1
, pp. 86-93
-
-
Peirs, J.1
Reynaerts, D.2
Verplaetsen, F.3
-
121
-
-
1542360793
-
-
Air-powered sensor. in: Sensors. Proceedings of IEEE, IEEE; 2003
-
Federspiel CC, Chen J. Air-powered sensor. in: Sensors, 2003. Proceedings of IEEE, vol. 1, IEEE; 2003, p. 22–5.
-
(2003)
, vol.1
, pp. 22-5
-
-
Federspiel, C.C.1
Chen, J.2
-
122
-
-
85151984149
-
-
Evaluation of centimeter-scale micro windmills: aerodynamics and electromagnetic power generation. in: Proceedings PowerMEMS
-
Rancourt D, Tabesh A, Fréchette LG. Evaluation of centimeter-scale micro windmills: aerodynamics and electromagnetic power generation. in: Proceedings PowerMEMS, vol. 20079, 2007.
-
(2007)
, vol.20079
-
-
Rancourt, D.1
Tabesh, A.2
Fréchette, L.G.3
-
123
-
-
41149125659
-
Design and implementation of mechanical resonators for optimized inertial electromagnetic microgenerators
-
Serre, C., Pérez-Rodríguez, A., Fondevilla, N., Martincic, E., Martínez, S., Morante, J.R., et al. Design and implementation of mechanical resonators for optimized inertial electromagnetic microgenerators. Microsyst Technol 14:4–5 (2008), 653–658.
-
(2008)
Microsyst Technol
, vol.14
, Issue.4-5
, pp. 653-658
-
-
Serre, C.1
Pérez-Rodríguez, A.2
Fondevilla, N.3
Martincic, E.4
Martínez, S.5
Morante, J.R.6
-
124
-
-
0036544008
-
A laser-micromachined multi-modal resonating power transducer for wireless sensing systems
-
Ching, N.N., Wong, H., Li, W.J., Leong, P.H., Wen, Z., A laser-micromachined multi-modal resonating power transducer for wireless sensing systems. Sens Actuators A: Phys 97 (2002), 685–690.
-
(2002)
Sens Actuators A: Phys
, vol.97
, pp. 685-690
-
-
Ching, N.N.1
Wong, H.2
Li, W.J.3
Leong, P.H.4
Wen, Z.5
-
125
-
-
85152010464
-
-
Energiewandlersystem für den betrieb von autarken sensoren in fahrzeugen.
-
Naumann G, Energiewandlersystem für den betrieb von autarken sensoren in fahrzeugen.
-
-
-
Naumann, G.1
-
126
-
-
47649116678
-
Electromagnetic generator for harvesting energy from human motion
-
Saha, C., O'donnell, T., Wang, N., McCloskey, P., Electromagnetic generator for harvesting energy from human motion. Sens Actuators A: Phys 147:1 (2008), 248–253.
-
(2008)
Sens Actuators A: Phys
, vol.147
, Issue.1
, pp. 248-253
-
-
Saha, C.1
O'donnell, T.2
Wang, N.3
McCloskey, P.4
-
127
-
-
74849135001
-
Fr4-based electromagnetic energy harvester for wireless sensor nodes
-
Hatipoglu, G., Ürey, H., Fr4-based electromagnetic energy harvester for wireless sensor nodes. Smart Mater Struct, 19(1), 2009, 015022.
-
(2009)
Smart Mater Struct
, vol.19
, Issue.1
, pp. 015022
-
-
Hatipoglu, G.1
Ürey, H.2
-
128
-
-
0036735510
-
Design and analysis of a microelectromagnetic vibration transducer used as an implantable middle ear hearing aid
-
Park, S., Lee, K.-C., Design and analysis of a microelectromagnetic vibration transducer used as an implantable middle ear hearing aid. J Micromech Microeng, 12(5), 2002, 505.
-
(2002)
J Micromech Microeng
, vol.12
, Issue.5
, pp. 505
-
-
Park, S.1
Lee, K.-C.2
-
129
-
-
70149119645
-
Pen harvester for powering a pulse rate sensor
-
Bedekar, V., Oliver, J., Priya, S., Pen harvester for powering a pulse rate sensor. J Phys D: Appl Phys, 42(10), 2009, 105105.
-
(2009)
J Phys D: Appl Phys
, vol.42
, Issue.10
, pp. 105105
-
-
Bedekar, V.1
Oliver, J.2
Priya, S.3
-
130
-
-
78650626620
-
Permanent magnet vibration power generator as an embedded mechanism for smart hip prosthesis
-
Morais, R., Silva, N., Santos, P., Frias, C., Ferreira, J., Ramos, A., et al. Permanent magnet vibration power generator as an embedded mechanism for smart hip prosthesis. Procedia Eng 5 (2010), 766–769.
-
(2010)
Procedia Eng
, vol.5
, pp. 766-769
-
-
Morais, R.1
Silva, N.2
Santos, P.3
Frias, C.4
Ferreira, J.5
Ramos, A.6
-
131
-
-
70350625237
-
An electromagnetic energy scavenger from direct airflow
-
Kim, S.-H., Ji, C.-H., Galle, P., Herrault, F., Wu, X., Lee, J.-H., et al. An electromagnetic energy scavenger from direct airflow. J Micromech Microeng, 19(9), 2009, 094010.
-
(2009)
J Micromech Microeng
, vol.19
, Issue.9
, pp. 094010
-
-
Kim, S.-H.1
Ji, C.-H.2
Galle, P.3
Herrault, F.4
Wu, X.5
Lee, J.-H.6
-
132
-
-
0030102028
-
Analysis of a micro-electric generator for microsystems
-
Williams, C., Yates, R.B., Analysis of a micro-electric generator for microsystems. Sens Actuators A: Phys 52:1 (1996), 8–11.
-
(1996)
Sens Actuators A: Phys
, vol.52
, Issue.1
, pp. 8-11
-
-
Williams, C.1
Yates, R.B.2
-
133
-
-
0035707222
-
Development of an electromagnetic micro-generator
-
Williams, C., Shearwood, C., Harradine, M., Mellor, P., Birch, T., Yates, R., Development of an electromagnetic micro-generator. IEEE Proc-Circuits, Devices Syst 148:6 (2001), 337–342.
-
(2001)
IEEE Proc-Circuits, Devices Syst
, vol.148
, Issue.6
, pp. 337-342
-
-
Williams, C.1
Shearwood, C.2
Harradine, M.3
Mellor, P.4
Birch, T.5
Yates, R.6
-
134
-
-
0032074435
-
Self-powered signal processing using vibration-based power generation
-
Amirtharajah, R., Chandrakasan, A.P., Self-powered signal processing using vibration-based power generation. IEEE J Solid-State Circuits 33:5 (1998), 687–695.
-
(1998)
IEEE J Solid-State Circuits
, vol.33
, Issue.5
, pp. 687-695
-
-
Amirtharajah, R.1
Chandrakasan, A.P.2
-
135
-
-
79955909149
-
Flexible polyimide film technology for vibration energy harvesting
-
Hoffmann, D., Kallenbach, C., Dobmaier, M., Folkmer, B., Manoli, Y., Flexible polyimide film technology for vibration energy harvesting. Proc PowerMEMS, 2009, 344–347.
-
(2009)
Proc PowerMEMS
, pp. 344-347
-
-
Hoffmann, D.1
Kallenbach, C.2
Dobmaier, M.3
Folkmer, B.4
Manoli, Y.5
-
136
-
-
33646870142
-
Fabrication and analysis of a magnetic self-power microgenerator
-
Pan, C., Hwang, Y., Hu, H., Liu, H., Fabrication and analysis of a magnetic self-power microgenerator. J Magn Magn Mater 304:1 (2006), e394–e396.
-
(2006)
J Magn Magn Mater
, vol.304
, Issue.1
, pp. e394-e396
-
-
Pan, C.1
Hwang, Y.2
Hu, H.3
Liu, H.4
-
137
-
-
67349175598
-
A micro electromagnetic low level vibration energy harvester based on mems technology
-
Wang, P., Tanaka, K., Sugiyama, S., Dai, X., Zhao, X., Liu, J., A micro electromagnetic low level vibration energy harvester based on mems technology. Microsyst Technol 15:6 (2009), 941–951.
-
(2009)
Microsyst Technol
, vol.15
, Issue.6
, pp. 941-951
-
-
Wang, P.1
Tanaka, K.2
Sugiyama, S.3
Dai, X.4
Zhao, X.5
Liu, J.6
-
138
-
-
33747622518
-
Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications
-
Koukharenko, E., Beeby, S., Tudor, M., White, N., O'Donnell, T., Saha, C., et al. Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications. Microsyst Technol 12:10–11 (2006), 1071–1077.
-
(2006)
Microsyst Technol
, vol.12
, Issue.10-11
, pp. 1071-1077
-
-
Koukharenko, E.1
Beeby, S.2
Tudor, M.3
White, N.4
O'Donnell, T.5
Saha, C.6
-
139
-
-
34547578774
-
A micro electromagnetic generator for vibration energy harvesting
-
Beeby, S.P., Torah, R., Tudor, M., Glynne-Jones, P., O'Donnell, T., Saha, C., et al. A micro electromagnetic generator for vibration energy harvesting. J Micromech Microeng, 17(7), 2007, 1257.
-
(2007)
J Micromech Microeng
, vol.17
, Issue.7
, pp. 1257
-
-
Beeby, S.P.1
Torah, R.2
Tudor, M.3
Glynne-Jones, P.4
O'Donnell, T.5
Saha, C.6
-
140
-
-
80054815529
-
Design and fabrication of a micro electromagnetic vibration energy harvester
-
Peng, W., Wei, L., Lufeng, C., Design and fabrication of a micro electromagnetic vibration energy harvester. J Semicond, 32(10), 2011, 104009.
-
(2011)
J Semicond
, vol.32
, Issue.10
, pp. 104009
-
-
Peng, W.1
Wei, L.2
Lufeng, C.3
-
141
-
-
52349083736
-
-
Design and optimization of a biomechanical energy harvesting device. in: IEEE;
-
Niu P, Chapman P, DiBerardino L, Hsiao-Wecksler E, Design and optimization of a biomechanical energy harvesting device. in: Proceedings of IEEE power electronics specialists conference, IEEE; 2008, p. 4062–9.
-
(2008)
Proceedings of IEEE power electronics specialists conference
, pp. 4062-9
-
-
Niu, P.1
Chapman, P.2
DiBerardino, L.3
Hsiao-Wecksler, E.4
-
142
-
-
84962164608
-
A curved electromagnetic energy harvesting system for wearable electronics
-
Samad, F.A., Karim, M.F., Paulose, V., Ong, L.C., A curved electromagnetic energy harvesting system for wearable electronics. IEEE Sens J 16:7 (2016), 1969–1974.
-
(2016)
IEEE Sens J
, vol.16
, Issue.7
, pp. 1969-1974
-
-
Samad, F.A.1
Karim, M.F.2
Paulose, V.3
Ong, L.C.4
-
143
-
-
85151946409
-
-
Axial permanent magnet generator for wearable energy harvesting. n: Proceedings of XXii international conference on electrical machines (ICEM), IEEE
-
Högberg S, Mijatovic N, Pedersen J, Vuckovic D, Jensen BB, Holb J, et al., Axial permanent magnet generator for wearable energy harvesting. n: Proceedings of XXii international conference on electrical machines (ICEM), 2016, IEEE, 2016, p. 677–82.
-
(2016)
, pp. 677-82
-
-
Högberg, S.1
Mijatovic, N.2
Pedersen, J.3
Vuckovic, D.4
Jensen, B.B.5
Holb, J.6
-
144
-
-
84992036141
-
A rotary electromagnetic microgenerator for energy harvesting from human motions
-
Niroomand, M., Foroughi, H.R., A rotary electromagnetic microgenerator for energy harvesting from human motions. J Appl Res Technol 14:4 (2016), 259–267.
-
(2016)
J Appl Res Technol
, vol.14
, Issue.4
, pp. 259-267
-
-
Niroomand, M.1
Foroughi, H.R.2
-
145
-
-
84954061711
-
A high figure of merit vibrational energy harvester for low frequency applications
-
Nico, V., Boco, E., Frizzell, R., Punch, J., A high figure of merit vibrational energy harvester for low frequency applications. Appl Phys Lett, 108(1), 2016, 013902.
-
(2016)
Appl Phys Lett
, vol.108
, Issue.1
, pp. 013902
-
-
Nico, V.1
Boco, E.2
Frizzell, R.3
Punch, J.4
-
147
-
-
26444571222
-
Vibration-based automatic power-generation system
-
Sasaki, K., Osaki, Y., Okazaki, J., Hosaka, H., Itao, K., Vibration-based automatic power-generation system. Microsyst Technol 11:8–10 (2005), 965–969.
-
(2005)
Microsyst Technol
, vol.11
, Issue.8-10
, pp. 965-969
-
-
Sasaki, K.1
Osaki, Y.2
Okazaki, J.3
Hosaka, H.4
Itao, K.5
-
148
-
-
85009135137
-
-
Energy harvesting from human walking to power biomedical devices using oscillating generation. In: Proceedings of the 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC),IEEE;
-
Montoya JA, Mariscal DM, Romero E, Energy harvesting from human walking to power biomedical devices using oscillating generation. In: Proceedings of the 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC),IEEE; 2016, p. 4951–4.
-
(2016)
, pp. 4951-4
-
-
Montoya, J.A.1
Mariscal, D.M.2
Romero, E.3
-
149
-
-
33747277723
-
Non-resonant vibration conversion
-
Spreemann, D., Manoli, Y., Folkmer, B., Mintenbeck, D., Non-resonant vibration conversion. J Micromech Microeng, 16(9), 2006, S169.
-
(2006)
J Micromech Microeng
, vol.16
, Issue.9
, pp. S169
-
-
Spreemann, D.1
Manoli, Y.2
Folkmer, B.3
Mintenbeck, D.4
-
150
-
-
84893395073
-
Hybrid rotary-translational vibration energy harvester using cycloidal motion as a mechanical amplifier
-
Moss, S.D., Hart, G.A., Burke, S.K., Carman, G.P., Hybrid rotary-translational vibration energy harvester using cycloidal motion as a mechanical amplifier. Appl Phys Lett, 104(3), 2014, 033506.
-
(2014)
Appl Phys Lett
, vol.104
, Issue.3
, pp. 033506
-
-
Moss, S.D.1
Hart, G.A.2
Burke, S.K.3
Carman, G.P.4
-
151
-
-
0035242946
-
Vibration-to-electric energy conversion
-
Meninger, S., Mur-Miranda, J.O., Amirtharajah, R., Chandrakasan, A., Lang, J.H., Vibration-to-electric energy conversion. IEEE Trans Very Large Scale Integr (VLSI) Syst 9:1 (2001), 64–76.
-
(2001)
IEEE Trans Very Large Scale Integr (VLSI) Syst
, vol.9
, Issue.1
, pp. 64-76
-
-
Meninger, S.1
Mur-Miranda, J.O.2
Amirtharajah, R.3
Chandrakasan, A.4
Lang, J.H.5
-
152
-
-
78249283593
-
-
Micro-electrostatic vibration-to-electricity converters. in: American Society of Mechanical Engineers
-
Roundy S, Wright PK, Pister KS, Micro-electrostatic vibration-to-electricity converters. in: Proceedings of international mechanical engineering congress and exposition, American Society of Mechanical Engineers, 2002, p. 487–96.
-
(2002)
Proceedings of international mechanical engineering congress and exposition
, pp. 487-96
-
-
Roundy, S.1
Wright, P.K.2
Pister, K.S.3
-
153
-
-
0036937464
-
Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion
-
Tashiro, R., Kabei, N., Katayama, K., Tsuboi, E., Tsuchiya, K., Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J Artif Organs 5:4 (2002), 0239–0245.
-
(2002)
J Artif Organs
, vol.5
, Issue.4
, pp. 0239-0245
-
-
Tashiro, R.1
Kabei, N.2
Katayama, K.3
Tsuboi, E.4
Tsuchiya, K.5
-
154
-
-
84944715448
-
-
An electret-based electrostatic μ-generator. In: Proceedings of the 12th international conference on Transducers, solid-state sensors, actuators and microsystems, IEEE; 2003
-
Sterken T, Fiorini P, Baert K, Puers R, Borghs G. An electret-based electrostatic μ-generator. In: Proceedings of the 12th international conference on Transducers, solid-state sensors, actuators and microsystems, vol. 2, IEEE; 2003, pp. 1291–1294.
-
, vol.2
, pp. 1291-1294
-
-
Sterken, T.1
Fiorini, P.2
Baert, K.3
Puers, R.4
Borghs, G.5
-
155
-
-
33750125876
-
Novel design and fabrication of a mems electrostatic vibration scavenger
-
Sterken, T., Fiorini, P., Baert, K., Borghs, G., Puers, R., Novel design and fabrication of a mems electrostatic vibration scavenger. Proc Power, 2004, 18–21.
-
(2004)
Proc Power
, pp. 18-21
-
-
Sterken, T.1
Fiorini, P.2
Baert, K.3
Borghs, G.4
Puers, R.5
-
156
-
-
85152049776
-
-
Puers R. Harvesting energy from vibrations by a micromachined electret generator. In: Proceedings of the 14th international conference on solid-state sensors, actuators and microsystems (Transducers 2007), IEEE; 2007, p. U68-9.
-
Sterken T, Fiorini P, Altena G, Van Hoof C, Puers R. Harvesting energy from vibrations by a micromachined electret generator. In: Proceedings of the 14th international conference on solid-state sensors, actuators and microsystems (Transducers 2007), IEEE; 2007, p. U68-9.
-
-
-
Sterken, T.1
Fiorini, P.2
Altena, G.3
Van Hoof, C.4
-
157
-
-
84899904024
-
Electrostatic energy harvesting device with out-of-the-plane gap closing scheme
-
Wang, F., Hansen, O., Electrostatic energy harvesting device with out-of-the-plane gap closing scheme. Sens Actuators A: Phys 211 (2014), 131–137.
-
(2014)
Sens Actuators A: Phys
, vol.211
, pp. 131-137
-
-
Wang, F.1
Hansen, O.2
-
158
-
-
78650892172
-
A mems rotary comb mechanism for harvesting the kinetic energy of planar vibrations
-
Yang, B., Lee, C., Kotlanka, R.K., Xie, J., Lim, S.P., A mems rotary comb mechanism for harvesting the kinetic energy of planar vibrations. J Micromech Microeng, 20(6), 2010, 065017.
-
(2010)
J Micromech Microeng
, vol.20
, Issue.6
, pp. 065017
-
-
Yang, B.1
Lee, C.2
Kotlanka, R.K.3
Xie, J.4
Lim, S.P.5
-
159
-
-
58149354159
-
A capacitive vibration-to-electricity energy converter with integrated mechanical switches
-
Chiu, Y., Tseng, V.F., A capacitive vibration-to-electricity energy converter with integrated mechanical switches. J Micromech Microeng, 18(10), 2008, 104004.
-
(2008)
J Micromech Microeng
, vol.18
, Issue.10
, pp. 104004
-
-
Chiu, Y.1
Tseng, V.F.2
-
160
-
-
84903444629
-
Fiber-based generator for wearable electronics and mobile medication
-
Zhong, J., Zhang, Y., Zhong, Q., Hu, Q., Hu, B., Wang, Z.L., et al. Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8:6 (2014), 6273–6280.
-
(2014)
ACS Nano
, vol.8
, Issue.6
, pp. 6273-6280
-
-
Zhong, J.1
Zhang, Y.2
Zhong, Q.3
Hu, Q.4
Hu, B.5
Wang, Z.L.6
-
161
-
-
82755166791
-
Liquid-based electrostatic energy harvester with high sensitivity to human physical motion, Smart
-
Choi, D.-H., Han, C.-H., Kim, H.-D., Yoon, J.-B., Liquid-based electrostatic energy harvester with high sensitivity to human physical motion, Smart. Mater Struct, 20(12), 2011, 125012.
-
(2011)
Mater Struct
, vol.20
, Issue.12
, pp. 125012
-
-
Choi, D.-H.1
Han, C.-H.2
Kim, H.-D.3
Yoon, J.-B.4
-
162
-
-
84871657971
-
Liquid encapsulated electrostatic energy harvester for low-frequency vibrations
-
Bu, L., Wu, X., Wang, X., Liu, L., Liquid encapsulated electrostatic energy harvester for low-frequency vibrations. J Intell Mater Syst Struct 24:1 (2013), 61–69.
-
(2013)
J Intell Mater Syst Struct
, vol.24
, Issue.1
, pp. 61-69
-
-
Bu, L.1
Wu, X.2
Wang, X.3
Liu, L.4
-
163
-
-
80155172738
-
Electrostatic energy harvesting enhancement using variable equivalent permittivity
-
Lallart, M., Pruvost, S., Guyomar, D., Electrostatic energy harvesting enhancement using variable equivalent permittivity. Phys Lett A 375:45 (2011), 3921–3924.
-
(2011)
Phys Lett A
, vol.375
, Issue.45
, pp. 3921-3924
-
-
Lallart, M.1
Pruvost, S.2
Guyomar, D.3
-
164
-
-
79551630550
-
Recent progress in mems electret generator for energy harvesting
-
Suzuki, Y., Recent progress in mems electret generator for energy harvesting. IEEJ Trans Electr Electron Eng 6:2 (2011), 101–111.
-
(2011)
IEEJ Trans Electr Electron Eng
, vol.6
, Issue.2
, pp. 101-111
-
-
Suzuki, Y.1
-
165
-
-
85151920290
-
-
Ieee standard on piezoelectricity
-
Meitzler A, Tiersten H, Warner A, Berlincourt D, Couqin G, Welsh III F. Ieee standard on piezoelectricity (1988).
-
(1988)
-
-
Meitzler, A.1
Tiersten, H.2
Warner, A.3
Berlincourt, D.4
Couqin, G.5
Welsh, I.F.6
-
166
-
-
38349163611
-
Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack
-
Feenstra, J., Granstrom, J., Sodano, H., Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mech Syst Signal Process 22:3 (2008), 721–734.
-
(2008)
Mech Syst Signal Process
, vol.22
, Issue.3
, pp. 721-734
-
-
Feenstra, J.1
Granstrom, J.2
Sodano, H.3
-
167
-
-
84899860663
-
Vibration-based energy harvesting with stacked piezoelectrets
-
Pondrom, P., Hillenbrand, J., Sessler, G., Bös, J., Melz, T., Vibration-based energy harvesting with stacked piezoelectrets. Appl Phys Lett, 104(17), 2014, 172901.
-
(2014)
Appl Phys Lett
, vol.104
, Issue.17
, pp. 172901
-
-
Pondrom, P.1
Hillenbrand, J.2
Sessler, G.3
Bös, J.4
Melz, T.5
-
168
-
-
18844453678
-
On low-frequency electric power generation with pzt ceramics
-
Platt, S.R., Farritor, S., Haider, H., On low-frequency electric power generation with pzt ceramics. IEEE/ASME Trans Mechatron 10:2 (2005), 240–252.
-
(2005)
IEEE/ASME Trans Mechatron
, vol.10
, Issue.2
, pp. 240-252
-
-
Platt, S.R.1
Farritor, S.2
Haider, H.3
-
169
-
-
84878307251
-
Energy harvesting using a pzt ceramic multilayer stack
-
Xu, T.-B., Siochi, E.J., Kang, J.H., Zuo, L., Zhou, W., Tang, X., et al. Energy harvesting using a pzt ceramic multilayer stack. Smart Mater Struct, 22(6), 2013, 065015.
-
(2013)
Smart Mater Struct
, vol.22
, Issue.6
, pp. 065015
-
-
Xu, T.-B.1
Siochi, E.J.2
Kang, J.H.3
Zuo, L.4
Zhou, W.5
Tang, X.6
-
170
-
-
85007041366
-
-
Parasitic power harvesting in shoes. In: Digest of Papers, IEEE;
-
Kymissis J, Kendall C, Paradiso J, Gershenfeld N. Parasitic power harvesting in shoes. In: Proceedings of the second international symposium on wearable computers. Digest of Papers, IEEE; 1998, p. 132–9.
-
(1998)
Proceedings of the second international symposium on wearable computers
, pp. 132-9
-
-
Kymissis, J.1
Kendall, C.2
Paradiso, J.3
Gershenfeld, N.4
-
171
-
-
85151958942
-
-
Electrical characterization of a piezoelectric film-based power generator for autonomous wearable devices. In: Proceedings of XVIII conference on design of circuits and integrated systems,;
-
Mateu L, Fonellosa F, Moll F. Electrical characterization of a piezoelectric film-based power generator for autonomous wearable devices. In: Proceedings of XVIII conference on design of circuits and integrated systems, vol. 18; 2003.
-
(2003)
, vol.18
-
-
Mateu, L.1
Fonellosa, F.2
Moll, F.3
-
172
-
-
34249296681
-
A review of power harvesting using piezoelectric materials (2003–2006)
-
Anton, S.R., Sodano, H.A., A review of power harvesting using piezoelectric materials (2003–2006). Smart Mater Struct, 16(3), 2007, R1.
-
(2007)
Smart Mater Struct
, vol.16
, Issue.3
, pp. R1
-
-
Anton, S.R.1
Sodano, H.A.2
-
173
-
-
56449115420
-
Powering mems portable devices–a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems
-
Cook-Chennault, K., Thambi, N., Sastry, A., Powering mems portable devices–a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems. Smart Mater Struct, 17(4), 2008, 043001.
-
(2008)
Smart Mater Struct
, vol.17
, Issue.4
, pp. 043001
-
-
Cook-Chennault, K.1
Thambi, N.2
Sastry, A.3
-
174
-
-
80051698105
-
A review of vibration-based mems piezoelectric energy harvesters
-
Saadon, S., Sidek, O., A review of vibration-based mems piezoelectric energy harvesters. Energy Convers Manag 52:1 (2011), 500–504.
-
(2011)
Energy Convers Manag
, vol.52
, Issue.1
, pp. 500-504
-
-
Saadon, S.1
Sidek, O.2
-
175
-
-
84892363912
-
A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications
-
Pillatsch, P., Yeatman, E.M., Holmes, A.S., A piezoelectric frequency up-converting energy harvester with rotating proof mass for human body applications. Sens Actuators A: Phys 206 (2014), 178–185.
-
(2014)
Sens Actuators A: Phys
, vol.206
, pp. 178-185
-
-
Pillatsch, P.1
Yeatman, E.M.2
Holmes, A.S.3
-
176
-
-
84880801051
-
-
Development of enhanced piezoelectric energy harvester induced by human motion. In: Proceedings of annual international conference of the IEEE engineering in medicine and biology society, IEEE;
-
Minami Y, Nakamachi E, Development of enhanced piezoelectric energy harvester induced by human motion. In: Proceedings of annual international conference of the IEEE engineering in medicine and biology society, IEEE; 2012, p. 1627–30.
-
(2012)
, pp. 1627-30
-
-
Minami, Y.1
Nakamachi, E.2
-
177
-
-
39749195554
-
Energy harvesting from a backpack instrumented with piezoelectric shoulder straps
-
Granstrom, J., Feenstra, J., Sodano, H.A., Farinholt, K., Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Mater Struct, 16(5), 2007, 1810.
-
(2007)
Smart Mater Struct
, vol.16
, Issue.5
, pp. 1810
-
-
Granstrom, J.1
Feenstra, J.2
Sodano, H.A.3
Farinholt, K.4
-
178
-
-
68549104441
-
Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator
-
Renaud, M., Fiorini, P., van Schaijk, R., Van Hoof, C., Harvesting energy from the motion of human limbs: the design and analysis of an impact-based piezoelectric generator. Smart Mater Struct, 18(3), 2009, 035001.
-
(2009)
Smart Mater Struct
, vol.18
, Issue.3
, pp. 035001
-
-
Renaud, M.1
Fiorini, P.2
van Schaijk, R.3
Van Hoof, C.4
-
179
-
-
33947307330
-
Energy harvesting with piezoelectric drum transducer
-
Wang, S., Lam, K.H., Sun, C.L., Kwok, K.W., Chan, H.L.W., Guo, M.S., et al. Energy harvesting with piezoelectric drum transducer. Appl Phys Lett, 90(11), 2007, 113506.
-
(2007)
Appl Phys Lett
, vol.90
, Issue.11
, pp. 113506
-
-
Wang, S.1
Lam, K.H.2
Sun, C.L.3
Kwok, K.W.4
Chan, H.L.W.5
Guo, M.S.6
-
180
-
-
9144256385
-
Energy harvesting using a piezoelectric cymbal transducer in dynamic environment
-
Kim, H.W., Batra, A., Priya, S., Uchino, K., Markley, D., Newnham, R.E., et al. Energy harvesting using a piezoelectric cymbal transducer in dynamic environment. Jpn J Appl Phys, 43(9R), 2004, 6178.
-
(2004)
Jpn J Appl Phys
, vol.43
, Issue.9R
, pp. 6178
-
-
Kim, H.W.1
Batra, A.2
Priya, S.3
Uchino, K.4
Markley, D.5
Newnham, R.E.6
-
181
-
-
79960646575
-
Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation, Smart
-
Pozzi, M., Zhu, M., Plucked piezoelectric bimorphs for knee-joint energy harvesting: modelling and experimental validation, Smart. Mater Struct, 20(5), 2011, 055007.
-
(2011)
Mater Struct
, vol.20
, Issue.5
, pp. 055007
-
-
Pozzi, M.1
Zhu, M.2
-
182
-
-
84862188856
-
A retrofitted energy harvester for low frequency vibrations
-
Zhang, Y., Cai, C., A retrofitted energy harvester for low frequency vibrations. Smart Mater Struct, 21(7), 2012, 075007.
-
(2012)
Smart Mater Struct
, vol.21
, Issue.7
, pp. 075007
-
-
Zhang, Y.1
Cai, C.2
-
183
-
-
77952775729
-
-
A piezoelectric frequency-increased power generator for scavenging low-frequency ambient vibration. In: Proceedings of the 23rd international conference on micro electro mechanical systems (MEMS), IEEE;
-
Galchev T, Aktakka EE, Kim H, Najafi K. A piezoelectric frequency-increased power generator for scavenging low-frequency ambient vibration. In: Proceedings of the 23rd international conference on micro electro mechanical systems (MEMS), IEEE; 2010, p. 1203–6.
-
(2010)
, pp. 1203-6
-
-
Galchev, T.1
Aktakka, E.E.2
Kim, H.3
Najafi, K.4
-
184
-
-
84868015378
-
A scalable piezoelectric impulse-excited energy harvester for human body excitation
-
Pillatsch, P., Yeatman, E., Holmes, A., A scalable piezoelectric impulse-excited energy harvester for human body excitation. Smart Mater Struct, 21(11), 2012, 115018.
-
(2012)
Smart Mater Struct
, vol.21
, Issue.11
, pp. 115018
-
-
Pillatsch, P.1
Yeatman, E.2
Holmes, A.3
-
185
-
-
77954275027
-
Muscle-driven in vivo nanogenerator
-
Li, Z., Zhu, G., Yang, R., Wang, A.C., Wang, Z.L., Muscle-driven in vivo nanogenerator. Adv Mater 22:23 (2010), 2534–2537.
-
(2010)
Adv Mater
, vol.22
, Issue.23
, pp. 2534-2537
-
-
Li, Z.1
Zhu, G.2
Yang, R.3
Wang, A.C.4
Wang, Z.L.5
-
186
-
-
77953826834
-
-
Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator. In: Proceedings of the 2005 joint conference on Smart objects and ambient intelligence: innovative context-aware services: usages and technologies, ACM;
-
Ammar Y, Buhrig A, Marzencki M, Charlot B, Basrour S, Matou K, Renaudin M. Wireless sensor network node with asynchronous architecture and vibration harvesting micro power generator. In: Proceedings of the 2005 joint conference on Smart objects and ambient intelligence: innovative context-aware services: usages and technologies, ACM; 2005, p. 287–92.
-
(2005)
, pp. 287-92
-
-
Ammar, Y.1
Buhrig, A.2
Marzencki, M.3
Charlot, B.4
Basrour, S.5
Matou, K.6
Renaudin, M.7
-
187
-
-
1342346355
-
Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications
-
Lu, F., Lee, H., Lim, S., Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater Struct, 13(1), 2003, 57.
-
(2003)
Smart Mater Struct
, vol.13
, Issue.1
, pp. 57
-
-
Lu, F.1
Lee, H.2
Lim, S.3
-
188
-
-
43149123549
-
A mems-based piezoelectric power generator array for vibration energy harvesting
-
Liu, J.-Q., Fang, H.-B., Xu, Z.-Y., Mao, X.-H., Shen, X.-C., Chen, D., et al. A mems-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39:5 (2008), 802–806.
-
(2008)
Microelectron J
, vol.39
, Issue.5
, pp. 802-806
-
-
Liu, J.-Q.1
Fang, H.-B.2
Xu, Z.-Y.3
Mao, X.-H.4
Shen, X.-C.5
Chen, D.6
-
189
-
-
33847196845
-
Energy harvesting mems device based on thin film piezoelectric cantilevers
-
Choi, W., Jeon, Y., Jeong, J.-H., Sood, R., Kim, S.-G., Energy harvesting mems device based on thin film piezoelectric cantilevers. J Electroceram 17:2–4 (2006), 543–548.
-
(2006)
J Electroceram
, vol.17
, Issue.2-4
, pp. 543-548
-
-
Choi, W.1
Jeon, Y.2
Jeong, J.-H.3
Sood, R.4
Kim, S.-G.5
-
190
-
-
33751113307
-
Fabrication and performance of mems-based piezoelectric power generator for vibration energy harvesting
-
Fang, H.-B., Liu, J.-Q., Xu, Z.-Y., Dong, L., Wang, L., Chen, D., et al. Fabrication and performance of mems-based piezoelectric power generator for vibration energy harvesting. Microelectron J 37:11 (2006), 1280–1284.
-
(2006)
Microelectron J
, vol.37
, Issue.11
, pp. 1280-1284
-
-
Fang, H.-B.1
Liu, J.-Q.2
Xu, Z.-Y.3
Dong, L.4
Wang, L.5
Chen, D.6
-
191
-
-
70350630468
-
Vibration energy harvesting with aluminum nitride-based piezoelectric devices
-
Elfrink, R., Kamel, T., Goedbloed, M., Matova, S., Hohlfeld, D., Van Andel, Y., et al. Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng, 19(9), 2009, 094005.
-
(2009)
J Micromech Microeng
, vol.19
, Issue.9
, pp. 094005
-
-
Elfrink, R.1
Kamel, T.2
Goedbloed, M.3
Matova, S.4
Hohlfeld, D.5
Van Andel, Y.6
-
192
-
-
85152029333
-
-
Analysis and design of a self-powered piezoelectric microaccelerometer. in: Smart Structures and Materials, International Society for Optics and Photonics;
-
Zhou W, Liao W-H, Li WJ. Analysis and design of a self-powered piezoelectric microaccelerometer. in: Smart Structures and Materials, International Society for Optics and Photonics; 2005, p. 233–40.
-
(2005)
, pp. 233-40
-
-
Zhou, W.1
Liao, W.-H.2
Li, W.J.3
-
193
-
-
22844431664
-
Mems power generator with transverse mode thin film pzt
-
Jeon, Y., Sood, R., Jeong, J.-H., Kim, S.-G., Mems power generator with transverse mode thin film pzt. Sens Actuators A: Phys 122:1 (2005), 16–22.
-
(2005)
Sens Actuators A: Phys
, vol.122
, Issue.1
, pp. 16-22
-
-
Jeon, Y.1
Sood, R.2
Jeong, J.-H.3
Kim, S.-G.4
-
194
-
-
33645810366
-
Piezoelectric nanogenerators based on zinc oxide nanowire arrays
-
Wang, Z.L., Song, J., Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:5771 (2006), 242–246.
-
(2006)
Science
, vol.312
, Issue.5771
, pp. 242-246
-
-
Wang, Z.L.1
Song, J.2
-
195
-
-
34147113273
-
Direct-current nanogenerator driven by ultrasonic waves
-
Wang, X., Song, J., Liu, J., Wang, Z.L., Direct-current nanogenerator driven by ultrasonic waves. Science 316:5821 (2007), 102–105.
-
(2007)
Science
, vol.316
, Issue.5821
, pp. 102-105
-
-
Wang, X.1
Song, J.2
Liu, J.3
Wang, Z.L.4
-
196
-
-
75249092633
-
Nanoscale networked single-walled carbon-nanotube electrodes for transparent flexible nanogenerators
-
Choi, D., Choi, M.-Y., Shin, H.-J., Yoon, S.-M., Seo, J.-S., Choi, J.-Y., et al. Nanoscale networked single-walled carbon-nanotube electrodes for transparent flexible nanogenerators. J Phys Chem C 114:2 (2009), 1379–1384.
-
(2009)
J Phys Chem C
, vol.114
, Issue.2
, pp. 1379-1384
-
-
Choi, D.1
Choi, M.-Y.2
Shin, H.-J.3
Yoon, S.-M.4
Seo, J.-S.5
Choi, J.-Y.6
-
197
-
-
67649289520
-
Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric zno nanorods
-
Choi, M.-Y., Choi, D., Jin, M.-J., Kim, I., Kim, S.-H., Choi, J.-Y., et al. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric zno nanorods. Adv Mater 21:21 (2009), 2185–2189.
-
(2009)
Adv Mater
, vol.21
, Issue.21
, pp. 2185-2189
-
-
Choi, M.-Y.1
Choi, D.2
Jin, M.-J.3
Kim, I.4
Kim, S.-H.5
Choi, J.-Y.6
-
198
-
-
79958862971
-
Self-powered system with wireless data transmission
-
Hu, Y., Zhang, Y., Xu, C., Lin, L., Snyder, R.L., Wang, Z.L., Self-powered system with wireless data transmission. Nano Lett 11:6 (2011), 2572–2577.
-
(2011)
Nano Lett
, vol.11
, Issue.6
, pp. 2572-2577
-
-
Hu, Y.1
Zhang, Y.2
Xu, C.3
Lin, L.4
Snyder, R.L.5
Wang, Z.L.6
-
199
-
-
84877746590
-
Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor
-
Lee, S., Bae, S.-H., Lin, L., Yang, Y., Park, C., Kim, S.-W., et al. Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv Funct Mater 23:19 (2013), 2445–2449.
-
(2013)
Adv Funct Mater
, vol.23
, Issue.19
, pp. 2445-2449
-
-
Lee, S.1
Bae, S.-H.2
Lin, L.3
Yang, Y.4
Park, C.5
Kim, S.-W.6
-
200
-
-
58149263348
-
Power generation with laterally packaged piezoelectric fine wires
-
Yang, R., Qin, Y., Dai, L., Wang, Z.L., Power generation with laterally packaged piezoelectric fine wires. Nat Nanotechnol 4:1 (2009), 34–39.
-
(2009)
Nat Nanotechnol
, vol.4
, Issue.1
, pp. 34-39
-
-
Yang, R.1
Qin, Y.2
Dai, L.3
Wang, Z.L.4
-
201
-
-
65249165597
-
Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator
-
Yang, R., Qin, Y., Li, C., Zhu, G., Wang, Z.L., Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett 9:3 (2009), 1201–1205.
-
(2009)
Nano Lett
, vol.9
, Issue.3
, pp. 1201-1205
-
-
Yang, R.1
Qin, Y.2
Li, C.3
Zhu, G.4
Wang, Z.L.5
-
202
-
-
77952293658
-
Self-powered nanowire devices
-
Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., Wang, Z.L., Self-powered nanowire devices. Nat Nanotechnol 5:5 (2010), 366–373.
-
(2010)
Nat Nanotechnol
, vol.5
, Issue.5
, pp. 366-373
-
-
Xu, S.1
Qin, Y.2
Xu, C.3
Wei, Y.4
Yang, R.5
Wang, Z.L.6
-
203
-
-
77955583635
-
Flexible high-output nanogenerator based on lateral zno nanowire array
-
Zhu, G., Yang, R., Wang, S., Wang, Z.L., Flexible high-output nanogenerator based on lateral zno nanowire array. Nano Lett 10:8 (2010), 3151–3155.
-
(2010)
Nano Lett
, vol.10
, Issue.8
, pp. 3151-3155
-
-
Zhu, G.1
Yang, R.2
Wang, S.3
Wang, Z.L.4
-
204
-
-
78650127369
-
High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display
-
Hu, Y., Zhang, Y., Xu, C., Zhu, G., Wang, Z.L., High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett 10:12 (2010), 5025–5031.
-
(2010)
Nano Lett
, vol.10
, Issue.12
, pp. 5025-5031
-
-
Hu, Y.1
Zhang, Y.2
Xu, C.3
Zhu, G.4
Wang, Z.L.5
-
205
-
-
39149112201
-
Microfibre-nanowire hybrid structure for energy scavenging
-
Qin, Y., Wang, X., Wang, Z.L., Microfibre-nanowire hybrid structure for energy scavenging. Nature 451:7180 (2008), 809–813.
-
(2008)
Nature
, vol.451
, Issue.7180
, pp. 809-813
-
-
Qin, Y.1
Wang, X.2
Wang, Z.L.3
-
206
-
-
84859128209
-
A hybrid piezoelectric structure for wearable nanogenerators
-
Lee, M., Chen, C.-Y., Wang, S., Cha, S.N., Park, Y.J., Kim, J.M., et al. A hybrid piezoelectric structure for wearable nanogenerators. Adv Mater 24:13 (2012), 1759–1764.
-
(2012)
Adv Mater
, vol.24
, Issue.13
, pp. 1759-1764
-
-
Lee, M.1
Chen, C.-Y.2
Wang, S.3
Cha, S.N.4
Park, Y.J.5
Kim, J.M.6
-
207
-
-
78650702674
-
Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor
-
Li, Z., Wang, Z.L., Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv Mater 23:1 (2011), 84–89.
-
(2011)
Adv Mater
, vol.23
, Issue.1
, pp. 84-89
-
-
Li, Z.1
Wang, Z.L.2
-
208
-
-
84880317348
-
Piezoelectric-nanowire-enabled power source for driving wireless microelectronics
-
Xu, S., Hansen, B.J., Wang, Z.L., Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat Commun, 1, 2010, 93.
-
(2010)
Nat Commun
, vol.1
, pp. 93
-
-
Xu, S.1
Hansen, B.J.2
Wang, Z.L.3
-
209
-
-
76749084845
-
Piezoelectric ribbons printed onto rubber for flexible energy conversion
-
Qi, Y., Jafferis, N.T., Lyons, K. Jr, Lee, C.M., Ahmad, H., McAlpine, M.C., Piezoelectric ribbons printed onto rubber for flexible energy conversion. Nano Lett 10:2 (2010), 524–528.
-
(2010)
Nano Lett
, vol.10
, Issue.2
, pp. 524-528
-
-
Qi, Y.1
Jafferis, N.T.2
Lyons, K.3
Lee, C.M.4
Ahmad, H.5
McAlpine, M.C.6
-
210
-
-
79952597094
-
Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled pzt ribbons
-
Qi, Y., Kim, J., Nguyen, T.D., Lisko, B., Purohit, P.K., McAlpine, M.C., Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled pzt ribbons. Nano Lett 11:3 (2011), 1331–1336.
-
(2011)
Nano Lett
, vol.11
, Issue.3
, pp. 1331-1336
-
-
Qi, Y.1
Kim, J.2
Nguyen, T.D.3
Lisko, B.4
Purohit, P.K.5
McAlpine, M.C.6
-
211
-
-
84893477161
-
Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm
-
Dagdeviren, C., Yang, B.D., Su, Y., Tran, P.L., Joe, P., Anderson, E., et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci 111:5 (2014), 1927–1932.
-
(2014)
Proc Natl Acad Sci
, vol.111
, Issue.5
, pp. 1927-1932
-
-
Dagdeviren, C.1
Yang, B.D.2
Su, Y.3
Tran, P.L.4
Joe, P.5
Anderson, E.6
-
212
-
-
76749162390
-
Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency
-
Chang, C., Tran, V.H., Wang, J., Fuh, Y.-K., Lin, L., Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10:2 (2010), 726–731.
-
(2010)
Nano Lett
, vol.10
, Issue.2
, pp. 726-731
-
-
Chang, C.1
Tran, V.H.2
Wang, J.3
Fuh, Y.-K.4
Lin, L.5
-
213
-
-
77955548078
-
Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy
-
Hansen, B.J., Liu, Y., Yang, R., Wang, Z.L., Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. ACS Nano 4:7 (2010), 3647–3652.
-
(2010)
ACS Nano
, vol.4
, Issue.7
, pp. 3647-3652
-
-
Hansen, B.J.1
Liu, Y.2
Yang, R.3
Wang, Z.L.4
-
214
-
-
84875880834
-
High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene)
-
Persano, L., Dagdeviren, C., Su, Y., Zhang, Y., Girardo, S., Pisignano, D., et al. High performance piezoelectric devices based on aligned arrays of nanofibers of poly (vinylidenefluoride-co-trifluoroethylene). Nat Commun, 4, 2013, 1633.
-
(2013)
Nat Commun
, vol.4
, pp. 1633
-
-
Persano, L.1
Dagdeviren, C.2
Su, Y.3
Zhang, Y.4
Girardo, S.5
Pisignano, D.6
-
215
-
-
85151964810
-
-
Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and self-powered electronic systems, Advanced Energy Materials 4 (7).
-
Mao Y, Zhao P, McConohy G, Yang H, Tong Y, Wang X. Sponge-like piezoelectric polymer films for scalable and integratable nanogenerators and self-powered electronic systems, Advanced Energy Materials 4 (7).
-
-
-
Mao, Y.1
Zhao, P.2
McConohy, G.3
Yang, H.4
Tong, Y.5
Wang, X.6
-
216
-
-
38349159877
-
Piezoelectric nanogenerator using cds nanowires
-
Lin, Y.-F., Song, J., Ding, Y., Lu, S.-Y., Wang, Z.L., Piezoelectric nanogenerator using cds nanowires. Appl Phys Lett, 92(2), 2008, 022105.
-
(2008)
Appl Phys Lett
, vol.92
, Issue.2
, pp. 022105
-
-
Lin, Y.-F.1
Song, J.2
Ding, Y.3
Lu, S.-Y.4
Wang, Z.L.5
-
217
-
-
65249147681
-
Zno- zns heterojunction and zns nanowire arrays for electricity generation
-
Lu, M.-Y., Song, J., Lu, M.-P., Lee, C.-Y., Chen, L.-J., Wang, Z.L., Zno- zns heterojunction and zns nanowire arrays for electricity generation. ACS Nano 3:2 (2009), 357–362.
-
(2009)
ACS Nano
, vol.3
, Issue.2
, pp. 357-362
-
-
Lu, M.-Y.1
Song, J.2
Lu, M.-P.3
Lee, C.-Y.4
Chen, L.-J.5
Wang, Z.L.6
-
218
-
-
77950837003
-
Gan nanowire arrays for high-output nanogenerators
-
Huang, C.-T., Song, J., Lee, W.-F., Ding, Y., Gao, Z., Hao, Y., et al. Gan nanowire arrays for high-output nanogenerators. J Am Chem Soc 132:13 (2010), 4766–4771.
-
(2010)
J Am Chem Soc
, vol.132
, Issue.13
, pp. 4766-4771
-
-
Huang, C.-T.1
Song, J.2
Lee, W.-F.3
Ding, Y.4
Gao, Z.5
Hao, Y.6
-
219
-
-
77957568537
-
Single-inn-nanowire nanogenerator with upto 1 v output voltage
-
Huang, C.-T., Song, J., Tsai, C.-M., Lee, W.-F., Lien, D.-H., Gao, Z., et al. Single-inn-nanowire nanogenerator with upto 1 v output voltage. Adv Mater 22:36 (2010), 4008–4013.
-
(2010)
Adv Mater
, vol.22
, Issue.36
, pp. 4008-4013
-
-
Huang, C.-T.1
Song, J.2
Tsai, C.-M.3
Lee, W.-F.4
Lien, D.-H.5
Gao, Z.6
-
220
-
-
84904709233
-
Self-powered cardiac pacemaker enabled by flexible single crystalline pmn-pt piezoelectric energy harvester
-
Hwang, G.-T., Park, H., Lee, J.-H., Oh, S., Park, K.-I., Byun, M., et al. Self-powered cardiac pacemaker enabled by flexible single crystalline pmn-pt piezoelectric energy harvester. Adv Mater 26:28 (2014), 4880–4887.
-
(2014)
Adv Mater
, vol.26
, Issue.28
, pp. 4880-4887
-
-
Hwang, G.-T.1
Park, H.2
Lee, J.-H.3
Oh, S.4
Park, K.-I.5
Byun, M.6
-
221
-
-
78650130636
-
Piezoelectric batio3 thin film nanogenerator on plastic substrates
-
Park, K.-I., Xu, S., Liu, Y., Hwang, G.-T., Kang, S.-J.L., Wang, Z.L., et al. Piezoelectric batio3 thin film nanogenerator on plastic substrates. Nano Lett 10:12 (2010), 4939–4943.
-
(2010)
Nano Lett
, vol.10
, Issue.12
, pp. 4939-4943
-
-
Park, K.-I.1
Xu, S.2
Liu, Y.3
Hwang, G.-T.4
Kang, S.-J.L.5
Wang, Z.L.6
-
222
-
-
85152027035
-
-
Flexible nanogenerators for energy harvesting and self-powered electronics, Advanced Materials.
-
Fan FR, Tang W, Wang ZL. Flexible nanogenerators for energy harvesting and self-powered electronics, Advanced Materials.
-
-
-
Fan, F.R.1
Tang, W.2
Wang, Z.L.3
-
223
-
-
81855192762
-
Recent advances in power generation through piezoelectric nanogenerators
-
Kumar, B., Kim, S.-W., Recent advances in power generation through piezoelectric nanogenerators. J Mater Chem 21:47 (2011), 18946–18958.
-
(2011)
J Mater Chem
, vol.21
, Issue.47
, pp. 18946-18958
-
-
Kumar, B.1
Kim, S.-W.2
-
224
-
-
84863116422
-
Piezoelectric nanogenerators harvesting ambient mechanical energy at the nanometer scale
-
Wang, X., Piezoelectric nanogenerators harvesting ambient mechanical energy at the nanometer scale. Nano Energy 1:1 (2012), 13–24.
-
(2012)
Nano Energy
, vol.1
, Issue.1
, pp. 13-24
-
-
Wang, X.1
-
225
-
-
84860480246
-
Energy harvesting based on semiconducting piezoelectric zno nanostructures
-
Kumar, B., Kim, S.-W., Energy harvesting based on semiconducting piezoelectric zno nanostructures. Nano Energy 1:3 (2012), 342–355.
-
(2012)
Nano Energy
, vol.1
, Issue.3
, pp. 342-355
-
-
Kumar, B.1
Kim, S.-W.2
-
226
-
-
84924743446
-
Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives
-
LináWang, Z., Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives. Faraday Discuss 176 (2014), 447–458.
-
(2014)
Faraday Discuss
, vol.176
, pp. 447-458
-
-
LináWang, Z.1
-
227
-
-
84946491060
-
Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications
-
Zhu, G., Peng, B., Chen, J., Jing, Q., Wang, Z.L., Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 14 (2015), 126–138.
-
(2015)
Nano Energy
, vol.14
, pp. 126-138
-
-
Zhu, G.1
Peng, B.2
Chen, J.3
Jing, Q.4
Wang, Z.L.5
-
228
-
-
84888868810
-
Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors
-
Wang, Z.L., Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS nano 7:11 (2013), 9533–9557.
-
(2013)
ACS nano
, vol.7
, Issue.11
, pp. 9533-9557
-
-
Wang, Z.L.1
-
229
-
-
84866307475
-
Triboelectric-generator-driven pulse electrodeposition for micropatterning
-
Zhu, G., Pan, C., Guo, W., Chen, C.-Y., Zhou, Y., Yu, R., et al. Triboelectric-generator-driven pulse electrodeposition for micropatterning. Nano Lett 12:9 (2012), 4960–4965.
-
(2012)
Nano Lett
, vol.12
, Issue.9
, pp. 4960-4965
-
-
Zhu, G.1
Pan, C.2
Guo, W.3
Chen, C.-Y.4
Zhou, Y.5
Yu, R.6
-
230
-
-
84870879691
-
Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics
-
Wang, S., Lin, L., Wang, Z.L., Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics. Nano Lett 12:12 (2012), 6339–6346.
-
(2012)
Nano Lett
, vol.12
, Issue.12
, pp. 6339-6346
-
-
Wang, S.1
Lin, L.2
Wang, Z.L.3
-
231
-
-
84862289254
-
Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
-
Fan, F.-R., Lin, L., Zhu, G., Wu, W., Zhang, R., Wang, Z.L., Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12:6 (2012), 3109–3114.
-
(2012)
Nano Lett
, vol.12
, Issue.6
, pp. 3109-3114
-
-
Fan, F.-R.1
Lin, L.2
Zhu, G.3
Wu, W.4
Zhang, R.5
Wang, Z.L.6
-
232
-
-
84878322287
-
Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up leds
-
Zhong, J., Zhong, Q., Fan, F., Zhang, Y., Wang, S., Hu, B., et al. Finger typing driven triboelectric nanogenerator and its use for instantaneously lighting up leds. Nano Energy 2:4 (2013), 491–497.
-
(2013)
Nano Energy
, vol.2
, Issue.4
, pp. 491-497
-
-
Zhong, J.1
Zhong, Q.2
Fan, F.3
Zhang, Y.4
Wang, S.5
Hu, B.6
-
233
-
-
84876541745
-
Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
-
Bai, P., Zhu, G., Lin, Z.-H., Jing, Q., Chen, J., Zhang, G., et al. Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions. ACS Nano 7:4 (2013), 3713–3719.
-
(2013)
ACS Nano
, vol.7
, Issue.4
, pp. 3713-3719
-
-
Bai, P.1
Zhu, G.2
Lin, Z.-H.3
Jing, Q.4
Chen, J.5
Zhang, G.6
-
234
-
-
84883868353
-
Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics
-
Zhu, G., Bai, P., Chen, J., Wang, Z.L., Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics. Nano Energy 2:5 (2013), 688–692.
-
(2013)
Nano Energy
, vol.2
, Issue.5
, pp. 688-692
-
-
Zhu, G.1
Bai, P.2
Chen, J.3
Wang, Z.L.4
-
235
-
-
84885390532
-
Triboelectric nanogenerator built inside shoe insole for harvesting walking energy
-
Hou, T.-C., Yang, Y., Zhang, H., Chen, J., Chen, L.-J., Wang, Z.L., Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2:5 (2013), 856–862.
-
(2013)
Nano Energy
, vol.2
, Issue.5
, pp. 856-862
-
-
Hou, T.-C.1
Yang, Y.2
Zhang, H.3
Chen, J.4
Chen, L.-J.5
Wang, Z.L.6
-
236
-
-
84891367534
-
Harvesting energy from the natural vibration of human walking
-
Yang, W., Chen, J., Zhu, G., Yang, J., Bai, P., Su, Y., et al. Harvesting energy from the natural vibration of human walking. ACS nano 7:12 (2013), 11317–11324.
-
(2013)
ACS nano
, vol.7
, Issue.12
, pp. 11317-11324
-
-
Yang, W.1
Chen, J.2
Zhu, G.3
Yang, J.4
Bai, P.5
Su, Y.6
-
237
-
-
84906875531
-
In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator
-
Zheng, Q., Shi, B., Fan, F., Wang, X., Yan, L., Yuan, W., et al. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator. Adv Mater 26:33 (2014), 5851–5856.
-
(2014)
Adv Mater
, vol.26
, Issue.33
, pp. 5851-5856
-
-
Zheng, Q.1
Shi, B.2
Fan, F.3
Wang, X.4
Yan, L.5
Yuan, W.6
-
238
-
-
84877248750
-
Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism
-
Wang, S., Lin, L., Xie, Y., Jing, Q., Niu, S., Wang, Z.L., Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism. Nano Lett 13:5 (2013), 2226–2233.
-
(2013)
Nano Lett
, vol.13
, Issue.5
, pp. 2226-2233
-
-
Wang, S.1
Lin, L.2
Xie, Y.3
Jing, Q.4
Niu, S.5
Wang, Z.L.6
-
239
-
-
84902375046
-
A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification
-
Zhu, G., Zhou, Y.S., Bai, P., Meng, X.S., Jing, Q., Chen, J., et al. A shape-adaptive thin-film-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification. Adv Mater 26:23 (2014), 3788–3796.
-
(2014)
Adv Mater
, vol.26
, Issue.23
, pp. 3788-3796
-
-
Zhu, G.1
Zhou, Y.S.2
Bai, P.3
Meng, X.S.4
Jing, Q.5
Chen, J.6
-
240
-
-
85151975839
-
-
Radial-arrayed rotary electrification for high performance triboelectric generator, Nature communications 5.
-
Zhu G, Chen J, Zhang T, Jing Q, Wang ZL. Radial-arrayed rotary electrification for high performance triboelectric generator, Nature communications 5.
-
-
-
Zhu, G.1
Chen, J.2
Zhang, T.3
Jing, Q.4
Wang, Z.L.5
-
241
-
-
84883248860
-
Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy
-
Xie, Y., Wang, S., Lin, L., Jing, Q., Lin, Z.-H., Niu, S., et al. Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy. Acs Nano 7:8 (2013), 7119–7125.
-
(2013)
Acs Nano
, vol.7
, Issue.8
, pp. 7119-7125
-
-
Xie, Y.1
Wang, S.2
Lin, L.3
Jing, Q.4
Lin, Z.-H.5
Niu, S.6
-
242
-
-
84879092885
-
Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy
-
Lin, L., Wang, S., Xie, Y., Jing, Q., Niu, S., Hu, Y., et al. Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy. Nano Lett 13:6 (2013), 2916–2923.
-
(2013)
Nano Lett
, vol.13
, Issue.6
, pp. 2916-2923
-
-
Lin, L.1
Wang, S.2
Xie, Y.3
Jing, Q.4
Niu, S.5
Hu, Y.6
-
243
-
-
84917682257
-
Multi-layered disk triboelectric nanogenerator for harvesting hydropower
-
Xie, Y., Wang, S., Niu, S., Lin, L., Jing, Q., Su, Y., et al. Multi-layered disk triboelectric nanogenerator for harvesting hydropower. Nano Energy 6 (2014), 129–136.
-
(2014)
Nano Energy
, vol.6
, pp. 129-136
-
-
Xie, Y.1
Wang, S.2
Niu, S.3
Lin, L.4
Jing, Q.5
Su, Y.6
-
244
-
-
84896393401
-
Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification
-
Zhou, Y.S., Zhu, G., Niu, S., Liu, Y., Bai, P., Jing, Q., et al. Nanometer resolution self-powered static and dynamic motion sensor based on micro-grated triboelectrification. Adv Mater 26:11 (2014), 1719–1724.
-
(2014)
Adv Mater
, vol.26
, Issue.11
, pp. 1719-1724
-
-
Zhou, Y.S.1
Zhu, G.2
Niu, S.3
Liu, Y.4
Bai, P.5
Jing, Q.6
-
245
-
-
84908569543
-
Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions
-
Jing, Q., Zhu, G., Wu, W., Bai, P., Xie, Y., Han, R.P., et al. Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions. Nano Energy 10 (2014), 305–312.
-
(2014)
Nano Energy
, vol.10
, pp. 305-312
-
-
Jing, Q.1
Zhu, G.2
Wu, W.3
Bai, P.4
Xie, Y.5
Han, R.P.6
-
246
-
-
84883228020
-
Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system
-
Yang, Y., Zhang, H., Chen, J., Jing, Q., Zhou, Y.S., Wen, X., et al. Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. Acs Nano 7:8 (2013), 7342–7351.
-
(2013)
Acs Nano
, vol.7
, Issue.8
, pp. 7342-7351
-
-
Yang, Y.1
Zhang, H.2
Chen, J.3
Jing, Q.4
Zhou, Y.S.5
Wen, X.6
-
247
-
-
84902144382
-
Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators
-
Niu, S., Liu, Y., Wang, S., Lin, L., Zhou, Y.S., Hu, Y., et al. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv Funct Mater 24:22 (2014), 3332–3340.
-
(2014)
Adv Funct Mater
, vol.24
, Issue.22
, pp. 3332-3340
-
-
Niu, S.1
Liu, Y.2
Wang, S.3
Lin, L.4
Zhou, Y.S.5
Hu, Y.6
-
248
-
-
84878842966
-
A paper-based nanogenerator as a power source and active sensor
-
Zhong, Q., Zhong, J., Hu, B., Hu, Q., Zhou, J., Wang, Z.L., A paper-based nanogenerator as a power source and active sensor. Energy Environ Sci 6:6 (2013), 1779–1784.
-
(2013)
Energy Environ Sci
, vol.6
, Issue.6
, pp. 1779-1784
-
-
Zhong, Q.1
Zhong, J.2
Hu, B.3
Hu, Q.4
Zhou, J.5
Wang, Z.L.6
-
249
-
-
84887009033
-
Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system
-
Yang, Y., Zhu, G., Zhang, H., Chen, J., Zhong, X., Lin, Z.-H., et al. Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS nano 7:10 (2013), 9461–9468.
-
(2013)
ACS nano
, vol.7
, Issue.10
, pp. 9461-9468
-
-
Yang, Y.1
Zhu, G.2
Zhang, H.3
Chen, J.4
Zhong, X.5
Lin, Z.-H.6
-
250
-
-
84886052589
-
A transparent single-friction-surface triboelectric generator and self-powered touch sensor
-
Meng, B., Tang, W., Too, Z.-h., Zhang, X., Han, M., Liu, W., et al. A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ Sci 6:11 (2013), 3235–3240.
-
(2013)
Energy Environ Sci
, vol.6
, Issue.11
, pp. 3235-3240
-
-
Meng, B.1
Tang, W.2
Too, Z.-H.3
Zhang, X.4
Han, M.5
Liu, W.6
-
251
-
-
84887014365
-
Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system
-
Yang, Y., Zhang, H., Lin, Z.-H., Zhou, Y.S., Jing, Q., Su, Y., et al. Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. Acs Nano 7:10 (2013), 9213–9222.
-
(2013)
Acs Nano
, vol.7
, Issue.10
, pp. 9213-9222
-
-
Yang, Y.1
Zhang, H.2
Lin, Z.-H.3
Zhou, Y.S.4
Jing, Q.5
Su, Y.6
-
252
-
-
84902254803
-
Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification
-
Zhu, G., Yang, W.Q., Zhang, T., Jing, Q., Chen, J., Zhou, Y.S., et al. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett 14:6 (2014), 3208–3213.
-
(2014)
Nano Lett
, vol.14
, Issue.6
, pp. 3208-3213
-
-
Zhu, G.1
Yang, W.Q.2
Zhang, T.3
Jing, Q.4
Chen, J.5
Zhou, Y.S.6
-
253
-
-
84886787971
-
Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors
-
Zhang, H., Yang, Y., Hou, T.-C., Su, Y., Hu, C., Wang, Z.L., Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy 2:5 (2013), 1019–1024.
-
(2013)
Nano Energy
, vol.2
, Issue.5
, pp. 1019-1024
-
-
Zhang, H.1
Yang, Y.2
Hou, T.-C.3
Su, Y.4
Hu, C.5
Wang, Z.L.6
-
254
-
-
85027931329
-
Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors
-
Yi, F., Lin, L., Niu, S., Yang, P.K., Wang, Z., Chen, J., et al. Stretchable-rubber-based triboelectric nanogenerator and its application as self-powered body motion sensors. Adv Funct Mater 25:24 (2015), 3688–3696.
-
(2015)
Adv Funct Mater
, vol.25
, Issue.24
, pp. 3688-3696
-
-
Yi, F.1
Lin, L.2
Niu, S.3
Yang, P.K.4
Wang, Z.5
Chen, J.6
-
255
-
-
84900013674
-
Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes
-
Wang, S., Xie, Y., Niu, S., Lin, L., Wang, Z.L., Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv Mater 26:18 (2014), 2818–2824.
-
(2014)
Adv Mater
, vol.26
, Issue.18
, pp. 2818-2824
-
-
Wang, S.1
Xie, Y.2
Niu, S.3
Lin, L.4
Wang, Z.L.5
-
256
-
-
85152077374
-
-
A triboelectric generator based on checker-like interdigital electrodes with a sandwiched pet thin film for harvesting sliding energy in all directions, Advanced Energy Materials 5 (1).
-
Guo H, Leng Q, He X, Wang M, Chen J, Hu C, Xi Y. A triboelectric generator based on checker-like interdigital electrodes with a sandwiched pet thin film for harvesting sliding energy in all directions, Advanced Energy Materials 5 (1).
-
-
-
Guo, H.1
Leng, Q.2
He, X.3
Wang, M.4
Chen, J.5
Hu, C.6
Xi, Y.7
-
257
-
-
84941051519
-
Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency
-
Xie, Y., Wang, S., Niu, S., Lin, L., Jing, Q., Yang, J., et al. Grating-structured freestanding triboelectric-layer nanogenerator for harvesting mechanical energy at 85% total conversion efficiency. Adv Mater 26:38 (2014), 6599–6607.
-
(2014)
Adv Mater
, vol.26
, Issue.38
, pp. 6599-6607
-
-
Xie, Y.1
Wang, S.2
Niu, S.3
Lin, L.4
Jing, Q.5
Yang, J.6
-
258
-
-
85151982552
-
-
A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices, Scientific reports 6.
-
Zhu Y, Yang B, Liu J, Wang X, Wang L, Chen X, Yang C. A flexible and biocompatible triboelectric nanogenerator with tunable internal resistance for powering wearable devices, Scientific reports 6.
-
-
-
Zhu, Y.1
Yang, B.2
Liu, J.3
Wang, X.4
Wang, L.5
Chen, X.6
Yang, C.7
-
259
-
-
85151992057
-
-
A novel triboelectric generator based on the combination of a waterwheel-like electrode with a spring steel plate for efficient harvesting of low-velocity rotational motion energy, Advanced Electronic Materials.
-
Liu G, Liu R, Guo H, Xi Y, Wei D, Hu C. A novel triboelectric generator based on the combination of a waterwheel-like electrode with a spring steel plate for efficient harvesting of low-velocity rotational motion energy, Advanced Electronic Materials.
-
-
-
Liu, G.1
Liu, R.2
Guo, H.3
Xi, Y.4
Wei, D.5
Hu, C.6
-
260
-
-
84992365090
-
Triboelectricity generation from vertically aligned carbon nanotube arrays
-
Oguntoye, M., Johnson, M., Pratt, L., Pesika, N.S., Triboelectricity generation from vertically aligned carbon nanotube arrays. ACS Appl Mater Interfaces 8:41 (2016), 27454–27457.
-
(2016)
ACS Appl Mater Interfaces
, vol.8
, Issue.41
, pp. 27454-27457
-
-
Oguntoye, M.1
Johnson, M.2
Pratt, L.3
Pesika, N.S.4
-
261
-
-
77950684790
-
Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms
-
Yang, B., Lee, C., Kee, W.L., Lim, S.P., Hybrid energy harvester based on piezoelectric and electromagnetic mechanisms. J Micro/Nanolithogr, MEMS, MOEMS, 9(2), 2010, 023002.
-
(2010)
J Micro/Nanolithogr, MEMS, MOEMS
, vol.9
, Issue.2
, pp. 023002
-
-
Yang, B.1
Lee, C.2
Kee, W.L.3
Lim, S.P.4
-
262
-
-
84898046041
-
Hm-eh-rt: hybrid multimodal energy harvesting from rotational and translational motions
-
Larkin, M., Tadesse, Y., Hm-eh-rt: hybrid multimodal energy harvesting from rotational and translational motions. Int J Smart Nano Mater 4:4 (2013), 257–285.
-
(2013)
Int J Smart Nano Mater
, vol.4
, Issue.4
, pp. 257-285
-
-
Larkin, M.1
Tadesse, Y.2
-
263
-
-
84895062006
-
Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator
-
Lee, J.-H., Lee, K.Y., Gupta, M.K., Kim, T.Y., Lee, D.-Y., Oh, J., et al. Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator. Adv Mater 26:5 (2014), 765–769.
-
(2014)
Adv Mater
, vol.26
, Issue.5
, pp. 765-769
-
-
Lee, J.-H.1
Lee, K.Y.2
Gupta, M.K.3
Kim, T.Y.4
Lee, D.-Y.5
Oh, J.6
-
264
-
-
70149091487
-
Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies
-
Xu, C., Wang, X., Wang, Z.L., Nanowire structured hybrid cell for concurrently scavenging solar and mechanical energies. J Am Chem Soc 131:16 (2009), 5866–5872.
-
(2009)
J Am Chem Soc
, vol.131
, Issue.16
, pp. 5866-5872
-
-
Xu, C.1
Wang, X.2
Wang, Z.L.3
-
265
-
-
77957916980
-
Nanowire- quantum dot hybridized cell for harvesting sound and solar energies, The
-
Lee, M., Yang, R., Li, C., Wang, Z.L., Nanowire- quantum dot hybridized cell for harvesting sound and solar energies, The. J Phys Chem Lett 1:19 (2010), 2929–2935.
-
(2010)
J Phys Chem Lett
, vol.1
, Issue.19
, pp. 2929-2935
-
-
Lee, M.1
Yang, R.2
Li, C.3
Wang, Z.L.4
-
266
-
-
84862741609
-
Optical fiber-based core-shell coaxially structured hybrid cells for self-powered nanosystems
-
Pan, C., Guo, W., Dong, L., Zhu, G., Wang, Z.L., Optical fiber-based core-shell coaxially structured hybrid cells for self-powered nanosystems. Adv Mater 24:25 (2012), 3356–3361.
-
(2012)
Adv Mater
, vol.24
, Issue.25
, pp. 3356-3361
-
-
Pan, C.1
Guo, W.2
Dong, L.3
Zhu, G.4
Wang, Z.L.5
-
267
-
-
84872872166
-
Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies
-
Yang, Y., Zhang, H., Zhu, G., Lee, S., Lin, Z.-H., Wang, Z.L., Flexible hybrid energy cell for simultaneously harvesting thermal, mechanical, and solar energies. ACS Nano 7:1 (2012), 785–790.
-
(2012)
ACS Nano
, vol.7
, Issue.1
, pp. 785-790
-
-
Yang, Y.1
Zhang, H.2
Zhu, G.3
Lee, S.4
Lin, Z.-H.5
Wang, Z.L.6
-
268
-
-
84876159488
-
Hybrid energy harvester based on nanopillar solar cells and pvdf nanogenerator
-
Lee, D.-Y., Kim, H., Li, H.-M., Jang, A.-R., Lim, Y.-D., Cha, S.N., et al. Hybrid energy harvester based on nanopillar solar cells and pvdf nanogenerator. Nanotechnology, 24(17), 2013, 175402.
-
(2013)
Nanotechnology
, vol.24
, Issue.17
, pp. 175402
-
-
Lee, D.-Y.1
Kim, H.2
Li, H.-M.3
Jang, A.-R.4
Lim, Y.-D.5
Cha, S.N.6
-
269
-
-
84885390794
-
Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies
-
Lee, S., Bae, S.-H., Lin, L., Ahn, S., Park, C., Kim, S.-W., et al. Flexible hybrid cell for simultaneously harvesting thermal and mechanical energies. Nano Energy 2:5 (2013), 817–825.
-
(2013)
Nano Energy
, vol.2
, Issue.5
, pp. 817-825
-
-
Lee, S.1
Bae, S.-H.2
Lin, L.3
Ahn, S.4
Park, C.5
Kim, S.-W.6
-
270
-
-
84875677368
-
Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics
-
Yang, Y., Zhang, H., Liu, Y., Lin, Z.-H., Lee, S., Lin, Z., et al. Silicon-based hybrid energy cell for self-powered electrodegradation and personal electronics. ACS Nano 7:3 (2013), 2808–2813.
-
(2013)
ACS Nano
, vol.7
, Issue.3
, pp. 2808-2813
-
-
Yang, Y.1
Zhang, H.2
Liu, Y.3
Lin, Z.-H.4
Lee, S.5
Lin, Z.6
-
271
-
-
84892870630
-
A nanogenerator for harvesting airflow energy and light energy
-
Guo, H., He, X., Zhong, J., Zhong, Q., Leng, Q., Hu, C., et al. A nanogenerator for harvesting airflow energy and light energy. J Mater Chem A 2:7 (2014), 2079–2087.
-
(2014)
J Mater Chem A
, vol.2
, Issue.7
, pp. 2079-2087
-
-
Guo, H.1
He, X.2
Zhong, J.3
Zhong, Q.4
Leng, Q.5
Hu, C.6
-
272
-
-
84896767413
-
Complementary power output characteristics of electromagnetic generators and triboelectric generators
-
Fan, F.-R., Tang, W., Yao, Y., Luo, J., Zhang, C., Wang, Z.L., Complementary power output characteristics of electromagnetic generators and triboelectric generators. Nanotechnology, 25(13), 2014, 135402.
-
(2014)
Nanotechnology
, vol.25
, Issue.13
, pp. 135402
-
-
Fan, F.-R.1
Tang, W.2
Yao, Y.3
Luo, J.4
Zhang, C.5
Wang, Z.L.6
-
273
-
-
84902203625
-
Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy
-
Zhang, C., Tang, W., Han, C., Fan, F., Wang, Z.L., Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy. Adv Mater 26:22 (2014), 3580–3591.
-
(2014)
Adv Mater
, vol.26
, Issue.22
, pp. 3580-3591
-
-
Zhang, C.1
Tang, W.2
Han, C.3
Fan, F.4
Wang, Z.L.5
-
274
-
-
84904722824
-
Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting
-
Hu, Y., Yang, J., Niu, S., Wu, W., Wang, Z.L., Hybridizing triboelectrification and electromagnetic induction effects for high-efficient mechanical energy harvesting. ACS Nano 8:7 (2014), 7442–7450.
-
(2014)
ACS Nano
, vol.8
, Issue.7
, pp. 7442-7450
-
-
Hu, Y.1
Yang, J.2
Niu, S.3
Wu, W.4
Wang, Z.L.5
-
275
-
-
84928978915
-
Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors
-
Wang, X., Wang, S., Yang, Y., Wang, Z.L., Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors. ACS nano 9:4 (2015), 4553–4562.
-
(2015)
ACS nano
, vol.9
, Issue.4
, pp. 4553-4562
-
-
Wang, X.1
Wang, S.2
Yang, Y.3
Wang, Z.L.4
-
276
-
-
84873670854
-
Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation
-
Yang, Y., Zhang, H., Lee, S., Kim, D., Hwang, W., Wang, Z.L., Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation. Nano Lett 13:2 (2013), 803–808.
-
(2013)
Nano Lett
, vol.13
, Issue.2
, pp. 803-808
-
-
Yang, Y.1
Zhang, H.2
Lee, S.3
Kim, D.4
Hwang, W.5
Wang, Z.L.6
-
277
-
-
85027931032
-
Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing
-
Zi, Y., Lin, L., Wang, J., Wang, S., Chen, J., Fan, X., et al. Triboelectric-pyroelectric-piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv Mater 27:14 (2015), 2340–2347.
-
(2015)
Adv Mater
, vol.27
, Issue.14
, pp. 2340-2347
-
-
Zi, Y.1
Lin, L.2
Wang, J.3
Wang, S.4
Chen, J.5
Fan, X.6
-
278
-
-
84904559899
-
Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators
-
Bai, P., Zhu, G., Zhou, Y.S., Wang, S., Ma, J., Zhang, G., et al. Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators. Nano Res 7:7 (2014), 990–997.
-
(2014)
Nano Res
, vol.7
, Issue.7
, pp. 990-997
-
-
Bai, P.1
Zhu, G.2
Zhou, Y.S.3
Wang, S.4
Ma, J.5
Zhang, G.6
-
279
-
-
84886998303
-
r-shaped hybrid nanogenerator with enhanced piezoelectricity
-
Han, M., Zhang, X.-S., Meng, B., Liu, W., Tang, W., Sun, X., et al. r-shaped hybrid nanogenerator with enhanced piezoelectricity. ACS Nano 7:10 (2013), 8554–8560.
-
(2013)
ACS Nano
, vol.7
, Issue.10
, pp. 8554-8560
-
-
Han, M.1
Zhang, X.-S.2
Meng, B.3
Liu, W.4
Tang, W.5
Sun, X.6
-
280
-
-
84908406313
-
3d fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor
-
Li, X., Lin, Z.-H., Cheng, G., Wen, X., Liu, Y., Niu, S., et al. 3d fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor. ACS Nano 8:10 (2014), 10674–10681.
-
(2014)
ACS Nano
, vol.8
, Issue.10
, pp. 10674-10681
-
-
Li, X.1
Lin, Z.-H.2
Cheng, G.3
Wen, X.4
Liu, Y.5
Niu, S.6
-
281
-
-
77956987295
-
Magnetoelectric composites
-
Srinivasan, G., Magnetoelectric composites. Annu Rev Mater Res 40 (2010), 153–178.
-
(2010)
Annu Rev Mater Res
, vol.40
, pp. 153-178
-
-
Srinivasan, G.1
-
282
-
-
4344714069
-
Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites
-
Bayrashev, A., Robbins, W.P., Ziaie, B., Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites. Sens Actuators A: Phys 114:2 (2004), 244–249.
-
(2004)
Sens Actuators A: Phys
, vol.114
, Issue.2
, pp. 244-249
-
-
Bayrashev, A.1
Robbins, W.P.2
Ziaie, B.3
-
283
-
-
51649101733
-
Vibration energy harvesting by magnetostrictive material
-
Wang, L., Yuan, F., Vibration energy harvesting by magnetostrictive material. Smart Mater Struct, 17(4), 2008, 045009.
-
(2008)
Smart Mater Struct
, vol.17
, Issue.4
, pp. 045009
-
-
Wang, L.1
Yuan, F.2
-
284
-
-
51749098957
-
Multimodal system for harvesting magnetic and mechanical energy
-
Dong, S., Zhai, J., Li, J., Viehland, D., Priya, S., Multimodal system for harvesting magnetic and mechanical energy. Appl Phys Lett, 93(10), 2008, 103511.
-
(2008)
Appl Phys Lett
, vol.93
, Issue.10
, pp. 103511
-
-
Dong, S.1
Zhai, J.2
Li, J.3
Viehland, D.4
Priya, S.5
-
285
-
-
84867798598
-
A magnetoelectric generator for energy harvesting from the vibration of magnetic levitation
-
Zhu, Y., Zu, J.W., A magnetoelectric generator for energy harvesting from the vibration of magnetic levitation. IEEE Trans Magn 48:11 (2012), 3344–3347.
-
(2012)
IEEE Trans Magn
, vol.48
, Issue.11
, pp. 3344-3347
-
-
Zhu, Y.1
Zu, J.W.2
-
286
-
-
84856723225
-
A bi-axial magnetoelectric vibration energy harvester
-
Moss, S.D., McLeod, J.E., Powlesland, I.G., Galea, S.C., A bi-axial magnetoelectric vibration energy harvester. Sens Actuators A: Phys 175 (2012), 165–168.
-
(2012)
Sens Actuators A: Phys
, vol.175
, pp. 165-168
-
-
Moss, S.D.1
McLeod, J.E.2
Powlesland, I.G.3
Galea, S.C.4
-
287
-
-
84890473811
-
A two-dimensional broadband vibration energy harvester using magnetoelectric transducer
-
Yang, J., Wen, Y., Li, P., Yue, X., Yu, Q., Bai, X., A two-dimensional broadband vibration energy harvester using magnetoelectric transducer. Appl Phys Lett, 103(24), 2013, 243903.
-
(2013)
Appl Phys Lett
, vol.103
, Issue.24
, pp. 243903
-
-
Yang, J.1
Wen, Y.2
Li, P.3
Yue, X.4
Yu, Q.5
Bai, X.6
-
288
-
-
84887026746
-
A low frequency vibration energy harvester using magnetoelectric laminate composite
-
Ju, S., Chae, S.H., Choi, Y., Lee, S., Lee, H.W., Ji, C.-H., A low frequency vibration energy harvester using magnetoelectric laminate composite. Smart Mater Struct, 22(11), 2013, 115037.
-
(2013)
Smart Mater Struct
, vol.22
, Issue.11
, pp. 115037
-
-
Ju, S.1
Chae, S.H.2
Choi, Y.3
Lee, S.4
Lee, H.W.5
Ji, C.-H.6
-
289
-
-
79951673221
-
Energy harvesting from mechanical vibrations using multiple magnetostrictive/piezoelectric composite transducers
-
Dai, X., Wen, Y., Li, P., Yang, J., Li, M., Energy harvesting from mechanical vibrations using multiple magnetostrictive/piezoelectric composite transducers. Sens Actuators A: Phys 166:1 (2011), 94–101.
-
(2011)
Sens Actuators A: Phys
, vol.166
, Issue.1
, pp. 94-101
-
-
Dai, X.1
Wen, Y.2
Li, P.3
Yang, J.4
Li, M.5
-
290
-
-
67649482443
-
A piezomagnetoelastic structure for broadband vibration energy harvesting
-
Erturk, A., Hoffmann, J., Inman, D., A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys Lett, 94(25), 2009, 254102.
-
(2009)
Appl Phys Lett
, vol.94
, Issue.25
, pp. 254102
-
-
Erturk, A.1
Hoffmann, J.2
Inman, D.3
-
291
-
-
70350738294
-
Reversible hysteresis for broadband magnetopiezoelastic energy harvesting
-
Stanton, S.C., McGehee, C.C., Mann, B.P., Reversible hysteresis for broadband magnetopiezoelastic energy harvesting. Appl Phys Lett, 95(17), 2009, 174103.
-
(2009)
Appl Phys Lett
, vol.95
, Issue.17
, pp. 174103
-
-
Stanton, S.C.1
McGehee, C.C.2
Mann, B.P.3
-
292
-
-
58149467939
-
Issues in mathematical modeling of piezoelectric energy harvesters
-
Erturk, A., Inman, D.J., Issues in mathematical modeling of piezoelectric energy harvesters. Smart Mater Struct, 17(6), 2008, 065016.
-
(2008)
Smart Mater Struct
, vol.17
, Issue.6
, pp. 065016
-
-
Erturk, A.1
Inman, D.J.2
-
293
-
-
85151916928
-
-
Triboelectric Nanogenerators, Springer International Publishing.
-
Wang ZL, Lin L, Chen J, Niu S, Zi Y. Triboelectric Nanogenerators, Springer International Publishing, 2016.
-
(2016)
-
-
Wang, Z.L.1
Lin, L.2
Chen, J.3
Niu, S.4
Zi, Y.5
-
294
-
-
84891584678
-
Piezoelectric energy harvesting
-
John Wiley & Sons Hoboken
-
Erturk, A., Inman, D.J., Piezoelectric energy harvesting. 2011, John Wiley & Sons, Hoboken.
-
(2011)
-
-
Erturk, A.1
Inman, D.J.2
-
295
-
-
84055165131
-
Energy harvesting systems: principles, modeling and applications
-
Springer Science & Business Media New York
-
Kaźmierski, T.J., Beeby, S., Energy harvesting systems: principles, modeling and applications. 2010, Springer Science & Business Media, New York.
-
(2010)
-
-
Kaźmierski, T.J.1
Beeby, S.2
-
296
-
-
79953657486
-
Modeling and experimental verification of low-frequency mems energy harvesting from ambient vibrations
-
Miller, L.M., Halvorsen, E., Dong, T., Wright, P.K., Modeling and experimental verification of low-frequency mems energy harvesting from ambient vibrations. J Micromech Microeng, 21(4), 2011, 045029.
-
(2011)
J Micromech Microeng
, vol.21
, Issue.4
, pp. 045029
-
-
Miller, L.M.1
Halvorsen, E.2
Dong, T.3
Wright, P.K.4
-
297
-
-
67650450645
-
New physical model for thermoelectric generators
-
Freunek, M., Müller, M., Ungan, T., Walker, W., Reindl, L.M., New physical model for thermoelectric generators. J Electron Mater 38:7 (2009), 1214–1220.
-
(2009)
J Electron Mater
, vol.38
, Issue.7
, pp. 1214-1220
-
-
Freunek, M.1
Müller, M.2
Ungan, T.3
Walker, W.4
Reindl, L.M.5
-
298
-
-
77953525040
-
Equivalent circuit modeling of piezoelectric energy harvesters
-
Yang, Y., Tang, L., Equivalent circuit modeling of piezoelectric energy harvesters. J Intell Mater Syst Struct 20:18 (2009), 2223–2235.
-
(2009)
J Intell Mater Syst Struct
, vol.20
, Issue.18
, pp. 2223-2235
-
-
Yang, Y.1
Tang, L.2
-
299
-
-
58049102028
-
A general equivalent circuit model for piezoelectric generators
-
Elvin, N.G., Elvin, A.A., A general equivalent circuit model for piezoelectric generators. J Intell Mater Syst Struct 20:1 (2009), 3–9.
-
(2009)
J Intell Mater Syst Struct
, vol.20
, Issue.1
, pp. 3-9
-
-
Elvin, N.G.1
Elvin, A.A.2
-
300
-
-
33947119725
-
On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages, Smart
-
Guan, M., Liao, W., On the efficiencies of piezoelectric energy harvesting circuits towards storage device voltages, Smart. Mater Struct, 16(2), 2007, 498.
-
(2007)
Mater Struct
, vol.16
, Issue.2
, pp. 498
-
-
Guan, M.1
Liao, W.2
-
301
-
-
0036709495
-
Adaptive piezoelectric energy harvesting circuit for wireless remote power supply
-
Ottman, G.K., Hofmann, H.F., Bhatt, A.C., Lesieutre, G.A., Adaptive piezoelectric energy harvesting circuit for wireless remote power supply. IEEE Trans Power Electron 17:5 (2002), 669–676.
-
(2002)
IEEE Trans Power Electron
, vol.17
, Issue.5
, pp. 669-676
-
-
Ottman, G.K.1
Hofmann, H.F.2
Bhatt, A.C.3
Lesieutre, G.A.4
-
302
-
-
36448948674
-
An improved analysis of the sshi interface in piezoelectric energy harvesting
-
Shu, Y., Lien, I., Wu, W., An improved analysis of the sshi interface in piezoelectric energy harvesting. Smart Mater Struct, 16(6), 2007, 2253.
-
(2007)
Smart Mater Struct
, vol.16
, Issue.6
, pp. 2253
-
-
Shu, Y.1
Lien, I.2
Wu, W.3
|