-
2
-
-
35348984409
-
-
Tian B. Z. Zheng. X. L. Kempa T. J. Fang Y. Yu. N. F. Yu. G. H. Huang J. L. Lieber. C. M. Nature (London) 2007, 449, 885.
-
(2007)
Nature (London)
, vol.449
, pp. 885
-
-
Tian, B.Z.1
Zheng., X.L.2
Kempa, T.J.3
Fang, Y.4
Yu., N.F.5
Yu., G.H.6
Huang, J.L.7
Lieber., C.M.8
-
5
-
-
0029358852
-
-
Halls J. J. M. Walsh C. A. Greenham N. C. Marseglia E. A. Friend R. H. Moratti S. C. Holmes A. B. Nature (London) 1995, 376, 498.
-
(1995)
Nature (London)
, vol.376
, pp. 498
-
-
Halls, J.J.M.1
Walsh, C.A.2
Greenham, N.C.3
Marseglia, E.A.4
Friend, R.H.5
Moratti, S.C.6
Holmes, A.B.7
-
10
-
-
38749113719
-
-
Wang Z. L. Sci. Am. 2008, 298, 82.
-
(2008)
Sci. Am
, vol.298
, pp. 82
-
-
Wang, Z.L.1
-
15
-
-
0041305911
-
-
Greene L. Matt L. Joshua G. Franklin K. Justin C. J. Zhang Y. Richard J. S. Yang P. Angew. Chem., Int. Ed. 2003, 42, 3031.
-
(2003)
Angew. Chem., Int. Ed
, vol.42
, pp. 3031
-
-
Greene, L.1
Matt, L.2
Joshua, G.3
Franklin, K.4
Justin, C.J.5
Zhang, Y.6
Richard, J.S.7
Yang, P.8
-
16
-
-
19744366748
-
-
Wang X. D. Song J. H. Li P. Ryou J. H. Dupuis R. D. Summers C. J. Wang Z. L. J. Am. Chem. Soc. 2005, 127, 7920.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 7920
-
-
Wang, X.D.1
Song, J.H.2
Li, P.3
Ryou, J.H.4
Dupuis, R.D.5
Summers, C.J.6
Wang, Z.L.7
-
17
-
-
61449119091
-
-
Lee S. H. Minegishi T. Park. J. S. Park S. H. Ha J. Lee. H. Lee H. Ahn S. Kim J. Jeon H. Nano Lett. 2008, 8, 2419.
-
(2008)
Nano Lett
, vol.8
, pp. 2419
-
-
Lee, S.H.1
Minegishi, T.2
Park., J.S.3
Park, S.H.4
Ha, J.5
Lee, H.6
Lee, H.7
Ahn, S.8
Kim, J.9
Jeon, H.10
-
22
-
-
70149113993
-
-
The propagation of ultrasonic wave is most effective in liquid or solid, although it works in air as well. We used water to enhance the interaction between the ultrasonic wave and the NG. The frequency of the ultrasonic wave was 41 kHz, which was far from the resonance frequency of the nanowires that was typically on the order of MHz range
-
The propagation of ultrasonic wave is most effective in liquid or solid, although it works in air as well. We used water to enhance the interaction between the ultrasonic wave and the NG. The frequency of the ultrasonic wave was 41 kHz, which was far from the resonance frequency of the nanowires that was typically on the order of MHz range.
-
-
-
-
23
-
-
43049105732
-
-
2 are typically 5-20 mV and 0.01-1 μ A (respectively, depending on the size of the nanowires and excitation strength of the ultrasonic wave. The output of the NG is much smaller than that of a solar cell with the same area and under conventional conditions
-
2 are typically 5-20 mV and 0.01-1 μ A (Liu. J. Fei. P. Zhou. J. Tummala R. Wang Z. L. Appl. Phys. Lett. 2008, 92, 173105.), respectively, depending on the size of the nanowires and excitation strength of the ultrasonic wave. The output of the NG is much smaller than that of a solar cell with the same area and under conventional conditions.
-
(2008)
Appl. Phys. Lett
, vol.92
, pp. 173105
-
-
Liu, J.1
Fei, P.2
Zhou, J.3
Tummala, R.4
Wang, Z.L.5
-
24
-
-
38749149096
-
-
Liu. J. Fei P. Song. J. H. Wang X. D. Lao. C. S. Tummala R. Wang Z. L. Nano Lett. 2008, 8, 328.
-
(2008)
Nano Lett
, vol.8
, pp. 328
-
-
Liu, J.1
Fei, P.2
Song., J.H.3
Wang, X.D.4
Lao., C.S.5
Tummala, R.6
Wang, Z.L.7
-
25
-
-
70149115076
-
-
The fed in electrons are expected to remain at the vicinity of the Schottky barrier if it is an ideal high barrier without charge leakage. This would maintain the local Fermi level. In practice, tunneling effect and thermionic emission exist at the Schottky barrier, resulting in the leakage of the fed in electrons. Thus, the Fermi level of the NG remains only if there are continuous electrons being fed in from S.C
-
The fed in electrons are expected to remain at the vicinity of the Schottky barrier if it is an ideal high barrier without charge leakage. This would maintain the local Fermi level. In practice, tunneling effect and thermionic emission exist at the Schottky barrier, resulting in the leakage of the fed in electrons. Thus, the Fermi level of the NG remains only if there are continuous electrons being fed in from S.C.
-
-
-
-
26
-
-
84869634632
-
-
The power required to raise the output voltage of the NG is subsidized by the SC. This provides a practical approach for raising the output voltage of a NG using the "pumping" effect of S.C
-
The power required to raise the output voltage of the NG is subsidized by the SC. This provides a practical approach for raising the output voltage of a NG using the "pumping" effect of S.C.
-
-
-
-
30
-
-
33646391939
-
-
Wang X. D. Song J. H. Summers C. J. Ryou J. H. Li P. Dupuis R. D. Wang Z. L. J. Phys. Chem. B 2006, 110, 7720.
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 7720
-
-
Wang, X.D.1
Song, J.H.2
Summers, C.J.3
Ryou, J.H.4
Li, P.5
Dupuis, R.D.6
Wang, Z.L.7
|