메뉴 건너뛰기




Volumn 53, Issue , 2018, Pages 12-19

Production of chemicals using dynamic control of metabolic fluxes

Author keywords

[No Author keywords available]

Indexed keywords

CELL PROLIFERATION; CELLS; COMPETITION; CYTOLOGY; MEDICAL APPLICATIONS; METABOLISM; METABOLITES;

EID: 85034039076     PISSN: 09581669     EISSN: 18790429     Source Type: Journal    
DOI: 10.1016/j.copbio.2017.10.009     Document Type: Review
Times cited : (102)

References (72)
  • 1
    • 84902154110 scopus 로고    scopus 로고
    • Multivariate modular metabolic engineering for pathway and strain optimization
    • Biggs, B.W., et al. Multivariate modular metabolic engineering for pathway and strain optimization. Curr Opin Biotechnol 29 (2014), 156–162.
    • (2014) Curr Opin Biotechnol , vol.29 , pp. 156-162
    • Biggs, B.W.1
  • 2
    • 79960414910 scopus 로고    scopus 로고
    • Systems metabolic engineering for chemicals and materials
    • Lee, J.W., et al. Systems metabolic engineering for chemicals and materials. Trends Biotechnol 29 (2011), 370–378.
    • (2011) Trends Biotechnol , vol.29 , pp. 370-378
    • Lee, J.W.1
  • 3
    • 84909619164 scopus 로고    scopus 로고
    • Engineered biosynthesis of medium-chain esters in Escherichia coli
    • Tai, Y.S., Xiong, M., Zhang, K., Engineered biosynthesis of medium-chain esters in Escherichia coli. Metab Eng 27 (2015), 20–28.
    • (2015) Metab Eng , vol.27 , pp. 20-28
    • Tai, Y.S.1    Xiong, M.2    Zhang, K.3
  • 4
    • 84902186055 scopus 로고    scopus 로고
    • Scalable production of mechanically tunable block polymers from sugar
    • Xiong, M., et al. Scalable production of mechanically tunable block polymers from sugar. Proc Natl Acad Sci 111 (2014), 8357–8362.
    • (2014) Proc Natl Acad Sci , vol.111 , pp. 8357-8362
    • Xiong, M.1
  • 5
    • 84924657793 scopus 로고    scopus 로고
    • Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica
    • Qiao, K., et al. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metab Eng 29 (2015), 56–65.
    • (2015) Metab Eng , vol.29 , pp. 56-65
    • Qiao, K.1
  • 6
    • 84905668376 scopus 로고    scopus 로고
    • Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
    • This paper presents a dual transcriptional regulation strategy to control both the malonyl-CoA source pathway and malonyl-CoA sink pathway. The engineering of the malonyl-CoA upregulating promoter and malonyl-CoA down-regulating promoter outputs an oscillatory pattern of malonyl-CoA concentration profile. The engineered cell adapts to the changing environment by dynamically compensating the gene expression of the malonyl-CoA source pathway and malonyl-CoA sink pathway.
    • Xu, P., et al. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci U S A 111 (2014), 11299–11304 This paper presents a dual transcriptional regulation strategy to control both the malonyl-CoA source pathway and malonyl-CoA sink pathway. The engineering of the malonyl-CoA upregulating promoter and malonyl-CoA down-regulating promoter outputs an oscillatory pattern of malonyl-CoA concentration profile. The engineered cell adapts to the changing environment by dynamically compensating the gene expression of the malonyl-CoA source pathway and malonyl-CoA sink pathway.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 11299-11304
    • Xu, P.1
  • 7
    • 84886257717 scopus 로고    scopus 로고
    • Microbial biosynthesis of the anticoagulant precursor 4-hydroxycoumarin
    • Lin, Y., et al. Microbial biosynthesis of the anticoagulant precursor 4-hydroxycoumarin. Nat Commun, 4, 2013, 2603.
    • (2013) Nat Commun , vol.4 , pp. 2603
    • Lin, Y.1
  • 8
    • 84922067763 scopus 로고    scopus 로고
    • A microbial biomanufacturing platform for natural and semisynthetic opioids
    • Thodey, K., Galanie, S., Smolke, C.D., A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat Chem Biol 10 (2014), 837–844.
    • (2014) Nat Chem Biol , vol.10 , pp. 837-844
    • Thodey, K.1    Galanie, S.2    Smolke, C.D.3
  • 9
    • 84870674137 scopus 로고    scopus 로고
    • Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production
    • Tai, M., Stephanopoulos, G., Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15 (2013), 1–9.
    • (2013) Metab Eng , vol.15 , pp. 1-9
    • Tai, M.1    Stephanopoulos, G.2
  • 10
    • 84869420041 scopus 로고    scopus 로고
    • Synthetic biology and metabolic engineering
    • This paper summarizes the difference and similarity of metabolic engineering and synthetic biology. The viewpoint is important to help us understand the core concepts of metabolic pathway engineering.
    • Stephanopoulos, G., Synthetic biology and metabolic engineering. ACS Synthetic Biol 1 (2012), 514–525 This paper summarizes the difference and similarity of metabolic engineering and synthetic biology. The viewpoint is important to help us understand the core concepts of metabolic pathway engineering.
    • (2012) ACS Synthetic Biol , vol.1 , pp. 514-525
    • Stephanopoulos, G.1
  • 11
    • 84859950774 scopus 로고    scopus 로고
    • ATP drives direct photosynthetic production of 1-butanol in cyanobacteria
    • Lan, E.I., Liao, J.C., ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci 109 (2012), 6018–6023.
    • (2012) Proc Natl Acad Sci , vol.109 , pp. 6018-6023
    • Lan, E.I.1    Liao, J.C.2
  • 12
    • 78650595035 scopus 로고    scopus 로고
    • Manipulating redox and ATP balancing for improved production of succinate in E. coli
    • Singh, A., et al. Manipulating redox and ATP balancing for improved production of succinate in E. coli. Metab Eng, 2011, 76–81.
    • (2011) Metab Eng , pp. 76-81
    • Singh, A.1
  • 13
    • 85012009458 scopus 로고    scopus 로고
    • Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism
    • Qiao, K., et al. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat Biotechnol 35 (2017), 173–177.
    • (2017) Nat Biotechnol , vol.35 , pp. 173-177
    • Qiao, K.1
  • 14
    • 85018602315 scopus 로고    scopus 로고
    • Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica
    • Xu, P., Qiao, K., Stephanopoulos, G., Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnol Bioeng 114 (2017), 1521–1530.
    • (2017) Biotechnol Bioeng , vol.114 , pp. 1521-1530
    • Xu, P.1    Qiao, K.2    Stephanopoulos, G.3
  • 15
    • 84877804801 scopus 로고    scopus 로고
    • Modular optimization of multi-gene pathways for fatty acids production in E. coli
    • Xu, P., et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat Commun, 4, 2013, 1409.
    • (2013) Nat Commun , vol.4 , pp. 1409
    • Xu, P.1
  • 16
    • 77956371200 scopus 로고    scopus 로고
    • Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control
    • Leonard, E., et al. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci U S A 107 (2010), 13654–13659.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 13654-13659
    • Leonard, E.1
  • 17
    • 84877292750 scopus 로고    scopus 로고
    • Spanning high-dimensional expression space using ribosome-binding site combinatorics
    • e98-e98
    • Zelcbuch, L., et al. Spanning high-dimensional expression space using ribosome-binding site combinatorics. Nucleic Acids Res, 41, 2013 e98-e98.
    • (2013) Nucleic Acids Res , vol.41
    • Zelcbuch, L.1
  • 18
    • 85021256930 scopus 로고    scopus 로고
    • Homogenizing bacterial cell factories: analysis and engineering of phenotypic heterogeneity
    • Binder, D., et al. Homogenizing bacterial cell factories: analysis and engineering of phenotypic heterogeneity. Metab Eng 42:Suppl. C (2017), 145–156.
    • (2017) Metab Eng , vol.42 , pp. 145-156
    • Binder, D.1
  • 19
    • 85030318783 scopus 로고    scopus 로고
    • Engineering microbial metabolite dynamics and heterogeneity
    • Schmitz, A.C., Hartline, C.J., Zhang, F., Engineering microbial metabolite dynamics and heterogeneity. Biotechnol J, 12, 2017, 10.1002/biot.201700422.
    • (2017) Biotechnol J , vol.12
    • Schmitz, A.C.1    Hartline, C.J.2    Zhang, F.3
  • 20
    • 85030117495 scopus 로고    scopus 로고
    • Elucidation of complexity and prediction of interactions in microbial communities
    • Zuñiga, C., Zaramela, L., Zengler, K., Elucidation of complexity and prediction of interactions in microbial communities. Microb Biotechnol 10 (2017), 1500–1522.
    • (2017) Microb Biotechnol , vol.10 , pp. 1500-1522
    • Zuñiga, C.1    Zaramela, L.2    Zengler, K.3
  • 21
    • 77955852574 scopus 로고    scopus 로고
    • A model for improving microbial biofuel production using a synthetic feedback loop
    • Dunlop, M., Keasling, J., Mukhopadhyay, A., A model for improving microbial biofuel production using a synthetic feedback loop. Syst Synth Biol 4 (2010), 95–104.
    • (2010) Syst Synth Biol , vol.4 , pp. 95-104
    • Dunlop, M.1    Keasling, J.2    Mukhopadhyay, A.3
  • 22
    • 84945944020 scopus 로고    scopus 로고
    • Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways
    • Cress, B.F., et al. Sensitive cells: enabling tools for static and dynamic control of microbial metabolic pathways. Curr Opin Biotechnol 36:Suppl. C (2015), 205–214.
    • (2015) Curr Opin Biotechnol , vol.36 , pp. 205-214
    • Cress, B.F.1
  • 23
    • 84921479351 scopus 로고    scopus 로고
    • Engineering metabolism through dynamic control
    • Venayak, N., et al. Engineering metabolism through dynamic control. Curr Opin Biotechnol 34:Suppl. C (2015), 142–152.
    • (2015) Curr Opin Biotechnol , vol.34 , pp. 142-152
    • Venayak, N.1
  • 24
    • 84859768457 scopus 로고    scopus 로고
    • Parts plus pipes: synthetic biology approaches to metabolic engineering
    • Boyle, P.M., Silver, P.A., Parts plus pipes: synthetic biology approaches to metabolic engineering. Metab Eng 14 (2012), 223–232.
    • (2012) Metab Eng , vol.14 , pp. 223-232
    • Boyle, P.M.1    Silver, P.A.2
  • 25
    • 84902668956 scopus 로고    scopus 로고
    • Allosteric regulation of phosphofructokinase controls the emergence of glycolytic oscillations in isolated yeast cells
    • Gustavsson, A.-K., et al. Allosteric regulation of phosphofructokinase controls the emergence of glycolytic oscillations in isolated yeast cells. FEBS J 281 (2014), 2784–2793.
    • (2014) FEBS J , vol.281 , pp. 2784-2793
    • Gustavsson, A.-K.1
  • 26
    • 84974806812 scopus 로고    scopus 로고
    • Translation initiation is controlled by RNA folding kinetics via a ribosome drafting mechanism
    • Espah Borujeni, A., Salis, H.M., Translation initiation is controlled by RNA folding kinetics via a ribosome drafting mechanism. J Am Chem Soc 138 (2016), 7016–7023.
    • (2016) J Am Chem Soc , vol.138 , pp. 7016-7023
    • Espah Borujeni, A.1    Salis, H.M.2
  • 27
    • 0034688174 scopus 로고    scopus 로고
    • Construction of a genetic toggle switch in Escherichia coli
    • Gardner, T., Cantor, C., Collins, J., Construction of a genetic toggle switch in Escherichia coli. Nature 403 (2000), 339–342.
    • (2000) Nature , vol.403 , pp. 339-342
    • Gardner, T.1    Cantor, C.2    Collins, J.3
  • 28
    • 0034688173 scopus 로고    scopus 로고
    • A synthetic oscillatory network of transcriptional regulators
    • Elowitz, M.B., Leibler, S., A synthetic oscillatory network of transcriptional regulators. Nature 403 (2000), 335–338.
    • (2000) Nature , vol.403 , pp. 335-338
    • Elowitz, M.B.1    Leibler, S.2
  • 29
    • 18344381476 scopus 로고    scopus 로고
    • A synthetic gene-metabolic oscillator
    • Fung, E., et al. A synthetic gene-metabolic oscillator. Nature 435 (2005), 118–122.
    • (2005) Nature , vol.435 , pp. 118-122
    • Fung, E.1
  • 30
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • Shen-Orr, S., et al. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genetics 31 (2002), 64–68.
    • (2002) Nat Genetics , vol.31 , pp. 64-68
    • Shen-Orr, S.1
  • 31
    • 0036428761 scopus 로고    scopus 로고
    • Negative autoregulation speeds the response times of transcription networks
    • Rosenfeld, N., Elowitz, M.B., Alon, U., Negative autoregulation speeds the response times of transcription networks. J Mol Biol 323 (2002), 785–793.
    • (2002) J Mol Biol , vol.323 , pp. 785-793
    • Rosenfeld, N.1    Elowitz, M.B.2    Alon, U.3
  • 32
    • 84886091899 scopus 로고    scopus 로고
    • Understanding and exploiting feedback in synthetic biology
    • Afroz, T., Beisel, C.L., Understanding and exploiting feedback in synthetic biology. Chem Eng Sci 103 (2013), 79–90.
    • (2013) Chem Eng Sci , vol.103 , pp. 79-90
    • Afroz, T.1    Beisel, C.L.2
  • 33
    • 48649104164 scopus 로고    scopus 로고
    • Bimodal and hysteretic expression in mammalian cells from a synthetic gene circuit
    • May, T., et al. Bimodal and hysteretic expression in mammalian cells from a synthetic gene circuit. PLoS ONE, 3, 2008, e2372.
    • (2008) PLoS ONE , vol.3 , pp. e2372
    • May, T.1
  • 34
    • 78650644119 scopus 로고    scopus 로고
    • Bimodal gene expression in noncooperative regulatory systems
    • Ochab-Marcinek, A., Tabaka, M., Bimodal gene expression in noncooperative regulatory systems. Proc Natl Acad Sci 107 (2010), 22096–22101.
    • (2010) Proc Natl Acad Sci , vol.107 , pp. 22096-22101
    • Ochab-Marcinek, A.1    Tabaka, M.2
  • 35
    • 22144452865 scopus 로고    scopus 로고
    • Hysteresis in a synthetic mammalian gene network
    • Kramer, B.P., Fussenegger, M., Hysteresis in a synthetic mammalian gene network. Proc Natl Acad Sci U S A 102 (2005), 9517–9522.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 9517-9522
    • Kramer, B.P.1    Fussenegger, M.2
  • 36
    • 1242274449 scopus 로고    scopus 로고
    • Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems
    • Angeli, D., Ferrell, J.E., Sontag, E.D., Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci 101 (2004), 1822–1827.
    • (2004) Proc Natl Acad Sci , vol.101 , pp. 1822-1827
    • Angeli, D.1    Ferrell, J.E.2    Sontag, E.D.3
  • 37
    • 84868246018 scopus 로고    scopus 로고
    • A synthetic biology approach to understanding cellular information processing
    • Riccione, K.A., et al. A synthetic biology approach to understanding cellular information processing. ACS Synthetic Biol 1 (2012), 389–402.
    • (2012) ACS Synthetic Biol , vol.1 , pp. 389-402
    • Riccione, K.A.1
  • 38
    • 84875857527 scopus 로고    scopus 로고
    • Synthetic feedback loop model for increasing microbial biofuel production using a biosensor
    • Harrison, M., Dunlop, M., Synthetic feedback loop model for increasing microbial biofuel production using a biosensor. Frontiers Microbiol, 3, 2012, 360.
    • (2012) Frontiers Microbiol , vol.3 , pp. 360
    • Harrison, M.1    Dunlop, M.2
  • 39
    • 34249079154 scopus 로고    scopus 로고
    • Network motifs: theory and experimental approaches
    • Alon, U., Network motifs: theory and experimental approaches. Nat Rev Genet 8 (2007), 450–461.
    • (2007) Nat Rev Genet , vol.8 , pp. 450-461
    • Alon, U.1
  • 40
    • 84896702596 scopus 로고    scopus 로고
    • Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli
    • This paper detailed the design procedure to engineering metabolite-responsive transcriptional factor-based sensors.
    • Xu, P., et al. Design and kinetic analysis of a hybrid promoter-regulator system for malonyl-CoA sensing in Escherichia coli. ACS Chem Biol 9 (2014), 451–458 This paper detailed the design procedure to engineering metabolite-responsive transcriptional factor-based sensors.
    • (2014) ACS Chem Biol , vol.9 , pp. 451-458
    • Xu, P.1
  • 41
    • 84857050180 scopus 로고    scopus 로고
    • Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways
    • Michener, J.K., et al. Applications of genetically-encoded biosensors for the construction and control of biosynthetic pathways. Metab Eng 14 (2012), 212–222.
    • (2012) Metab Eng , vol.14 , pp. 212-222
    • Michener, J.K.1
  • 42
    • 85031897610 scopus 로고    scopus 로고
    • Fundamental design principles for transcription-factor-based metabolite biosensors
    • Mannan, A.A., et al. Fundamental design principles for transcription-factor-based metabolite biosensors. ACS Synth Biol 6 (2017), 1851–1859.
    • (2017) ACS Synth Biol , vol.6 , pp. 1851-1859
    • Mannan, A.A.1
  • 43
    • 84986247556 scopus 로고    scopus 로고
    • Applications and advances of metabolite biosensors for metabolic engineering
    • Liu, D., Evans, T., Zhang, F., Applications and advances of metabolite biosensors for metabolic engineering. Metab Eng 31 (2015), 35–43.
    • (2015) Metab Eng , vol.31 , pp. 35-43
    • Liu, D.1    Evans, T.2    Zhang, F.3
  • 44
    • 85006511727 scopus 로고    scopus 로고
    • Engineering an NADPH/NADP+ redox biosensor in yeast
    • Zhang, J., et al. Engineering an NADPH/NADP+ redox biosensor in yeast. ACS Synth Biol 5 (2016), 1546–1556.
    • (2016) ACS Synth Biol , vol.5 , pp. 1546-1556
    • Zhang, J.1
  • 45
    • 84877653660 scopus 로고    scopus 로고
    • Microbial biosensors: engineered microorganisms as the sensing machinery
    • Park, M., Tsai, S.-L., Chen, W., Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors, 13, 2013.
    • (2013) Sensors , vol.13
    • Park, M.1    Tsai, S.-L.2    Chen, W.3
  • 46
    • 84886456692 scopus 로고    scopus 로고
    • Tuning response curves for synthetic biology
    • Ang, J., et al. Tuning response curves for synthetic biology. ACS Synth Biol 2 (2013), 547–567.
    • (2013) ACS Synth Biol , vol.2 , pp. 547-567
    • Ang, J.1
  • 47
    • 84879999713 scopus 로고    scopus 로고
    • Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter
    • Tang, S.-Y., et al. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. J Am Chem Soc 135 (2013), 10099–10103.
    • (2013) J Am Chem Soc , vol.135 , pp. 10099-10103
    • Tang, S.-Y.1
  • 48
    • 85035036524 scopus 로고    scopus 로고
    • Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli
    • Harder, B.-J., Bettenbrock, K., Klamt, S., Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli. Biotechnol Bioeng, 2017, 10.1002/bit.26446.
    • (2017) Biotechnol Bioeng
    • Harder, B.-J.1    Bettenbrock, K.2    Klamt, S.3
  • 49
    • 85014603710 scopus 로고    scopus 로고
    • Pgas, a low-pH-induced promoter, as a tool for dynamic control of gene expression for metabolic engineering of Aspergillus niger
    • Yin, X., et al. Pgas, a low-pH-induced promoter, as a tool for dynamic control of gene expression for metabolic engineering of Aspergillus niger. Appl Environ Microbiol, 83, 2017.
    • (2017) Appl Environ Microbiol , vol.83
    • Yin, X.1
  • 50
    • 84887422015 scopus 로고    scopus 로고
    • Engineering dynamic pathway regulation using stress-response promoters
    • Dahl, R.H., et al. Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol 31 (2013), 1039–1046.
    • (2013) Nat Biotechnol , vol.31 , pp. 1039-1046
    • Dahl, R.H.1
  • 51
    • 84959498612 scopus 로고    scopus 로고
    • Engineering improved bio-jet fuel tolerance in Escherichia coli using a transgenic library from the hydrocarbon-degrader Marinobacter aquaeolei
    • Tomko, T.A., Dunlop, M.J., Engineering improved bio-jet fuel tolerance in Escherichia coli using a transgenic library from the hydrocarbon-degrader Marinobacter aquaeolei. Biotechnol Biofuels, 8, 2015, 165.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 165
    • Tomko, T.A.1    Dunlop, M.J.2
  • 52
    • 84991225926 scopus 로고    scopus 로고
    • Engineering of synthetic, stress-responsive yeast promoters
    • e136-e136
    • Rajkumar, A.S., et al. Engineering of synthetic, stress-responsive yeast promoters. Nucleic Acids Res, 44, 2016 e136-e136.
    • (2016) Nucleic Acids Res , vol.44
    • Rajkumar, A.S.1
  • 53
    • 85021929291 scopus 로고    scopus 로고
    • Complete biosynthesis of anthocyanins using E. coli polycultures
    • Jones, J.A., et al. Complete biosynthesis of anthocyanins using E. coli polycultures. mBio, 8, 2017.
    • (2017) mBio , vol.8
    • Jones, J.A.1
  • 54
    • 84989918349 scopus 로고    scopus 로고
    • Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals
    • Xu, P., et al. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci 113 (2016), 10848–10853.
    • (2016) Proc Natl Acad Sci , vol.113 , pp. 10848-10853
    • Xu, P.1
  • 55
    • 84947923934 scopus 로고    scopus 로고
    • Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae
    • Wang, M., Li, S., Zhao, H., Design and engineering of intracellular-metabolite-sensing/regulation gene circuits in Saccharomyces cerevisiae. Biotechnol Bioeng 113 (2016), 206–215.
    • (2016) Biotechnol Bioeng , vol.113 , pp. 206-215
    • Wang, M.1    Li, S.2    Zhao, H.3
  • 56
    • 84945270373 scopus 로고    scopus 로고
    • Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening
    • Li, S., et al. Development of a synthetic malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening. ACS Synth Biol 4 (2015), 1308–1315.
    • (2015) ACS Synth Biol , vol.4 , pp. 1308-1315
    • Li, S.1
  • 57
    • 84924239544 scopus 로고    scopus 로고
    • Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor–actuator
    • This paper presents a malonyl-CoA inverter gate to regulate malonyl-CoA homeostasis in E. coli.
    • Liu, D., et al. Negative feedback regulation of fatty acid production based on a malonyl-CoA sensor–actuator. ACS Synth Biol 4 (2015), 132–140 This paper presents a malonyl-CoA inverter gate to regulate malonyl-CoA homeostasis in E. coli.
    • (2015) ACS Synth Biol , vol.4 , pp. 132-140
    • Liu, D.1
  • 58
    • 85010187554 scopus 로고    scopus 로고
    • A two-layer gene circuit for decoupling cell growth from metabolite production
    • Lo, T.-M., et al. A two-layer gene circuit for decoupling cell growth from metabolite production. Cell Systems 3 (2016), 133–143.
    • (2016) Cell Systems , vol.3 , pp. 133-143
    • Lo, T.-M.1
  • 59
    • 84899628032 scopus 로고    scopus 로고
    • Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch
    • Soma, Y., et al. Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metab Eng 23:Suppl. C (2014), 175–184.
    • (2014) Metab Eng , vol.23 , pp. 175-184
    • Soma, Y.1
  • 60
    • 85025134872 scopus 로고    scopus 로고
    • A glucose-sensing toggle switch for autonomous, high productivity genetic control
    • Bothfeld, W., Kapov, G., Tyo, K.E.J., A glucose-sensing toggle switch for autonomous, high productivity genetic control. ACS Synth Biol 6 (2017), 1296–1304.
    • (2017) ACS Synth Biol , vol.6 , pp. 1296-1304
    • Bothfeld, W.1    Kapov, G.2    Tyo, K.E.J.3
  • 61
    • 84927521634 scopus 로고    scopus 로고
    • Ecological perspectives on synthetic biology: insights from microbial population biology
    • Escalante, A.E., et al. Ecological perspectives on synthetic biology: insights from microbial population biology. Frontiers Microbiol, 6, 2015, 143.
    • (2015) Frontiers Microbiol , vol.6 , pp. 143
    • Escalante, A.E.1
  • 62
    • 84982801326 scopus 로고    scopus 로고
    • Metabolic engineering of microbial competitive advantage for industrial fermentation processes
    • This paper discussed the engineering of rare nutrients to confer cell growth advantage and eliminate cross-species contamination.
    • Shaw, A.J., et al. Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science, 353, 2016, 583 This paper discussed the engineering of rare nutrients to confer cell growth advantage and eliminate cross-species contamination.
    • (2016) Science , vol.353 , pp. 583
    • Shaw, A.J.1
  • 63
    • 84961393253 scopus 로고    scopus 로고
    • Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis
    • This paper exploits quality control principles to eliminate cheater cell and maximize overall production potential of the engineered cell factory.
    • Xiao, Y., et al. Exploiting nongenetic cell-to-cell variation for enhanced biosynthesis. Nat Chem Biol 12 (2016), 339–344 This paper exploits quality control principles to eliminate cheater cell and maximize overall production potential of the engineered cell factory.
    • (2016) Nat Chem Biol , vol.12 , pp. 339-344
    • Xiao, Y.1
  • 64
    • 85014739781 scopus 로고    scopus 로고
    • Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit
    • This paper presents a quorum-sensing regulatory mechanism to dynamically control metabolic flux. Cell density-dependent gene regulation will be critical to partition carbon flux between biomass and end product pathway.
    • Gupta, A., et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit. Nat Biotech 35 (2017), 273–279 This paper presents a quorum-sensing regulatory mechanism to dynamically control metabolic flux. Cell density-dependent gene regulation will be critical to partition carbon flux between biomass and end product pathway.
    • (2017) Nat Biotech , vol.35 , pp. 273-279
    • Gupta, A.1
  • 65
    • 84962538599 scopus 로고    scopus 로고
    • Manipulating bacterial communities by in situ microbiome engineering
    • Sheth, R.U., et al. Manipulating bacterial communities by in situ microbiome engineering. Trends Genet 32 (2016), 189–200.
    • (2016) Trends Genet , vol.32 , pp. 189-200
    • Sheth, R.U.1
  • 66
    • 84961904331 scopus 로고    scopus 로고
    • Challenges in microbial ecology: building predictive understanding of community function and dynamics
    • Widder, S., et al. Challenges in microbial ecology: building predictive understanding of community function and dynamics. ISME J 10 (2016), 2557–2568.
    • (2016) ISME J , vol.10 , pp. 2557-2568
    • Widder, S.1
  • 67
    • 84901049717 scopus 로고    scopus 로고
    • Syntrophic exchange in synthetic microbial communities
    • Mee, M.T., et al. Syntrophic exchange in synthetic microbial communities. Proc Natl Acad Sci 111 (2014), E2149–E2156.
    • (2014) Proc Natl Acad Sci , vol.111 , pp. E2149-E2156
    • Mee, M.T.1
  • 68
    • 85000461226 scopus 로고    scopus 로고
    • Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients
    • LaSarre, B., et al. Microbial mutualism dynamics governed by dose-dependent toxicity of cross-fed nutrients. ISME J 11 (2017), 337–348.
    • (2017) ISME J , vol.11 , pp. 337-348
    • LaSarre, B.1
  • 69
    • 84994718525 scopus 로고    scopus 로고
    • Synthetic microbial ecology and the dynamic interplay between microbial genotypes
    • Dolinšek, J., Goldschmidt, F., Johnson, D.R., Synthetic microbial ecology and the dynamic interplay between microbial genotypes. FEMS Microbiol Rev 40 (2016), 961–979.
    • (2016) FEMS Microbiol Rev , vol.40 , pp. 961-979
    • Dolinšek, J.1    Goldschmidt, F.2    Johnson, D.R.3
  • 70
    • 84898931419 scopus 로고    scopus 로고
    • Rapid and tunable post-translational coupling of genetic circuits
    • Prindle, A., et al. Rapid and tunable post-translational coupling of genetic circuits. Nature 508 (2014), 387–391.
    • (2014) Nature , vol.508 , pp. 387-391
    • Prindle, A.1
  • 71
    • 84875230351 scopus 로고    scopus 로고
    • Synthetic circuits integrating logic and memory in living cells
    • Siuti, P., Yazbek, J., Lu, T.K., Synthetic circuits integrating logic and memory in living cells. Nat Biotech 31 (2013), 448–452.
    • (2013) Nat Biotech , vol.31 , pp. 448-452
    • Siuti, P.1    Yazbek, J.2    Lu, T.K.3
  • 72
    • 85033567022 scopus 로고    scopus 로고
    • Programmable assembly of pressure sensors using pattern-forming bacteria
    • Cao, Y., et al. Programmable assembly of pressure sensors using pattern-forming bacteria. Nat Biotech 35 (2017), 1087–1093.
    • (2017) Nat Biotech , vol.35 , pp. 1087-1093
    • Cao, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.