메뉴 건너뛰기




Volumn 44, Issue 17, 2016, Pages

Engineering of synthetic, stress-responsive yeast promoters

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BINDING SITE; CCW14 GENE; CONTROLLED STUDY; FERMENTATION TECHNIQUE; FUNGAL GENE; GENE SEQUENCE; GENETIC ENGINEERING; METABOLIC ENGINEERING; NONHUMAN; PRIORITY JOURNAL; PROMOTER REGION; SACCHAROMYCES CEREVISIAE; SEQUENCE ANALYSIS; TEF1 GENE; TRANSCRIPTION REGULATION; YEAST; YGP1 GENE; FERMENTATION; FLUORESCENCE; GENETICS; METABOLISM; PH; PHYSIOLOGICAL STRESS; PHYSIOLOGY; PROCEDURES; SYNTHETIC BIOLOGY;

EID: 84991225926     PISSN: 03051048     EISSN: 13624962     Source Type: Journal    
DOI: 10.1093/nar/gkw553     Document Type: Article
Times cited : (99)

References (57)
  • 1
    • 84859772410 scopus 로고    scopus 로고
    • Synthetic biology and the development of tools for metabolic engineering
    • Keasling, J.D. (2012) Synthetic biology and the development of tools for metabolic engineering. Metab. Eng., 14, 189-195.
    • (2012) Metab. Eng , vol.14 , pp. 189-195
    • Keasling, J.D.1
  • 4
    • 0345329541 scopus 로고    scopus 로고
    • The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains
    • Jeppsson, M., Johansson, B., Jensen, P.R., Hahn-Hägerdal, B. and Gorwa-Grauslund, M.F. (2003) The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast, 20, 1263-1272.
    • (2003) Yeast , vol.20 , pp. 1263-1272
    • Jeppsson, M.1    Johansson, B.2    Jensen, P.R.3    Hahn-Hägerdal, B.4    Gorwa-Grauslund, M.F.5
  • 5
    • 84858609338 scopus 로고    scopus 로고
    • Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology
    • Blount, B.A., Weenink, T., Vasylechko, S. and Ellis, T. (2012) Rational diversification of a promoter providing fine-tuned expression and orthogonal regulation for synthetic biology. PLoS One, 7, 1-11.
    • (2012) PLoS One , vol.7 , pp. 1-11
    • Blount, B.A.1    Weenink, T.2    Vasylechko, S.3    Ellis, T.4
  • 6
    • 84866744379 scopus 로고    scopus 로고
    • Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters
    • Blazeck, J., Garg, R., Reed, B. and Alper, H.S. (2012) Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters. Biotechnol. Bioeng., 109, 2884-2895.
    • (2012) Biotechnol. Bioeng , vol.109 , pp. 2884-2895
    • Blazeck, J.1    Garg, R.2    Reed, B.3    Alper, H.S.4
  • 8
    • 84937604735 scopus 로고    scopus 로고
    • The development and characterization of synthetic minimal yeast promoters
    • Redden, H. and Alper, H.S. (2015) The development and characterization of synthetic minimal yeast promoters. Nat. Commun., 6, 7810.
    • (2015) Nat. Commun , vol.6 , pp. 7810
    • Redden, H.1    Alper, H.S.2
  • 9
    • 84901815137 scopus 로고    scopus 로고
    • Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose
    • Cao, L., Tang, X., Zhang, X., Zhang, J., Tian, X., Wang, J., Xiong, M. and Xiao, W. (2014) Two-stage transcriptional reprogramming in Saccharomyces cerevisiae for optimizing ethanol production from xylose. Metab. Eng., 24, 150-159.
    • (2014) Metab. Eng , vol.24 , pp. 150-159
    • Cao, L.1    Tang, X.2    Zhang, X.3    Zhang, J.4    Tian, X.5    Wang, J.6    Xiong, M.7    Xiao, W.8
  • 11
    • 84925384452 scopus 로고    scopus 로고
    • Dynamic control of ERG9 expression for improved amorpha-4, 11-diene production in Saccharomyces cerevisiae
    • Yuan, J. and Ching, C.B. (2015) Dynamic control of ERG9 expression for improved amorpha-4, 11-diene production in Saccharomyces cerevisiae. Microb. Cell Fact., 14, 1-10.
    • (2015) Microb. Cell Fact , vol.14 , pp. 1-10
    • Yuan, J.1    Ching, C.B.2
  • 12
    • 70350521215 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: Current status and challenges
    • Abbott, D.A., Zelle, R.M., Pronk, J.T. and Van Maris, A.J.A. (2009) Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: Current status and challenges. FEMS Yeast Res., 9, 1123-1136.
    • (2009) FEMS Yeast Res , vol.9 , pp. 1123-1136
    • Abbott, D.A.1    Zelle, R.M.2    Pronk, J.T.3    Van Maris, A.J.A.4
  • 16
    • 84862169505 scopus 로고    scopus 로고
    • YeTFaSCo: A database of evaluated yeast transcription factor sequence specificities
    • De Boer, C.G. and Hughes, T.R. (2012) YeTFaSCo: a database of evaluated yeast transcription factor sequence specificities. Nucleic Acids Res., 40, D169-D179.
    • (2012) Nucleic Acids Res , vol.40 , pp. D169-D179
    • De Boer, C.G.1    Hughes, T.R.2
  • 18
    • 0033452784 scopus 로고    scopus 로고
    • Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway
    • Jung, U.S. and Levin, D.E. (1999) Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Mol. Microbiol., 34, 1049-1057.
    • (1999) Mol. Microbiol , vol.34 , pp. 1049-1057
    • Jung, U.S.1    Levin, D.E.2
  • 19
    • 80052432738 scopus 로고    scopus 로고
    • Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress
    • Mira, N.P., Henriques, S.F., Keller, G., Teixeira, M.C., Matos, R.G., Arraiano, C.M., Winge, D.R. and Sá-Correia, I. (2011) Identification of a DNA-binding site for the transcription factor Haa1, required for Saccharomyces cerevisiae response to acetic acid stress. Nucleic Acids Res., 39, 6896-6907.
    • (2011) Nucleic Acids Res , vol.39 , pp. 6896-6907
    • Mira, N.P.1    Henriques, S.F.2    Keller, G.3    Teixeira, M.C.4    Matos, R.G.5    Arraiano, C.M.6    Winge, D.R.7    Sá-Correia, I.8
  • 20
    • 84865067659 scopus 로고    scopus 로고
    • Optimization of ordered plasmid assembly by gap repair in Saccharomyces cerevisiae
    • Boulet-Eckert, N., Pedersen, M.L., Krogh, B.O. and Lisby, M. (2012) Optimization of ordered plasmid assembly by gap repair in Saccharomyces cerevisiae. Yeast, 29, 323-334.
    • (2012) Yeast , vol.29 , pp. 323-334
    • Boulet-Eckert, N.1    Pedersen, M.L.2    Krogh, B.O.3    Lisby, M.4
  • 21
    • 34347206860 scopus 로고    scopus 로고
    • High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method
    • Gietz, R.D. and Schiestl, R.H. (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc., 2, 31-34.
    • (2007) Nat. Protoc , vol.2 , pp. 31-34
    • Gietz, R.D.1    Schiestl, R.H.2
  • 22
    • 84927920113 scopus 로고    scopus 로고
    • CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains
    • Stovicek, V., Borodina, I. and Forster, J. (2015) CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab. Eng. Commun., 2, 13-22.
    • (2015) Metab. Eng. Commun , vol.2 , pp. 13-22
    • Stovicek, V.1    Borodina, I.2    Forster, J.3
  • 23
    • 84879761045 scopus 로고    scopus 로고
    • Improved blue, green, and red fluorescent protein tagging vectors for S
    • Lee, S., Lim, W.A. and Thorn, K.S. (2013) Improved blue, green, and red fluorescent protein tagging vectors for S. cerevisiae. PLoS One, 8, e67902.
    • (2013) Cerevisiae. PLoS One , vol.8
    • Lee, S.1    Lim, W.A.2    Thorn, K.S.3
  • 25
    • 0023663451 scopus 로고
    • Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs
    • Hamilton, R., Watanabe, C.K. and de Boer, H.A. (1987) Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nucleic Acids Res., 15, 3581-3593.
    • (1987) Nucleic Acids Res , vol.15 , pp. 3581-3593
    • Hamilton, R.1    Watanabe, C.K.2    De Boer, H.A.3
  • 26
    • 59649108349 scopus 로고    scopus 로고
    • DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
    • Shao, Z., Zhao, H. and Zhao, H. (2009) DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Res., 37, 1-10.
    • (2009) Nucleic Acids Res , vol.37 , pp. 1-10
    • Shao, Z.1    Zhao, H.2    Zhao, H.3
  • 28
    • 84865279871 scopus 로고    scopus 로고
    • Participation of CWI, HOG and Calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid
    • De Lucena, R.M., Elsztein, C., Simões, D.A. and De Morais, M.A. Jr (2012) Participation of CWI, HOG and Calcineurin pathways in the tolerance of Saccharomyces cerevisiae to low pH by inorganic acid. J. Appl. Microbiol., 113, 629-640.
    • (2012) J. Appl. Microbiol , vol.113 , pp. 629-640
    • De Lucena, R.M.1    Elsztein, C.2    Simões, D.A.3    De Morais, M.A.4
  • 29
    • 0042121256 scopus 로고    scopus 로고
    • Mfold web server for nucleic acid folding and hybridization prediction
    • Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res., 31, 3406-3415.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3406-3415
    • Zuker, M.1
  • 30
    • 0036281211 scopus 로고    scopus 로고
    • Processing of gene expression data generated by quantitative real-time RT-PCR
    • Muller, P.Y., Janovjak, H., Miserez, A.R. and Dobbie, Z. (2002) Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques, 32, 1372-1379.
    • (2002) Biotechniques , vol.32 , pp. 1372-1379
    • Muller, P.Y.1    Janovjak, H.2    Miserez, A.R.3    Dobbie, Z.4
  • 31
  • 32
    • 27744435957 scopus 로고    scopus 로고
    • Additional vectors for PCR-based gene tagging in Saccharomyces cerevisiae and Schizosaccharomyces pombe using nourseothricin resistance
    • Van Driessche, B., Tafforeau, L., Hentges, P., Carr, A.M. and Vandenhaute, J. (2005) Additional vectors for PCR-based gene tagging in Saccharomyces cerevisiae and Schizosaccharomyces pombe using nourseothricin resistance. Yeast, 22, 1061-1068.
    • (2005) Yeast , vol.22 , pp. 1061-1068
    • Van Driessche, B.1    Tafforeau, L.2    Hentges, P.3    Carr, A.M.4    Vandenhaute, J.5
  • 33
    • 84979030925 scopus 로고    scopus 로고
    • Genome-wide mapping of binding sites reveals multiple biological functions of the transcription factor Cst6p in Saccharomyces cerevisiae
    • Liu, G., Bergenholm, D. and Nielsen, J. (2016) Genome-wide mapping of binding sites reveals multiple biological functions of the transcription factor Cst6p in Saccharomyces cerevisiae. MBio, 7, 1-10.
    • (2016) MBio , vol.7 , pp. 1-10
    • Liu, G.1    Bergenholm, D.2    Nielsen, J.3
  • 34
    • 84873020117 scopus 로고    scopus 로고
    • ChiP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy
    • Rhee, H.S. and Pugh, B.F. (2012) ChiP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy. Curr. Protoc. Mol. Biol., 100, 1-14.
    • (2012) Curr. Protoc. Mol. Biol , vol.100 , pp. 1-14
    • Rhee, H.S.1    Pugh, B.F.2
  • 35
    • 0035710746 scopus 로고    scopus 로고
    • Analysis of relative gene expression data using real-time quantitative PCR and the 2(-CT) method
    • Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-CT) method. Methods, 25, 402-408.
    • (2001) Methods , vol.25 , pp. 402-408
    • Livak, K.J.1    Schmittgen, T.D.2
  • 36
    • 0035151514 scopus 로고    scopus 로고
    • Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall
    • Kapteyn, J.C., Ter Riet, B., Vink, E., Blad, S., De Nobel, H., Van Den Ende, H. and Klis, F.M. (2001) Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol. Microbiol., 39, 469-479.
    • (2001) Mol. Microbiol , vol.39 , pp. 469-479
    • Kapteyn, J.C.1    Ter Riet, B.2    Vink, E.3    Blad, S.4    De Nobel, H.5    Van Den Ende, H.6    Klis, F.M.7
  • 37
    • 33747337558 scopus 로고    scopus 로고
    • Yeast genes involved in response to lactic acid and acetic acid: Acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
    • Kawahata, M., Masaki, K., Fujii, T. and Iefuji, H. (2006) Yeast genes involved in response to lactic acid and acetic acid: Acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res., 6, 924-936.
    • (2006) FEMS Yeast Res , vol.6 , pp. 924-936
    • Kawahata, M.1    Masaki, K.2    Fujii, T.3    Iefuji, H.4
  • 38
    • 77953603455 scopus 로고    scopus 로고
    • Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations
    • De Melo, H.F., Bonini, B.M., Thevelein, J., Simões, D.A. and Morais, M.A. Jr (2010) Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J. Appl. Microbiol., 109, 116-127.
    • (2010) J. Appl. Microbiol , vol.109 , pp. 116-127
    • De Melo, H.F.1    Bonini, B.M.2    Thevelein, J.3    Simões, D.A.4    Morais, M.A.5
  • 40
    • 0343471866 scopus 로고    scopus 로고
    • HySP26 gene transcription is strongly induced during Saccharomyces cerevisiae growth at low pH
    • Carmelo, V. and Sá-Correia, I. (1997) HySP26 gene transcription is strongly induced during Saccharomyces cerevisiae growth at low pH. FEMS Microbiol. Lett., 149, 85-88.
    • (1997) FEMS Microbiol. Lett , vol.149 , pp. 85-88
    • Carmelo, V.1    Sá-Correia, I.2
  • 41
    • 0028217073 scopus 로고
    • Identification and characterization of a novel yeast gene: The YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation
    • Destruelle, M., Holzer, H. and Klionsky, D.J. (1994) Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation. Mol. Cell. Biol., 14, 2740-2754.
    • (1994) Mol. Cell. Biol , vol.14 , pp. 2740-2754
    • Destruelle, M.1    Holzer, H.2    Klionsky, D.J.3
  • 42
    • 25844432253 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes
    • Fernandes, A.R., Mira, N.P., Vargas, R.C., Canelhas, I. and Sá-Correia, I. (2005) Saccharomyces cerevisiae adaptation to weak acids involves the transcription factor Haa1p and Haa1p-regulated genes. Biochem. Biophys. Res. Commun., 337, 95-103.
    • (2005) Biochem. Biophys. Res. Commun , vol.337 , pp. 95-103
    • Fernandes, A.R.1    Mira, N.P.2    Vargas, R.C.3    Canelhas, I.4    Sá-Correia, I.5
  • 43
    • 19544370016 scopus 로고    scopus 로고
    • RGD1, encoding a RhoGAP involved in low-pH survival, is an Msn2p/Msn4p regulated gene in Saccharomyces cerevisiae
    • Gatti, X., De Bettignies, G., Claret, S., Doignon, F., Crouzet, M. and Thoraval, D. (2005) RGD1, encoding a RhoGAP involved in low-pH survival, is an Msn2p/Msn4p regulated gene in Saccharomyces cerevisiae. Gene, 351, 159-169.
    • (2005) Gene , vol.351 , pp. 159-169
    • Gatti, X.1    De Bettignies, G.2    Claret, S.3    Doignon, F.4    Crouzet, M.5    Thoraval, D.6
  • 44
    • 23844496693 scopus 로고    scopus 로고
    • The Rgd1p Rho GTPase-activating protein and the Mid2p cell wall sensor are required at low pH for protein kinase C pathway activation and cell survival Eukaryot
    • Claret, S., Gatti, X., Thoraval, D. and Crouzet, M. (2005) The Rgd1p Rho GTPase-activating protein and the Mid2p cell wall sensor are required at low pH for protein kinase C pathway activation and cell survival Eukaryot. Cell, 4, 1375-1386.
    • (2005) Cell , vol.4 , pp. 1375-1386
    • Claret, S.1    Gatti, X.2    Thoraval, D.3    Crouzet, M.4
  • 45
    • 83455179434 scopus 로고    scopus 로고
    • Regulation of cell wall biogenesis in Saccharomyces cerevisiae: The cell wall integrity signaling pathway
    • Levin, D.E. (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics, 189, 1145-1175.
    • (2011) Genetics , vol.189 , pp. 1145-1175
    • Levin, D.E.1
  • 46
    • 77958174279 scopus 로고    scopus 로고
    • Integrative responses to high pH stress in S
    • Ariño, J. (2010) Integrative responses to high pH stress in S. cerevisiae. OMICS, 14, 517-523.
    • (2010) Cerevisiae. OMICS , vol.14 , pp. 517-523
    • Ariño, J.1
  • 47
    • 0026355230 scopus 로고
    • A multi-component upstream activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter
    • Bitter, G.A., Chang, K.K. and Egan, K.M. (1991) A multi-component upstream activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter. Mol. Gen. Genet., 231, 22-32.
    • (1991) Mol. Gen. Genet , vol.231 , pp. 22-32
    • Bitter, G.A.1    Chang, K.K.2    Egan, K.M.3
  • 48
    • 77956654773 scopus 로고    scopus 로고
    • De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis
    • Fordyce, P.M., Gerber, D., Tran, D., Zheng, J., Li, H., DeRisi, J.L. and Quake, S.R. (2010) De novo identification and biophysical characterization of transcription-factor binding sites with microfluidic affinity analysis. Nat. Biotechnol., 28, 970-975.
    • (2010) Nat. Biotechnol , vol.28 , pp. 970-975
    • Fordyce, P.M.1    Gerber, D.2    Tran, D.3    Zheng, J.4    Li, H.5    DeRisi, J.L.6    Quake, S.R.7
  • 49
    • 84899837639 scopus 로고    scopus 로고
    • Topology and control of the cell-cycle-regulated transcriptional circuitry
    • Haase, S.B. and Wittenberg, C. (2014) Topology and control of the cell-cycle-regulated transcriptional circuitry. Genetics, 196, 65-90.
    • (2014) Genetics , vol.196 , pp. 65-90
    • Haase, S.B.1    Wittenberg, C.2
  • 52
    • 1942539985 scopus 로고    scopus 로고
    • Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae
    • Boorsma, A., De Nobel, H, Ter Riet, B., Bargmann, B., Brul, S., Hellingwerf, K.J. and Klis, F.M. (2004) Characterization of the transcriptional response to cell wall stress in Saccharomyces cerevisiae. Yeast, 21, 413-427.
    • (2004) Yeast , vol.21 , pp. 413-427
    • Boorsma, A.1    De Nobel, H.2    Ter Riet, B.3    Bargmann, B.4    Brul, S.5    Hellingwerf, K.J.6    Klis, F.M.7
  • 53
    • 1842453025 scopus 로고    scopus 로고
    • Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: Regulating adaptation to citric acid stress evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast. Mol. Cell
    • Lawrence, C.L., Botting, C.H., Antrobus, R. and Coote, P.J. (2004) Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast. Mol. Cell. Biol., 24, 3307-3324.
    • (2004) Biol , vol.24 , pp. 3307-3324
    • Lawrence, C.L.1    Botting, C.H.2    Antrobus, R.3    Coote, P.J.4
  • 56
    • 84920278608 scopus 로고    scopus 로고
    • Advances and current limitations in transcript-level control of gene expression
    • Leavitt, J.M. and Alper, H.S. (2015) Advances and current limitations in transcript-level control of gene expression. Curr. Opin. Biotechnol., 34, 98-104.
    • (2015) Curr. Opin. Biotechnol , vol.34 , pp. 98-104
    • Leavitt, J.M.1    Alper, H.S.2
  • 57
    • 84940898261 scopus 로고    scopus 로고
    • Metabolomic analysis of acid stress response in Saccharomyces cerevisiae
    • Nugroho, R.H., Yoshikawa, K. and Shimizu, H. (2015) Metabolomic analysis of acid stress response in Saccharomyces cerevisiae. J. Biosci. Bioeng., 120, 396-404.
    • (2015) J. Biosci. Bioeng , vol.120 , pp. 396-404
    • Nugroho, R.H.1    Yoshikawa, K.2    Shimizu, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.