-
1
-
-
84939262898
-
Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects
-
Yin X, Li J, Shin HD, Du G, Liu L, Chen J. 2015. Metabolic engineering in the biotechnological production of organic acids in the tricarboxylic acid cycle of microorganisms: advances and prospects. Biotechnol Adv 33: 830-841. https://doi.org/10.1016/j.biotechadv.2015.04.006.
-
(2015)
Biotechnol Adv
, vol.33
, pp. 830-841
-
-
Yin, X.1
Li, J.2
Shin, H.D.3
Du, G.4
Liu, L.5
Chen, J.6
-
2
-
-
60849114730
-
Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in Aspergillus niger
-
Meijer S, Otero J, Olivares R, Andersen MR, Olsson L, Nielsen J. 2009. Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in Aspergillus niger. Metab Eng 11:107-116. https://doi.org/10.1016/j.ymben.2008.12.002.
-
(2009)
Metab Eng
, vol.11
, pp. 107-116
-
-
Meijer, S.1
Otero, J.2
Olivares, R.3
Andersen, M.R.4
Olsson, L.5
Nielsen, J.6
-
3
-
-
39849090022
-
Enhanced citrate production through gene insertion in Aspergillus niger
-
de Jongh WA, Nielsen J. 2008. Enhanced citrate production through gene insertion in Aspergillus niger. Metab Eng 10:87-96. https://doi.org/10.1016/j.ymben.2007.11.002.
-
(2008)
Metab Eng
, vol.10
, pp. 87-96
-
-
de Jongh, W.A.1
Nielsen, J.2
-
4
-
-
73149088132
-
Engineering static and dynamic control of synthetic pathways
-
Holtz WJ, Keasling JD. 2010. Engineering static and dynamic control of synthetic pathways. Cell 140:19-23. https://doi.org/10.1016/j.cell.2009.12.029.
-
(2010)
Cell
, vol.140
, pp. 19-23
-
-
Holtz, W.J.1
Keasling, J.D.2
-
5
-
-
84887422015
-
Engineering dynamic pathway regulation using stress-response promoters
-
Dahl RH, Zhang F, Alonso-Gutierrez J, Baidoo E, Batth TS, Redding-Johanson AM, Petzold CJ, Mukhopadhyay A, Lee TS, Adams PD, Keasling JD. 2013. Engineering dynamic pathway regulation using stress-response promoters. Nat Biotechnol 31:1039-1046. https://doi.org/10.1038/nbt.2689.
-
(2013)
Nat Biotechnol
, vol.31
, pp. 1039-1046
-
-
Dahl, R.H.1
Zhang, F.2
Alonso-Gutierrez, J.3
Baidoo, E.4
Batth, T.S.5
Redding-Johanson, A.M.6
Petzold, C.J.7
Mukhopadhyay, A.8
Lee, T.S.9
Adams, P.D.10
Keasling, J.D.11
-
6
-
-
84862827747
-
Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene alpha-santalene in a fed-batch mode
-
Scalcinati G, Knuf C, Partow S, Chen Y, Maury J, Schalk M, Daviet L, Nielsen J, Siewers V. 2012. Dynamic control of gene expression in Saccharomyces cerevisiae engineered for the production of plant sesquitepene alpha-santalene in a fed-batch mode. Metab Eng 14:91-103. https://doi.org/10.1016/j.ymben.2012.01.007.
-
(2012)
Metab Eng
, vol.14
, pp. 91-103
-
-
Scalcinati, G.1
Knuf, C.2
Partow, S.3
Chen, Y.4
Maury, J.5
Schalk, M.6
Daviet, L.7
Nielsen, J.8
Siewers, V.9
-
8
-
-
45449105751
-
In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques
-
Ganzlin M, Rinas U. 2008. In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques. J Biotechnol 135:266-271. https://doi.org/10.1016/j.jbiotec.2008.04.005.
-
(2008)
J Biotechnol
, vol.135
, pp. 266-271
-
-
Ganzlin, M.1
Rinas, U.2
-
9
-
-
0033058466
-
glaA promoter controlled production of a mutant green fluorescent protein (S65T) by recombinant Aspergillus niger during growth on defined medium in batch and fed-batch cultures
-
Siedenberg D, Mestric S, Ganzlin M, Schmidt M, Punt PJ, van den Hondel C, Rinas U. 1999. glaA promoter controlled production of a mutant green fluorescent protein (S65T) by recombinant Aspergillus niger during growth on defined medium in batch and fed-batch cultures. Biotechnol Progr 15:43-50. https://doi.org/10.1021/bp980105u.
-
(1999)
Biotechnol Progr
, vol.15
, pp. 43-50
-
-
Siedenberg, D.1
Mestric, S.2
Ganzlin, M.3
Schmidt, M.4
Punt, P.J.5
van den Hondel, C.6
Rinas, U.7
-
10
-
-
0032922096
-
Carbon catabolite repression of the Aspergillus nidulans xlnA gene
-
Orejas M, MacCabe AP, Perez Gonzalez JA, Kumar S, Ramon D. 1999. Carbon catabolite repression of the Aspergillus nidulans xlnA gene. Mol Microbiol 31:177-184. https://doi.org/10.1046/j.1365-2958.1999.01157.x.
-
(1999)
Mol Microbiol
, vol.31
, pp. 177-184
-
-
Orejas, M.1
MacCabe, A.P.2
Perez Gonzalez, J.A.3
Kumar, S.4
Ramon, D.5
-
11
-
-
0025998787
-
Construction of a fusion gene comprising the Taka-amylase A promoter and the Escherichia coli beta-glucuronidase gene and analysis of its expression in Aspergillus oryzae
-
Tada S, Gomi K, Kitamoto K, Takahashi K, Tamura G, Hara S. 1991. Construction of a fusion gene comprising the Taka-amylase A promoter and the Escherichia coli beta-glucuronidase gene and analysis of its expression in Aspergillus oryzae. Mol Gen Genet 229:301-306. https://doi.org/10.1007/BF00272170.
-
(1991)
Mol Gen Genet
, vol.229
, pp. 301-306
-
-
Tada, S.1
Gomi, K.2
Kitamoto, K.3
Takahashi, K.4
Tamura, G.5
Hara, S.6
-
12
-
-
0035230952
-
Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation
-
Felenbok B, Flipphi M, Nikolaev I. 2001. Ethanol catabolism in Aspergillus nidulans: a model system for studying gene regulation. Prog Nucleic Acid Res 69:149-204. https://doi.org/10.1016/S0079-6603(01)69047-0.
-
(2001)
Prog Nucleic Acid Res
, vol.69
, pp. 149-204
-
-
Felenbok, B.1
Flipphi, M.2
Nikolaev, I.3
-
13
-
-
79955603480
-
Fungal gene expression on demand: an inducible, tunable, and metabolism-independent expression system for Aspergillus niger
-
Meyer V, Wanka F, van Gent J, Arentshorst M, van den Hondel CA, Ram AFJ. 2011. Fungal gene expression on demand: an inducible, tunable, and metabolism-independent expression system for Aspergillus niger. Appl Environ Microbiol 77:2975-2983. https://doi.org/10.1128/AEM.02740-10.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 2975-2983
-
-
Meyer, V.1
Wanka, F.2
van Gent, J.3
Arentshorst, M.4
van den Hondel, C.A.5
Ram, A.F.J.6
-
14
-
-
84959222878
-
Characterizing MttA as a mitochondrial cis-aconitic acid transporter by metabolic engineering
-
Steiger MG, Punt PJ, Ram AF, Mattanovich D, Sauer M. 2016. Characterizing MttA as a mitochondrial cis-aconitic acid transporter by metabolic engineering. Metab Eng 35:95-104. https://doi.org/10.1016/j.ymben.2016.02.003.
-
(2016)
Metab Eng
, vol.35
, pp. 95-104
-
-
Steiger, M.G.1
Punt, P.J.2
Ram, A.F.3
Mattanovich, D.4
Sauer, M.5
-
15
-
-
38649100624
-
Regulation of transcription of cellulases-and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei)
-
Stricker AR, Mach RL, de Graaff LH. 2008. Regulation of transcription of cellulases-and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol 78: 211-220. https://doi.org/10.1007/s00253-007-1322-0.
-
(2008)
Appl Microbiol Biotechnol
, vol.78
, pp. 211-220
-
-
Stricker, A.R.1
Mach, R.L.2
de Graaff, L.H.3
-
16
-
-
66449127673
-
Systemic analysis of the response of Aspergillus niger to ambient pH
-
Andersen MR, Lehmann L, Nielsen J. 2009. Systemic analysis of the response of Aspergillus niger to ambient pH. Genome Biol 10:R47. https://doi.org/10.1186/gb-2009-10-5-r47.
-
(2009)
Genome Biol
, vol.10
-
-
Andersen, M.R.1
Lehmann, L.2
Nielsen, J.3
-
17
-
-
77957907451
-
An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data
-
Braaksma M, Martens-Uzunova ES, Punt PJ, Schaap PJ. 2010. An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics 11:584. https://doi.org/10.1186/1471-2164-11-584.
-
(2010)
BMC Genomics
, vol.11
, pp. 584
-
-
Braaksma, M.1
Martens-Uzunova, E.S.2
Punt, P.J.3
Schaap, P.J.4
-
18
-
-
23844499442
-
Optimization of pH controlled liquid hot water pretreatment of corn stover
-
Mosier N, Hendrickson R, Ho N, Sedlak M, Ladisch MR. 2005. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresour Technol 96:1986-1993. https://doi.org/10.1016/j.biortech.2005.01.013.
-
(2005)
Bioresour Technol
, vol.96
, pp. 1986-1993
-
-
Mosier, N.1
Hendrickson, R.2
Ho, N.3
Sedlak, M.4
Ladisch, M.R.5
-
19
-
-
0033801513
-
A glucoamylase::GFP gene fusion to study protein secretion by individual hyphae of Aspergillus niger
-
Gordon CL, Archer DB, Jeenes DJ, Doonan JH, Wells B, Trinci APJ, Robson GD. 2000. A glucoamylase::GFP gene fusion to study protein secretion by individual hyphae of Aspergillus niger. J Microbiol Methods 42:39-48. https://doi.org/10.1016/S0167-7012(00)00170-6.
-
(2000)
J Microbiol Methods
, vol.42
, pp. 39-48
-
-
Gordon, C.L.1
Archer, D.B.2
Jeenes, D.J.3
Doonan, J.H.4
Wells, B.5
Trinci, A.P.J.6
Robson, G.D.7
-
20
-
-
18044402161
-
Green fluorescent protein is lighting up fungal biology
-
Lorang JM, Tuori RP, Martinez JP, Sawyer TL, Redman RS, Rollins JA, Wolpert TJ, Johnson KB, Rodriguez RJ, Dickman MB, Ciuffetti LM. 2001. Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67:1987-1994. https://doi.org/10.1128/AEM.67.5.1987-1994.2001.
-
(2001)
Appl Environ Microbiol
, vol.67
, pp. 1987-1994
-
-
Lorang, J.M.1
Tuori, R.P.2
Martinez, J.P.3
Sawyer, T.L.4
Redman, R.S.5
Rollins, J.A.6
Wolpert, T.J.7
Johnson, K.B.8
Rodriguez, R.J.9
Dickman, M.B.10
Ciuffetti, L.M.11
-
21
-
-
84876478562
-
Itaconic acid: a biotechnological process in change
-
Klement T, Buchs J. 2013. Itaconic acid: a biotechnological process in change. Bioresour Technol 135:422-431. https://doi.org/10.1016/j.biortech.2012.11.141.
-
(2013)
Bioresour Technol
, vol.135
, pp. 422-431
-
-
Klement, T.1
Buchs, J.2
-
22
-
-
48349107488
-
Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus
-
Kanamasa S, Dwiarti L, Okabe M, Park EY. 2008. Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biotechnol 80:223-229. https://doi.org/10.1007/s00253-008-1523-1.
-
(2008)
Appl Microbiol Biotechnol
, vol.80
, pp. 223-229
-
-
Kanamasa, S.1
Dwiarti, L.2
Okabe, M.3
Park, E.Y.4
-
23
-
-
84879292930
-
Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger
-
Blumhoff ML, Steiger MG, Mattanovich D, Sauer M. 2013. Targeting enzymes to the right compartment: metabolic engineering for itaconic acid production by Aspergillus niger. Metab Eng 19:26-32. https://doi.org/10.1016/j.ymben.2013.05.003.
-
(2013)
Metab Eng
, vol.19
, pp. 26-32
-
-
Blumhoff, M.L.1
Steiger, M.G.2
Mattanovich, D.3
Sauer, M.4
-
24
-
-
84865322864
-
Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization
-
Li A, Pfelzer N, Zuijderwijk R, Punt P. 2012. Enhanced itaconic acid production in Aspergillus niger using genetic modification and medium optimization. BMC Biotechnol 12:57. https://doi.org/10.1186/1472-6750-12-57.
-
(2012)
BMC Biotechnol
, vol.12
, pp. 57
-
-
Li, A.1
Pfelzer, N.2
Zuijderwijk, R.3
Punt, P.4
-
25
-
-
84881027272
-
Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters
-
Kovalchuk N, Jia W, Eini O, Morran S, Pyvovarenko T, Fletcher S, Bazanova N, Harris J, Beck-Oldach K, Shavrukov Y, Langridge P, Lopato S. 2013. Optimization of TaDREB3 gene expression in transgenic barley using cold-inducible promoters. Plant Biotechnol J 11:659-670. https://doi.org/10.1111/pbi.12056.
-
(2013)
Plant Biotechnol J
, vol.11
, pp. 659-670
-
-
Kovalchuk, N.1
Jia, W.2
Eini, O.3
Morran, S.4
Pyvovarenko, T.5
Fletcher, S.6
Bazanova, N.7
Harris, J.8
Beck-Oldach, K.9
Shavrukov, Y.10
Langridge, P.11
Lopato, S.12
-
26
-
-
84864537150
-
The carbon starvation response of Aspergillus niger during submerged cultivation: insights from the transcriptome and secretome
-
Nitsche BM, Jorgensen TR, Akeroyd M, Meyer V, Ram AF. 2012. The carbon starvation response of Aspergillus niger during submerged cultivation: insights from the transcriptome and secretome. BMC Genomics 13:380. https://doi.org/10.1186/1471-2164-13-380.
-
(2012)
BMC Genomics
, vol.13
, pp. 380
-
-
Nitsche, B.M.1
Jorgensen, T.R.2
Akeroyd, M.3
Meyer, V.4
Ram, A.F.5
-
27
-
-
84871292787
-
Regulation of fungal secondary metabolism
-
Brakhage AA. 2013. Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21-32. https://doi.org/10.1038/nrmicro2916.
-
(2013)
Nat Rev Microbiol
, vol.11
, pp. 21-32
-
-
Brakhage, A.A.1
-
28
-
-
33947635689
-
Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling
-
Papagianni M. 2007. Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling. Biotechnol Adv 25:244-263. https://doi.org/10.1016/j.biotechadv.2007.01.002.
-
(2007)
Biotechnol Adv
, vol.25
, pp. 244-263
-
-
Papagianni, M.1
-
29
-
-
0032931983
-
Molecular characterization of the pH-inducible and growth phase-dependent promoter P170 of Lactococcus lactis
-
Madsen SM, Arnau J, Vrang A, Givskov M, Israelsen H. 1999. Molecular characterization of the pH-inducible and growth phase-dependent promoter P170 of Lactococcus lactis. Mol Microbiol 32:75-87. https://doi.org/10.1046/j.1365-2958.1999.01326.x.
-
(1999)
Mol Microbiol
, vol.32
, pp. 75-87
-
-
Madsen, S.M.1
Arnau, J.2
Vrang, A.3
Givskov, M.4
Israelsen, H.5
-
30
-
-
17644397319
-
Two acid-inducible promoters from Lactococcus lactis require the cis-acting ACiD-box and the transcription regulator RcfB
-
Madsen SM, Hindre T, Le Pennec JP, Israelsen H, Dufour A. 2005. Two acid-inducible promoters from Lactococcus lactis require the cis-acting ACiD-box and the transcription regulator RcfB. Mol Microbiol 56: 735-746. https://doi.org/10.1111/j.1365-2958.2005.04572.x.
-
(2005)
Mol Microbiol
, vol.56
, pp. 735-746
-
-
Madsen, S.M.1
Hindre, T.2
Le Pennec, J.P.3
Israelsen, H.4
Dufour, A.5
-
31
-
-
20344396385
-
Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes
-
Kanhere A, Bansal M. 2005. Structural properties of promoters: similarities and differences between prokaryotes and eukaryotes. Nucleic Acids Res 33:3165-3175. https://doi.org/10.1093/nar/gki627.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 3165-3175
-
-
Kanhere, A.1
Bansal, M.2
-
32
-
-
27144555357
-
Regulation of translation via mRNA structure in prokaryotes and eukaryotes
-
Kozak M. 2005. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13-37. https://doi.org/10.1016/j.gene.2005.06.037.
-
(2005)
Gene
, vol.361
, pp. 13-37
-
-
Kozak, M.1
-
33
-
-
84923868017
-
Metabolic engineering of itaconate production in Escherichia coli
-
Vuoristo KS, Mars AE, Sangra JV, Springer J, Eggink G, Sanders JP, Weusthuis RA. 2015. Metabolic engineering of itaconate production in Escherichia coli. Appl Microbiol Biotechnol 99:221-228. https://doi.org/10.1007/s00253-014-6092-x.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 221-228
-
-
Vuoristo, K.S.1
Mars, A.E.2
Sangra, J.V.3
Springer, J.4
Eggink, G.5
Sanders, J.P.6
Weusthuis, R.A.7
-
34
-
-
84942086056
-
Metabolic engineering of Corynebacterium glutamicum for the production of itaconate
-
Otten A, Brocker M, Bott M. 2015. Metabolic engineering of Corynebacterium glutamicum for the production of itaconate. Metab Eng 30: 156-165. https://doi.org/10.1016/j.ymben.2015.06.003.
-
(2015)
Metab Eng
, vol.30
, pp. 156-165
-
-
Otten, A.1
Brocker, M.2
Bott, M.3
-
35
-
-
84925540644
-
Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production
-
Blazeck J, Miller J, Pan A, Gengler J, Holden C, Jamoussi M, Alper HS. 2014. Metabolic engineering of Saccharomyces cerevisiae for itaconic acid production. Appl Microbiol Biotechnol 98:8155-8164. https://doi.org/10.1007/s00253-014-5895-0.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 8155-8164
-
-
Blazeck, J.1
Miller, J.2
Pan, A.3
Gengler, J.4
Holden, C.5
Jamoussi, M.6
Alper, H.S.7
-
36
-
-
84942598369
-
Metabolic engineering of Yarrowia lipolytica for itaconic acid production
-
Blazeck J, Hill A, Jamoussi M, Pan A, Miller J, Alper HS. 2015. Metabolic engineering of Yarrowia lipolytica for itaconic acid production. Metab Eng 32:66-73. https://doi.org/10.1016/j.ymben.2015.09.005.
-
(2015)
Metab Eng
, vol.32
, pp. 66-73
-
-
Blazeck, J.1
Hill, A.2
Jamoussi, M.3
Pan, A.4
Miller, J.5
Alper, H.S.6
-
37
-
-
84892459727
-
Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger
-
van der Straat L, Vernooij M, Lammers M, van den Berg W, Schonewille T, Cordewener J, van der Meer I, Koops A, de Graaff LH. 2014. Expression of the Aspergillus terreus itaconic acid biosynthesis cluster in Aspergillus niger. Microb Cell Fact 13:11. https://doi.org/10.1186/1475-2859-13-11.
-
(2014)
Microb Cell Fact
, vol.13
, pp. 11
-
-
van der Straat, L.1
Vernooij, M.2
Lammers, M.3
van den Berg, W.4
Schonewille, T.5
Cordewener, J.6
van der Meer, I.7
Koops, A.8
de Graaff, L.H.9
-
38
-
-
84885900438
-
Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger
-
Li A, Pfelzer N, Zuijderwijk R, Brickwedde A, van Zeijl C, Punt P. 2013. Reduced by-product formation and modified oxygen availability improve itaconic acid production in Aspergillus niger. Appl Microbiol Biotechnol 97:3901-3911. https://doi.org/10.1007/s00253-012-4684-x.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, pp. 3901-3911
-
-
Li, A.1
Pfelzer, N.2
Zuijderwijk, R.3
Brickwedde, A.4
van Zeijl, C.5
Punt, P.6
-
39
-
-
84979598465
-
Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger
-
Hossain AH, Li A, Brickwedde A, Wilms L, Caspers M, Overkamp K, Punt PJ. 2016. Rewiring a secondary metabolite pathway towards itaconic acid production in Aspergillus niger. Microb Cell Fact 15:130. https://doi.org/10.1186/s12934-016-0527-2.
-
(2016)
Microb Cell Fact
, vol.15
, pp. 130
-
-
Hossain, A.H.1
Li, A.2
Brickwedde, A.3
Wilms, L.4
Caspers, M.5
Overkamp, K.6
Punt, P.J.7
-
40
-
-
84869102255
-
A dynamic metabolite valve for the control of central carbon metabolism
-
Solomon KV, Sanders TM, Prather KL. 2012. A dynamic metabolite valve for the control of central carbon metabolism. Metab Eng 14:661-671. https://doi.org/10.1016/j.ymben.2012.08.006.
-
(2012)
Metab Eng
, vol.14
, pp. 661-671
-
-
Solomon, K.V.1
Sanders, T.M.2
Prather, K.L.3
-
41
-
-
84859633048
-
Design of a dynamic sensorregulator system for production of chemicals and fuels derived from fatty acids
-
Zhang F, Carothers JM, Keasling JD. 2012. Design of a dynamic sensorregulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354-359. https://doi.org/10.1038/nbt.2149.
-
(2012)
Nat Biotechnol
, vol.30
, pp. 354-359
-
-
Zhang, F.1
Carothers, J.M.2
Keasling, J.D.3
-
42
-
-
84905668376
-
Improving fatty acids production by engineering dynamic pathway regulation and metabolic control
-
Xu P, Li L, Zhang F, Stephanopoulos G, Koffas M. 2014. Improving fatty acids production by engineering dynamic pathway regulation and metabolic control. Proc Natl Acad Sci U S A 111:11299-11304. https://doi.org/10.1073/pnas.1406401111.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 11299-11304
-
-
Xu, P.1
Li, L.2
Zhang, F.3
Stephanopoulos, G.4
Koffas, M.5
-
43
-
-
84865610553
-
Genetically switched D-lactate production in Escherichia coli
-
Zhou L, Niu DD, Tian KM, Chen XZ, Prior BA, Shen W, Shi GY, Singh S, Wang ZX. 2012. Genetically switched D-lactate production in Escherichia coli. Metab Eng 14:560-568. https://doi.org/10.1016/j.ymben.2012.05.004.
-
(2012)
Metab Eng
, vol.14
, pp. 560-568
-
-
Zhou, L.1
Niu, D.D.2
Tian, K.M.3
Chen, X.Z.4
Prior, B.A.5
Shen, W.6
Shi, G.Y.7
Singh, S.8
Wang, Z.X.9
-
44
-
-
84925639589
-
Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae
-
Williams TC, Averesch NJ, Winter G, Plan MR, Vickers CE, Nielsen LK, Kromer JO. 2015. Quorum-sensing linked RNA interference for dynamic metabolic pathway control in Saccharomyces cerevisiae. Metab Eng 29: 124-134. https://doi.org/10.1016/j.ymben.2015.03.008.
-
(2015)
Metab Eng
, vol.29
, pp. 124-134
-
-
Williams, T.C.1
Averesch, N.J.2
Winter, G.3
Plan, M.R.4
Vickers, C.E.5
Nielsen, L.K.6
Kromer, J.O.7
-
45
-
-
80052686689
-
Transcription of the Hsp30, Hsp70, and Hsp90 heat shock protein genes is modulated by the PalA protein in response to acid pH-sensing in the fungus Aspergillus nidulans
-
Freitas JS, Silva EM, Leal J, Gras DE, Martinez-Rossi NM, dos Santos LD, Palma MS, Rossi A. 2011. Transcription of the Hsp30, Hsp70, and Hsp90 heat shock protein genes is modulated by the PalA protein in response to acid pH-sensing in the fungus Aspergillus nidulans. Cell Stress Chaperones 16:565-572. https://doi.org/10.1007/s12192-011-0267-5.
-
(2011)
Cell Stress Chaperones
, vol.16
, pp. 565-572
-
-
Freitas, J.S.1
Silva, E.M.2
Leal, J.3
Gras, D.E.4
Martinez-Rossi, N.M.5
dos Santos, L.D.6
Palma, M.S.7
Rossi, A.8
-
46
-
-
34250827096
-
Further characterization of the signaling proteolysis step in the Aspergillus nidulans pH signal transduction pathway
-
Penas MM, Hervas-Aguilar A, Munera-Huertas T, Reoyo E, Penalva MA, Arst HN, Tilburn J. 2007. Further characterization of the signaling proteolysis step in the Aspergillus nidulans pH signal transduction pathway. Eukaryot Cell 6:960-970. https://doi.org/10.1128/EC.00047-07.
-
(2007)
Eukaryot Cell
, vol.6
, pp. 960-970
-
-
Penas, M.M.1
Hervas-Aguilar, A.2
Munera-Huertas, T.3
Reoyo, E.4
Penalva, M.A.5
Arst, H.N.6
Tilburn, J.7
-
47
-
-
33645120423
-
Cell wall assembly in Saccharomyces cerevisiae
-
Lesage G, Bussey H. 2006. Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317-343. https://doi.org/10.1128/MMBR.00038-05.
-
(2006)
Microbiol Mol Biol Rev
, vol.70
, pp. 317-343
-
-
Lesage, G.1
Bussey, H.2
-
48
-
-
80055111500
-
Putative stress sensors WscA and WscB are involved in hypo-osmotic and acidic pH stress tolerance in Aspergillus nidulans
-
Futagami T, Nakao S, Kido Y, Oka T, Kajiwara Y, Takashita H, Omori T, Furukawa K, Goto M. 2011. Putative stress sensors WscA and WscB are involved in hypo-osmotic and acidic pH stress tolerance in Aspergillus nidulans. Eukaryot Cell 10:1504-1515. https://doi.org/10.1128/EC.05080-11.
-
(2011)
Eukaryot Cell
, vol.10
, pp. 1504-1515
-
-
Futagami, T.1
Nakao, S.2
Kido, Y.3
Oka, T.4
Kajiwara, Y.5
Takashita, H.6
Omori, T.7
Furukawa, K.8
Goto, M.9
-
49
-
-
84872292121
-
Six novel constitutive promoters for metabolic engineering of Aspergillus niger
-
Blumhoff M, Steiger MG, Marx H, Mattanovich D, Sauer M. 2013. Six novel constitutive promoters for metabolic engineering of Aspergillus niger. Appl Microbiol Biotechnol 97:259-267. https://doi.org/10.1007/s00253-012-4207-9.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, pp. 259-267
-
-
Blumhoff, M.1
Steiger, M.G.2
Marx, H.3
Mattanovich, D.4
Sauer, M.5
-
50
-
-
0030111369
-
Engineered GFP as a vital reporter in plants
-
Chiu WL, Niwa Y, Zeng W, Hirano T, Kobayashi H, Sheen J. 1996. Engineered GFP as a vital reporter in plants. Curr Biol 6:325-330. https://doi.org/10.1016/S0960-9822(02)00483-9.
-
(1996)
Curr Biol
, vol.6
, pp. 325-330
-
-
Chiu, W.L.1
Niwa, Y.2
Zeng, W.3
Hirano, T.4
Kobayashi, H.5
Sheen, J.6
-
51
-
-
15244356999
-
Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR
-
Yang L, Ding J, Zhang C, Jia J, Weng H, Liu W, Zhang D. 2005. Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Rep 23:759-763. https://doi.org/10.1007/s00299-004-0881-0.
-
(2005)
Plant Cell Rep
, vol.23
, pp. 759-763
-
-
Yang, L.1
Ding, J.2
Zhang, C.3
Jia, J.4
Weng, H.5
Liu, W.6
Zhang, D.7
-
52
-
-
34248638739
-
Silver staining of proteins in polyacrylamide gels
-
Chevallet M, Luche S, Rabilloud T. 2006. Silver staining of proteins in polyacrylamide gels. Nat Protoc 1:1852-1858. https://doi.org/10.1038/nprot.2006.288.
-
(2006)
Nat Protoc
, vol.1
, pp. 1852-1858
-
-
Chevallet, M.1
Luche, S.2
Rabilloud, T.3
-
53
-
-
79954632227
-
A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus
-
Li A, van Luijk N, ter Beek M, Caspers M, Punt P, van der Werf M. 2011. A clone-based transcriptomics approach for the identification of genes relevant for itaconic acid production in Aspergillus. Fungal Genet Biol 48:602-611. https://doi.org/10.1016/j.fgb.2011.01.013.
-
(2011)
Fungal Genet Biol
, vol.48
, pp. 602-611
-
-
Li, A.1
van Luijk, N.2
Ter Beek, M.3
Caspers, M.4
Punt, P.5
van der Werf, M.6
|