-
5
-
-
84901250680
-
Joint embedding learning and sparse regression: A framework for unsupervised feature selection
-
Hou, C.; Nie, F.; Li, X.; Yi, D.; and Wu, Y. 2014. Joint embedding learning and sparse regression: A framework for unsupervised feature selection. IEEE Trans. Cybernetics 44(6):793-804.
-
(2014)
IEEE Trans. Cybernetics
, vol.44
, Issue.6
, pp. 793-804
-
-
Hou, C.1
Nie, F.2
Li, X.3
Yi, D.4
Wu, Y.5
-
6
-
-
0028428774
-
A database for handwritten text recognition research
-
Hull, J. J. 1994. A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5):550-554.
-
(1994)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.16
, Issue.5
, pp. 550-554
-
-
Hull, J.J.1
-
7
-
-
0034954414
-
Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
-
Khan, J.; Wei, J. S.; Ringner, M.; Saal, L. H.; Ladanyi, M.; Westermann, F.; Berthold, F.; Schwab, M.; Antonescu, C. R.; Peterson, C.; and Meltzer, P. S. 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 7:673-679.
-
(2001)
Nat Med
, vol.7
, pp. 673-679
-
-
Khan, J.1
Wei, J.S.2
Ringner, M.3
Saal, L.H.4
Ladanyi, M.5
Westermann, F.6
Berthold, F.7
Schwab, M.8
Antonescu, C.R.9
Peterson, C.10
Meltzer, P.S.11
-
8
-
-
84868284545
-
Unsupervised feature selection using nonnegative spectral analysis
-
Li, Z.; Yang, Y.; Liu, J.; Zhou, X.; and Lu, H. 2012. Unsupervised feature selection using nonnegative spectral analysis. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence.
-
(2012)
Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence
-
-
Li, Z.1
Yang, Y.2
Liu, J.3
Zhou, X.4
Lu, H.5
-
9
-
-
84875384168
-
Efficient semisupervised feature selection with noise insensitive trace ratio criterion
-
Liu, Y.; Nie, F.; Wu, J.; and Chen, L. 2013. Efficient semisupervised feature selection with noise insensitive trace ratio criterion. Neurocomputing 105:12-18.
-
(2013)
Neurocomputing
, vol.105
, pp. 12-18
-
-
Liu, Y.1
Nie, F.2
Wu, J.3
Chen, L.4
-
11
-
-
0001216057
-
The laplacian spectrum of graphs
-
Mohar, B.; Alavi, Y.; Chartrand, G.; and Oellermann, O. 1991. The laplacian spectrum of graphs. Graph theory, combinatorics, and applications 2:871-898.
-
(1991)
Graph Theory, Combinatorics, and Applications
, vol.2
, pp. 871-898
-
-
Mohar, B.1
Alavi, Y.2
Chartrand, G.3
Oellermann, O.4
-
13
-
-
85135939782
-
Efficient and robust feature selection via joint ℓ 2, 1-norms minimization
-
Nie, F.; Huang, H.; Cai, X.; and Ding, C. H. Q. 2010a. Efficient and robust feature selection via joint ℓ 2, 1-norms minimization. In Advances in Neural Information Processing Systems, 1813-1821.
-
(2010)
Advances in Neural Information Processing Systems
, pp. 1813-1821
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.H.Q.4
-
14
-
-
77953705810
-
Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction
-
Nie, F.; Xu, D.; Tsang, I.W.; and Zhang, C. 2010b. Flexible manifold embedding: A framework for semi-supervised and unsupervised dimension reduction. IEEE Transactions on Image Processing 19(7):1921-1932.
-
(2010)
IEEE Transactions on Image Processing
, vol.19
, Issue.7
, pp. 1921-1932
-
-
Nie, F.1
Xu, D.2
Tsang, I.W.3
Zhang, C.4
-
17
-
-
84936931917
-
Robust spectral learning for unsupervised feature selection
-
Shi, L.; Du, L.; and Shen, Y. 2014. Robust spectral learning for unsupervised feature selection. In 2014 IEEE International Conference on Data Mining, ICDM 2014, 977-982.
-
(2014)
2014 IEEE International Conference on Data Mining, ICDM 2014
, pp. 977-982
-
-
Shi, L.1
Du, L.2
Shen, Y.3
-
18
-
-
19044391072
-
Gene expression correlates of clinical prostate cancer behavior
-
Singh, D.; Febbo, P. G.; Ross, K.; Jackson, D. G.; Manola, J.; Ladd, C.; Tamayo, P.; Renshaw, A. A.; D'Amico, A. V.; Richie, J. P.; Lander, E. S.; Loda, M.; Kantoff, P. W.; Golub, T. R.; and Sellers, W. R. 2002. Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1(2):203 - 209.
-
(2002)
Cancer Cell
, vol.1
, Issue.2
, pp. 203-209
-
-
Singh, D.1
Febbo, P.G.2
Ross, K.3
Jackson, D.G.4
Manola, J.5
Ladd, C.6
Tamayo, P.7
Renshaw, A.A.8
D'Amico, A.V.9
Richie, J.P.10
Lander, E.S.11
Loda, M.12
Kantoff, P.W.13
Golub, T.R.14
Sellers, W.R.15
-
19
-
-
84900460549
-
An unsupervised feature selection algorithm based on ant colony optimization
-
Tabakhi, S.; Moradi, P.; and Akhlaghian, F. 2014. An unsupervised feature selection algorithm based on ant colony optimization. Eng. Appl. of AI 32:112-123.
-
(2014)
Eng. Appl. of AI
, vol.32
, pp. 112-123
-
-
Tabakhi, S.1
Moradi, P.2
Akhlaghian, F.3
-
20
-
-
84949786170
-
Discriminative unsupervised dimensionality reduction
-
AAAI Press
-
Wang, X.; Liu, Y.; Nie, F.; and Huang, H. 2015. Discriminative unsupervised dimensionality reduction. In Proceedings of the 24th International Conference on Artificial Intelligence, 3925-3931. AAAI Press.
-
(2015)
Proceedings of the 24th International Conference on Artificial Intelligence
, pp. 3925-3931
-
-
Wang, X.1
Liu, Y.2
Nie, F.3
Huang, H.4
-
22
-
-
84941563168
-
Feature selection via global redundancy minimization
-
Wang, D.; Nie, F.; and Huang, H. 2015. Feature selection via global redundancy minimization. Knowledge and Data Engineering, IEEE Transactions on 27(10):2743-2755.
-
(2015)
Knowledge and Data Engineering, IEEE Transactions on
, vol.27
, Issue.10
, pp. 2743-2755
-
-
Wang, D.1
Nie, F.2
Huang, H.3
-
24
-
-
84881041271
-
2, 1-norm regularized discriminative feature selection for unsupervised learning
-
Barcelona, Catalonia, Spain, July, -, 2011
-
2, 1-norm regularized discriminative feature selection for unsupervised learning. In IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, 1589-1594.
-
(2011)
IJCAI 2011, Proceedings of the 22nd International Joint Conference on Artificial Intelligence
, vol.16-22
, pp. 1589-1594
-
-
Yang, Y.1
Shen, H.T.2
Ma, Z.3
Huang, Z.4
Zhou, X.5
|