-
1
-
-
0003922190
-
Pattern Classification
-
John Wiley & Sons
-
[1] Duda, R.O., Hart, P.E., Stork, D.G., Pattern Classification. 2012, John Wiley & Sons.
-
(2012)
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
2
-
-
84873278481
-
On similarity preserving feature selection
-
[2] Zhao, Z., Wang, L., Liu, H., Ye, J., On similarity preserving feature selection. IEEE Trans. Knowl. Data Eng. 25:3 (2013), 619–632.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.3
, pp. 619-632
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
Ye, J.4
-
3
-
-
24344458137
-
Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
-
[3] Peng, H., Long, F., Ding, C., Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27:8 (2005), 1226–1238.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
4
-
-
77955397866
-
Local-learning-based feature selection for high-dimensional data analysis
-
[4] Sun, Y., Todorovic, S., Goodison, S., Local-learning-based feature selection for high-dimensional data analysis. IEEE Trans. Pattern Anal. Mach. Intell. 32:9 (2010), 1610–1626.
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.9
, pp. 1610-1626
-
-
Sun, Y.1
Todorovic, S.2
Goodison, S.3
-
5
-
-
85162011407
-
-
2,1-norms minimization, in: Advances in Neural Information Processing Systems
-
2,1-norms minimization, in: Advances in Neural Information Processing Systems, 2010, pp. 1813–1821.
-
(2010)
, pp. 1813-1821
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.H.4
-
6
-
-
57749182885
-
Trace ratio criterion for feature selection
-
[6] F. Nie, S. Xiang, Y. Jia, C. Zhang, S. Yan, Trace ratio criterion for feature selection, in: AAAI, vol. 2, 2008, pp. 671–676.
-
(2008)
AAAI
, vol.2
, pp. 671-676
-
-
Nie, F.1
Xiang, S.2
Jia, Y.3
Zhang, C.4
Yan, S.5
-
7
-
-
84864039505
-
Laplacian score for feature selection
-
[7] X. He, D. Cai, P. Niyogi, Laplacian score for feature selection, in: Advances in Neural Information Processing Systems, 2005, pp. 507–514.
-
(2005)
Advances in Neural Information Processing Systems
, pp. 507-514
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
8
-
-
34547981441
-
Spectral feature selection for supervised and unsupervised learning
-
[8] Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learning, in: Proceedings of the 24th International Conference on Machine Learning, ACM, 2007, pp. 1151–1157.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning, ACM
, pp. 1151-1157
-
-
Zhao, Z.1
Liu, H.2
-
9
-
-
77956216411
-
Unsupervised feature selection for multi-cluster data
-
[9] D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2010, pp. 333–342.
-
(2010)
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM
, pp. 333-342
-
-
Cai, D.1
Zhang, C.2
He, X.3
-
10
-
-
84901250680
-
Joint embedding learning and sparse regression: a framework for unsupervised feature selection
-
[10] Hou, C., Nie, F., Li, X., Yi, D., Wu, Y., Joint embedding learning and sparse regression: a framework for unsupervised feature selection. IEEE Trans. Cybern. 44:6 (2014), 793–804.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.6
, pp. 793-804
-
-
Hou, C.1
Nie, F.2
Li, X.3
Yi, D.4
Wu, Y.5
-
11
-
-
77954565155
-
Discriminative semi-supervised feature selection via manifold regularization
-
[11] Xu, Z., King, I., Lyu, M.-T., Jin, R., Discriminative semi-supervised feature selection via manifold regularization. IEEE Trans. Neural Netw. 21:7 (2010), 1033–1047.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, Issue.7
, pp. 1033-1047
-
-
Xu, Z.1
King, I.2
Lyu, M.-T.3
Jin, R.4
-
12
-
-
44649111202
-
Locality sensitive semi-supervised feature selection
-
[12] Zhao, J., Lu, K., He, X., Locality sensitive semi-supervised feature selection. Neurocomputing 71:10 (2008), 1842–1849.
-
(2008)
Neurocomputing
, vol.71
, Issue.10
, pp. 1842-1849
-
-
Zhao, J.1
Lu, K.2
He, X.3
-
13
-
-
70449102559
-
Semi-supervised feature selection via spectral analysis
-
[13] Z. Zhao, H. Liu, Semi-supervised feature selection via spectral analysis, in: SDM, SIAM, 2007, pp. 641–646.
-
(2007)
SDM, SIAM
, pp. 641-646
-
-
Zhao, Z.1
Liu, H.2
-
14
-
-
84875384168
-
Efficient semi-supervised feature selection with noise insensitive trace ratio criterion
-
[14] Liu, Y., Nie, F., Wu, J., Chen, L., Efficient semi-supervised feature selection with noise insensitive trace ratio criterion. Neurocomputing 105 (2013), 12–18.
-
(2013)
Neurocomputing
, vol.105
, pp. 12-18
-
-
Liu, Y.1
Nie, F.2
Wu, J.3
Chen, L.4
-
15
-
-
13444286179
-
Locality preserving projections
-
Neural Information Processing Systems, vol. 16, MIT, 2004, p. 153.
-
[15] X. Niyogi, Locality preserving projections, in: Neural Information Processing Systems, vol. 16, MIT, 2004, p. 153.
-
-
-
Niyogi, X.1
-
16
-
-
0031187307
-
Face recognition: the problem of compensating for changes in illumination direction
-
[16] Adini, Y., Moses, Y., Ullman, S., Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans. Pattern Anal. Mach. Intell. 19:7 (1997), 721–732.
-
(1997)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.19
, Issue.7
, pp. 721-732
-
-
Adini, Y.1
Moses, Y.2
Ullman, S.3
-
17
-
-
0032305056
-
Comparing images under variable illumination
-
[17] D.W. Jacobs, P.N. Belhumeur, R. Basri, Comparing images under variable illumination, in: Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 1998, pp. 610–617.
-
(1998)
Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE
, pp. 610-617
-
-
Jacobs, D.W.1
Belhumeur, P.N.2
Basri, R.3
-
18
-
-
0032114647
-
What is the set of images of an object under all possible illumination conditions?
-
[18] Belhumeur, P.N., Kriegman, D.J., What is the set of images of an object under all possible illumination conditions?. Int. J. Comput. Vis. 28:3 (1998), 245–260.
-
(1998)
Int. J. Comput. Vis.
, vol.28
, Issue.3
, pp. 245-260
-
-
Belhumeur, P.N.1
Kriegman, D.J.2
-
19
-
-
0026925324
-
New spectral methods for ratio cut partitioning and clustering
-
[19] Hagen, L., Kahng, A.B., New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 11:9 (1992), 1074–1085.
-
(1992)
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
, vol.11
, Issue.9
, pp. 1074-1085
-
-
Hagen, L.1
Kahng, A.B.2
-
20
-
-
33749245328
-
Higher order learning with graphs
-
[20] S. Agarwal, K. Branson, S. Belongie, Higher order learning with graphs, in: Proceedings of the 23rd international conference on Machine learning, ACM, 2006, pp. 17–24.
-
(2006)
Proceedings of the 23rd international conference on Machine learning, ACM
, pp. 17-24
-
-
Agarwal, S.1
Branson, K.2
Belongie, S.3
-
21
-
-
84864027458
-
Learning with hypergraphs: clustering, classification, and embedding
-
[21] D. Zhou, J. Huang, B. Schölkopf, Learning with hypergraphs: clustering, classification, and embedding, in: Advances in Neural Information Processing Systems, 2006, pp. 1601–1608.
-
(2006)
Advances in Neural Information Processing Systems
, pp. 1601-1608
-
-
Zhou, D.1
Huang, J.2
Schölkopf, B.3
-
22
-
-
0034133769
-
Clustering categorical data: an approach based on dynamical systems
-
[22] Gibson, D., Kleinberg, J., Raghavan, P., Clustering categorical data: an approach based on dynamical systems. VLDB J. 8:3–4 (2000), 222–236.
-
(2000)
VLDB J.
, vol.8
, Issue.3-4
, pp. 222-236
-
-
Gibson, D.1
Kleinberg, J.2
Raghavan, P.3
-
23
-
-
24644523726
-
Beyond pairwise clustering
-
[23] S. Agarwal, J. Lim, L. Zelnik-Manor, P. Perona, D. Kriegman, S. Belongie, Beyond pairwise clustering, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, IEEE, 2005, pp. 838–845.
-
(2005)
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, IEEE
, pp. 838-845
-
-
Agarwal, S.1
Lim, J.2
Zelnik-Manor, L.3
Perona, P.4
Kriegman, D.5
Belongie, S.6
-
24
-
-
65449185036
-
Hypergraph spectral learning for multi-label classification
-
[24] L. Sun, S. Ji, J. Ye, Hypergraph spectral learning for multi-label classification, in: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2008, pp. 668–676.
-
(2008)
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM
, pp. 668-676
-
-
Sun, L.1
Ji, S.2
Ye, J.3
-
25
-
-
0003882879
-
Spectral Graph Theory
-
American Mathematical Society
-
[25] Chung, F.R., Spectral Graph Theory. 1997, American Mathematical Society.
-
(1997)
-
-
Chung, F.R.1
-
26
-
-
79955476520
-
Unsupervised image categorization by hypergraph partition
-
[26] Huang, Y., Liu, Q., Lv, F., Gong, Y., Metaxas, D.N., Unsupervised image categorization by hypergraph partition. IEEE Trans. Pattern Anal. Mach. Intell. 33:6 (2011), 1266–1273.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.33
, Issue.6
, pp. 1266-1273
-
-
Huang, Y.1
Liu, Q.2
Lv, F.3
Gong, Y.4
Metaxas, D.N.5
-
27
-
-
0042378381
-
Laplacian eigenmaps for dimensionality reduction and data representation
-
[27] Belkin, M., Niyogi, P., Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15:6 (2003), 1373–1396.
-
(2003)
Neural Comput.
, vol.15
, Issue.6
, pp. 1373-1396
-
-
Belkin, M.1
Niyogi, P.2
-
28
-
-
84866678530
-
Feature selection via joint embedding learning and sparse regression
-
[28] C. Hou, F. Nie, D. Yi, Y. Wu, Feature selection via joint embedding learning and sparse regression, in: Proceedings of the International Joint Conference on Artificial Intelligence, vol. 22, Citeseer, 2011, pp. 1324–1330.
-
(2011)
Proceedings of the International Joint Conference on Artificial Intelligence, vol. 22, Citeseer
, pp. 1324-1330
-
-
Hou, C.1
Nie, F.2
Yi, D.3
Wu, Y.4
-
29
-
-
0032595820
-
Multilevel spectral hypergraph partitioning with arbitrary vertex sizes
-
[29] Zien, J.Y., Schlag, M.D., Chan, P.K., Multilevel spectral hypergraph partitioning with arbitrary vertex sizes. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 18:9 (1999), 1389–1399.
-
(1999)
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.
, vol.18
, Issue.9
, pp. 1389-1399
-
-
Zien, J.Y.1
Schlag, M.D.2
Chan, P.K.3
-
30
-
-
61549128441
-
Robust face recognition via sparse representation
-
[30] Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y., Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31:2 (2009), 210–227.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.2
, pp. 210-227
-
-
Wright, J.1
Yang, A.Y.2
Ganesh, A.3
Sastry, S.S.4
Ma, Y.5
-
31
-
-
84870535269
-
Joint feature selection and subspace learning
-
[31] Q. Gu, Z. Li, J. Han, Joint feature selection and subspace learning, in: Proceedings-International Joint Conference on Artificial Intelligence, vol. 22, 2011, pp. 1294–1299.
-
(2011)
Proceedings-International Joint Conference on Artificial Intelligence
, vol.22
, pp. 1294-1299
-
-
Gu, Q.1
Li, Z.2
Han, J.3
-
32
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
[32] Roweis, S.T., Saul, L.K., Nonlinear dimensionality reduction by locally linear embedding. Science 290:5500 (2000), 2323–2326.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
33
-
-
33750729556
-
Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
-
[33] Belkin, M., Niyogi, P., Sindhwani, V., Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7 (2006), 2399–2434.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
34
-
-
70450196751
-
Video object segmentation by hypergraph cut
-
[34] Y. Huang, Q. Liu, D. Metaxas, Video object segmentation by hypergraph cut, in: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2009, pp. 1738–1745.
-
(2009)
IEEE Conference on Computer Vision and Pattern Recognition, IEEE
, pp. 1738-1745
-
-
Huang, Y.1
Liu, Q.2
Metaxas, D.3
-
35
-
-
0037381008
-
Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
-
[35] Nutt, C.L., Mani, D., Betensky, R.A., Tamayo, P., Cairncross, J.G., Ladd, C., Pohl, U., Hartmann, C., McLaughlin, M.E., Batchelor, T.T., et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 63:7 (2003), 1602–1607.
-
(2003)
Cancer Res.
, vol.63
, Issue.7
, pp. 1602-1607
-
-
Nutt, C.L.1
Mani, D.2
Betensky, R.A.3
Tamayo, P.4
Cairncross, J.G.5
Ladd, C.6
Pohl, U.7
Hartmann, C.8
McLaughlin, M.E.9
Batchelor, T.T.10
-
36
-
-
33847749502
-
Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer
-
[36] Spira, A., Beane, J.E., Shah, V., Steiling, K., Liu, G., Schembri, F., Gilman, S., Dumas, Y.-M., Calner, P., Sebastiani, P., et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat. Med. 13:3 (2007), 361–366.
-
(2007)
Nat. Med.
, vol.13
, Issue.3
, pp. 361-366
-
-
Spira, A.1
Beane, J.E.2
Shah, V.3
Steiling, K.4
Liu, G.5
Schembri, F.6
Gilman, S.7
Dumas, Y.-M.8
Calner, P.9
Sebastiani, P.10
-
37
-
-
84998661480
-
-
Columbia Object Image Library (Coil-20), Technical Report CUCS-005-96, 1996.
-
[37] S.A. Nene, S.K. Nayar, H. Murase, et al., Columbia Object Image Library (Coil-20), Technical Report CUCS-005-96, 1996.
-
-
-
Nene, S.A.1
Nayar, S.K.2
Murase, H.3
-
38
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
[38] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
40
-
-
33845572523
-
Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
-
[40] S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, IEEE, 2006, pp. 2169–2178.
-
(2006)
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, IEEE
, pp. 2169-2178
-
-
Lazebnik, S.1
Schmid, C.2
Ponce, J.3
-
41
-
-
79955702502
-
Libsvm: a library for support vector machines
-
[41] Chang, C.-C., Lin, C-J, Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol., 23(3), 2011, 10.1145/1961189.1961199.
-
(2011)
ACM Trans. Intell. Syst. Technol.
, vol.23
, Issue.3
-
-
Chang, C.-C.1
Lin, C.-J.2
-
42
-
-
1942484430
-
-
[42] X. Zhu, Z. Ghahramani, J. Lafferty, et al., Semi-supervised learning using Gaussian fields and harmonic functions, in: ICML, 2003, pp. 912–919.
-
Semi-supervised learning using Gaussian fields and harmonic functions, in: ICML, 2003
, pp. 912-919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
-
43
-
-
84897584700
-
Video-to-shot tag propagation by graph sparse group lasso
-
[43] Zhu, X., Huang, Z., Cui, J., Shen, H.T., Video-to-shot tag propagation by graph sparse group lasso. IEEE Trans. Multimed. 15:3 (2013), 633–646.
-
(2013)
IEEE Trans. Multimed.
, vol.15
, Issue.3
, pp. 633-646
-
-
Zhu, X.1
Huang, Z.2
Cui, J.3
Shen, H.T.4
-
44
-
-
84866033003
-
Self-taught dimensionality reduction on the high-dimensional small-sized data
-
[44] Zhu, X., Huang, Z., Yang, Y., Shen, H.T., Xu, C., Luo, J., Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recognit. 46:1 (2013), 215–229.
-
(2013)
Pattern Recognit.
, vol.46
, Issue.1
, pp. 215-229
-
-
Zhu, X.1
Huang, Z.2
Yang, Y.3
Shen, H.T.4
Xu, C.5
Luo, J.6
-
45
-
-
84903907116
-
Feature selection by joint graph sparse coding
-
[45] X. Zhu, X. Wu, W. Ding, S. Zhang, Feature selection by joint graph sparse coding, in: SDM, SIAM, 2013, pp. 803–811.
-
(2013)
SDM, SIAM
, pp. 803-811
-
-
Zhu, X.1
Wu, X.2
Ding, W.3
Zhang, S.4
|