메뉴 건너뛰기




Volumn 63, Issue , 2017, Pages 291-309

Joint hypergraph learning and sparse regression for feature selection

Author keywords

Feature selection; Hypergraph learning; Sparse regression

Indexed keywords

GRAPH THEORY; GRAPHIC METHODS; MATRIX ALGEBRA; OPTIMIZATION;

EID: 84998849867     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2016.06.009     Document Type: Article
Times cited : (70)

References (45)
  • 1
    • 0003922190 scopus 로고    scopus 로고
    • Pattern Classification
    • John Wiley & Sons
    • [1] Duda, R.O., Hart, P.E., Stork, D.G., Pattern Classification. 2012, John Wiley & Sons.
    • (2012)
    • Duda, R.O.1    Hart, P.E.2    Stork, D.G.3
  • 2
    • 84873278481 scopus 로고    scopus 로고
    • On similarity preserving feature selection
    • [2] Zhao, Z., Wang, L., Liu, H., Ye, J., On similarity preserving feature selection. IEEE Trans. Knowl. Data Eng. 25:3 (2013), 619–632.
    • (2013) IEEE Trans. Knowl. Data Eng. , vol.25 , Issue.3 , pp. 619-632
    • Zhao, Z.1    Wang, L.2    Liu, H.3    Ye, J.4
  • 3
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
    • [3] Peng, H., Long, F., Ding, C., Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27:8 (2005), 1226–1238.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 4
    • 77955397866 scopus 로고    scopus 로고
    • Local-learning-based feature selection for high-dimensional data analysis
    • [4] Sun, Y., Todorovic, S., Goodison, S., Local-learning-based feature selection for high-dimensional data analysis. IEEE Trans. Pattern Anal. Mach. Intell. 32:9 (2010), 1610–1626.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.9 , pp. 1610-1626
    • Sun, Y.1    Todorovic, S.2    Goodison, S.3
  • 5
    • 85162011407 scopus 로고    scopus 로고
    • 2,1-norms minimization, in: Advances in Neural Information Processing Systems
    • 2,1-norms minimization, in: Advances in Neural Information Processing Systems, 2010, pp. 1813–1821.
    • (2010) , pp. 1813-1821
    • Nie, F.1    Huang, H.2    Cai, X.3    Ding, C.H.4
  • 6
    • 57749182885 scopus 로고    scopus 로고
    • Trace ratio criterion for feature selection
    • [6] F. Nie, S. Xiang, Y. Jia, C. Zhang, S. Yan, Trace ratio criterion for feature selection, in: AAAI, vol. 2, 2008, pp. 671–676.
    • (2008) AAAI , vol.2 , pp. 671-676
    • Nie, F.1    Xiang, S.2    Jia, Y.3    Zhang, C.4    Yan, S.5
  • 10
    • 84901250680 scopus 로고    scopus 로고
    • Joint embedding learning and sparse regression: a framework for unsupervised feature selection
    • [10] Hou, C., Nie, F., Li, X., Yi, D., Wu, Y., Joint embedding learning and sparse regression: a framework for unsupervised feature selection. IEEE Trans. Cybern. 44:6 (2014), 793–804.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.6 , pp. 793-804
    • Hou, C.1    Nie, F.2    Li, X.3    Yi, D.4    Wu, Y.5
  • 11
    • 77954565155 scopus 로고    scopus 로고
    • Discriminative semi-supervised feature selection via manifold regularization
    • [11] Xu, Z., King, I., Lyu, M.-T., Jin, R., Discriminative semi-supervised feature selection via manifold regularization. IEEE Trans. Neural Netw. 21:7 (2010), 1033–1047.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , Issue.7 , pp. 1033-1047
    • Xu, Z.1    King, I.2    Lyu, M.-T.3    Jin, R.4
  • 12
    • 44649111202 scopus 로고    scopus 로고
    • Locality sensitive semi-supervised feature selection
    • [12] Zhao, J., Lu, K., He, X., Locality sensitive semi-supervised feature selection. Neurocomputing 71:10 (2008), 1842–1849.
    • (2008) Neurocomputing , vol.71 , Issue.10 , pp. 1842-1849
    • Zhao, J.1    Lu, K.2    He, X.3
  • 13
    • 70449102559 scopus 로고    scopus 로고
    • Semi-supervised feature selection via spectral analysis
    • [13] Z. Zhao, H. Liu, Semi-supervised feature selection via spectral analysis, in: SDM, SIAM, 2007, pp. 641–646.
    • (2007) SDM, SIAM , pp. 641-646
    • Zhao, Z.1    Liu, H.2
  • 14
    • 84875384168 scopus 로고    scopus 로고
    • Efficient semi-supervised feature selection with noise insensitive trace ratio criterion
    • [14] Liu, Y., Nie, F., Wu, J., Chen, L., Efficient semi-supervised feature selection with noise insensitive trace ratio criterion. Neurocomputing 105 (2013), 12–18.
    • (2013) Neurocomputing , vol.105 , pp. 12-18
    • Liu, Y.1    Nie, F.2    Wu, J.3    Chen, L.4
  • 15
    • 13444286179 scopus 로고    scopus 로고
    • Locality preserving projections
    • Neural Information Processing Systems, vol. 16, MIT, 2004, p. 153.
    • [15] X. Niyogi, Locality preserving projections, in: Neural Information Processing Systems, vol. 16, MIT, 2004, p. 153.
    • Niyogi, X.1
  • 16
    • 0031187307 scopus 로고    scopus 로고
    • Face recognition: the problem of compensating for changes in illumination direction
    • [16] Adini, Y., Moses, Y., Ullman, S., Face recognition: the problem of compensating for changes in illumination direction. IEEE Trans. Pattern Anal. Mach. Intell. 19:7 (1997), 721–732.
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.7 , pp. 721-732
    • Adini, Y.1    Moses, Y.2    Ullman, S.3
  • 18
    • 0032114647 scopus 로고    scopus 로고
    • What is the set of images of an object under all possible illumination conditions?
    • [18] Belhumeur, P.N., Kriegman, D.J., What is the set of images of an object under all possible illumination conditions?. Int. J. Comput. Vis. 28:3 (1998), 245–260.
    • (1998) Int. J. Comput. Vis. , vol.28 , Issue.3 , pp. 245-260
    • Belhumeur, P.N.1    Kriegman, D.J.2
  • 22
    • 0034133769 scopus 로고    scopus 로고
    • Clustering categorical data: an approach based on dynamical systems
    • [22] Gibson, D., Kleinberg, J., Raghavan, P., Clustering categorical data: an approach based on dynamical systems. VLDB J. 8:3–4 (2000), 222–236.
    • (2000) VLDB J. , vol.8 , Issue.3-4 , pp. 222-236
    • Gibson, D.1    Kleinberg, J.2    Raghavan, P.3
  • 25
    • 0003882879 scopus 로고    scopus 로고
    • Spectral Graph Theory
    • American Mathematical Society
    • [25] Chung, F.R., Spectral Graph Theory. 1997, American Mathematical Society.
    • (1997)
    • Chung, F.R.1
  • 27
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • [27] Belkin, M., Niyogi, P., Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15:6 (2003), 1373–1396.
    • (2003) Neural Comput. , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 32
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • [32] Roweis, S.T., Saul, L.K., Nonlinear dimensionality reduction by locally linear embedding. Science 290:5500 (2000), 2323–2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 33
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
    • [33] Belkin, M., Niyogi, P., Sindhwani, V., Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res. 7 (2006), 2399–2434.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 37
    • 84998661480 scopus 로고    scopus 로고
    • Columbia Object Image Library (Coil-20), Technical Report CUCS-005-96, 1996.
    • [37] S.A. Nene, S.K. Nayar, H. Murase, et al., Columbia Object Image Library (Coil-20), Technical Report CUCS-005-96, 1996.
    • Nene, S.A.1    Nayar, S.K.2    Murase, H.3
  • 38
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • [38] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based learning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 39
    • 84999056093 scopus 로고    scopus 로고
    • Caltech-256 Object Category Dataset.
    • [39] G. Griffin, A. Holub, P. Perona, Caltech-256 Object Category Dataset.
    • Griffin, G.1    Holub, A.2    Perona, P.3
  • 41
    • 79955702502 scopus 로고    scopus 로고
    • Libsvm: a library for support vector machines
    • [41] Chang, C.-C., Lin, C-J, Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol., 23(3), 2011, 10.1145/1961189.1961199.
    • (2011) ACM Trans. Intell. Syst. Technol. , vol.23 , Issue.3
    • Chang, C.-C.1    Lin, C.-J.2
  • 43
    • 84897584700 scopus 로고    scopus 로고
    • Video-to-shot tag propagation by graph sparse group lasso
    • [43] Zhu, X., Huang, Z., Cui, J., Shen, H.T., Video-to-shot tag propagation by graph sparse group lasso. IEEE Trans. Multimed. 15:3 (2013), 633–646.
    • (2013) IEEE Trans. Multimed. , vol.15 , Issue.3 , pp. 633-646
    • Zhu, X.1    Huang, Z.2    Cui, J.3    Shen, H.T.4
  • 44
    • 84866033003 scopus 로고    scopus 로고
    • Self-taught dimensionality reduction on the high-dimensional small-sized data
    • [44] Zhu, X., Huang, Z., Yang, Y., Shen, H.T., Xu, C., Luo, J., Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recognit. 46:1 (2013), 215–229.
    • (2013) Pattern Recognit. , vol.46 , Issue.1 , pp. 215-229
    • Zhu, X.1    Huang, Z.2    Yang, Y.3    Shen, H.T.4    Xu, C.5    Luo, J.6
  • 45
    • 84903907116 scopus 로고    scopus 로고
    • Feature selection by joint graph sparse coding
    • [45] X. Zhu, X. Wu, W. Ding, S. Zhang, Feature selection by joint graph sparse coding, in: SDM, SIAM, 2013, pp. 803–811.
    • (2013) SDM, SIAM , pp. 803-811
    • Zhu, X.1    Wu, X.2    Ding, W.3    Zhang, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.