-
1
-
-
85043106548
-
-
Robust joint graph sparse coding for unsupervised spectral feature selection, IEEE Trans. Neural Netw. Learn. Syst.
-
[1] X. Zhu, X. Li, S. Zhang, C. Ju, X. Wu, Robust joint graph sparse coding for unsupervised spectral feature selection, IEEE Trans. Neural Netw. Learn. Syst.
-
-
-
Zhu, X.1
Li, X.2
Zhang, S.3
Ju, C.4
Wu, X.5
-
2
-
-
84923658744
-
Block-row sparse multiview multilabel learning for image classification
-
[2] Zhu, X., Li, X., Zhang, S., Block-row sparse multiview multilabel learning for image classification. IEEE Trans. Cybern. 46:2 (2016), 450–461.
-
(2016)
IEEE Trans. Cybern.
, vol.46
, Issue.2
, pp. 450-461
-
-
Zhu, X.1
Li, X.2
Zhang, S.3
-
3
-
-
85043122321
-
-
Alzheimers Disease Neuroimaging Initiative, et al., A novel relational regularization feature selection method for joint regression and classification in ad diagnosis, Medical image analysis.
-
[3] X. Zhu, H.-I. Suk, L. Wang, S.-W. Lee, D. Shen, Alzheimers Disease Neuroimaging Initiative, et al., A novel relational regularization feature selection method for joint regression and classification in ad diagnosis, Medical image analysis.
-
-
-
Zhu, X.1
Suk, H.-I.2
Wang, L.3
Lee, S.-W.4
Shen, D.5
-
4
-
-
84857794867
-
Cost-sensitive classification with inadequate labeled data
-
[4] Wang, T., Qin, Z., Zhang, S., Zhang, C., Cost-sensitive classification with inadequate labeled data. Inf. Syst. 37:5 (2012), 508–516.
-
(2012)
Inf. Syst.
, vol.37
, Issue.5
, pp. 508-516
-
-
Wang, T.1
Qin, Z.2
Zhang, S.3
Zhang, C.4
-
5
-
-
84964888387
-
Robust image hashing with ring partition and invariant vector distance
-
[5] Tang, Z., Zhang, X., Li, X., Zhang, S., Robust image hashing with ring partition and invariant vector distance. IEEE Trans. Inf. Forensics Secur. 11:1 (2016), 200–214.
-
(2016)
IEEE Trans. Inf. Forensics Secur.
, vol.11
, Issue.1
, pp. 200-214
-
-
Tang, Z.1
Zhang, X.2
Li, X.3
Zhang, S.4
-
6
-
-
84962091523
-
Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification
-
[6] Zhu, X., Suk, H., Lee, S., Shen, D., Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Trans. Biomed. Eng. 63:3 (2016), 607–618.
-
(2016)
IEEE Trans. Biomed. Eng.
, vol.63
, Issue.3
, pp. 607-618
-
-
Zhu, X.1
Suk, H.2
Lee, S.3
Shen, D.4
-
7
-
-
84905046755
-
A sparse embedding and least variance encoding approach to hashing
-
[7] Zhu, X., Zhang, L., Huang, Z., A sparse embedding and least variance encoding approach to hashing. IEEE Trans. Image Process. 23:9 (2014), 3737–3750.
-
(2014)
IEEE Trans. Image Process.
, vol.23
, Issue.9
, pp. 3737-3750
-
-
Zhu, X.1
Zhang, L.2
Huang, Z.3
-
9
-
-
84862798157
-
Dimensionality reduction by mixed kernel canonical correlation analysis
-
[9] Zhu, X., Huang, Z., Shen, H.T., Cheng, J., Xu, C., Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recognit. 45:8 (2012), 3003–3016.
-
(2012)
Pattern Recognit.
, vol.45
, Issue.8
, pp. 3003-3016
-
-
Zhu, X.1
Huang, Z.2
Shen, H.T.3
Cheng, J.4
Xu, C.5
-
10
-
-
84857357329
-
Decision tree classifiers sensitive to heterogeneous costs
-
[10] Zhang, S., Decision tree classifiers sensitive to heterogeneous costs. J. Syst. Softw. 85:4 (2012), 771–779.
-
(2012)
J. Syst. Softw.
, vol.85
, Issue.4
, pp. 771-779
-
-
Zhang, S.1
-
11
-
-
84906975457
-
A novel multi-relation regularization method for regression and classification in AD diagnosis
-
[11] X. Zhu, H. Suk, D. Shen, A novel multi-relation regularization method for regression and classification in AD diagnosis, in: MICCAI, 2014, pp. 401–408.
-
(2014)
MICCAI
, pp. 401-408
-
-
Zhu, X.1
Suk, H.2
Shen, D.3
-
12
-
-
68949155378
-
Feature subset selection in large dimensionality domains
-
[12] Gheyas, I.A., Smith, L.S., Feature subset selection in large dimensionality domains. Pattern Recognit. 43:1 (2010), 5–13.
-
(2010)
Pattern Recognit.
, vol.43
, Issue.1
, pp. 5-13
-
-
Gheyas, I.A.1
Smith, L.S.2
-
13
-
-
84900460549
-
An unsupervised feature selection algorithm based on ant colony optimization
-
[13] Tabakhi, S., Moradi, P., Akhlaghian, F., An unsupervised feature selection algorithm based on ant colony optimization. Eng. Appl. Artif. Intell. 32 (2014), 112–123.
-
(2014)
Eng. Appl. Artif. Intell.
, vol.32
, pp. 112-123
-
-
Tabakhi, S.1
Moradi, P.2
Akhlaghian, F.3
-
14
-
-
76849096874
-
A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification
-
[14] Leung, Y., Hung, Y., A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification. IEEE/ACM Trans. Comput. Biol. Bioinf. 7:1 (2010), 108–117.
-
(2010)
IEEE/ACM Trans. Comput. Biol. Bioinf.
, vol.7
, Issue.1
, pp. 108-117
-
-
Leung, Y.1
Hung, Y.2
-
15
-
-
77956611003
-
Mr2pso: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
-
[15] Unler, A., Murat, A., Chinnam, R.B., Mr2pso: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Inf. Sci. 181:20 (2011), 4625–4641.
-
(2011)
Inf. Sci.
, vol.181
, Issue.20
, pp. 4625-4641
-
-
Unler, A.1
Murat, A.2
Chinnam, R.B.3
-
16
-
-
65749115769
-
Variable selection for clustering with gaussian mixture models
-
[16] Maugis, C., Celeux, G., Martin-Magniette, M.L., Variable selection for clustering with gaussian mixture models. Biometrics 65:3 (2009), 701–709.
-
(2009)
Biometrics
, vol.65
, Issue.3
, pp. 701-709
-
-
Maugis, C.1
Celeux, G.2
Martin-Magniette, M.L.3
-
17
-
-
84919880217
-
-
2,1-norms regularization, in: ICPR
-
2,1-norms regularization, in: ICPR, 2014, pp. 517–521.
-
(2014)
, pp. 517-521
-
-
Wen, J.1
Lai, Z.2
Wong, W.K.3
Cui, J.4
Wan, M.5
-
18
-
-
84924370444
-
A framework of joint graph embedding and sparse regression for dimensionality reduction
-
[18] Shi, X., Guo, Z., Lai, Z., Yang, Y., Bao, Z., Zhang, D., A framework of joint graph embedding and sparse regression for dimensionality reduction. IEEE Trans. Image Process. 24:4 (2015), 1341–1355.
-
(2015)
IEEE Trans. Image Process.
, vol.24
, Issue.4
, pp. 1341-1355
-
-
Shi, X.1
Guo, Z.2
Lai, Z.3
Yang, Y.4
Bao, Z.5
Zhang, D.6
-
19
-
-
84881135320
-
Cost-sensitive imputing missing values with ordering
-
[19] X. Zhu, S. Zhang, J. Zhang, C. Zhang, Cost-sensitive imputing missing values with ordering, in: AAAI, 2007, pp. 1922–1923.
-
(2007)
AAAI
, pp. 1922-1923
-
-
Zhu, X.1
Zhang, S.2
Zhang, J.3
Zhang, C.4
-
20
-
-
84906985073
-
Multi-modality canonical feature selection for Alzheimer's disease diagnosis
-
[20] X. Zhu, H. Suk, D. Shen, Multi-modality canonical feature selection for Alzheimer's disease diagnosis, in: MICCAI, 2014, pp. 162–169.
-
(2014)
MICCAI
, pp. 162-169
-
-
Zhu, X.1
Suk, H.2
Shen, D.3
-
21
-
-
34250704657
-
Semi-parametric optimization for missing data imputation
-
[21] Qin, Y., Zhang, S., Zhu, X., Zhang, J., Zhang, C., Semi-parametric optimization for missing data imputation. Appl. Intell. 27:1 (2007), 79–88.
-
(2007)
Appl. Intell.
, vol.27
, Issue.1
, pp. 79-88
-
-
Qin, Y.1
Zhang, S.2
Zhu, X.3
Zhang, J.4
Zhang, C.5
-
22
-
-
84878612787
-
Sparse hashing for fast multimedia search
-
[22] Zhu, X., Huang, Z., Cheng, H., Cui, J., Shen, H.T., Sparse hashing for fast multimedia search. ACM Trans. Inf. Syst. 31:2 (2013), 9.1–9.24.
-
(2013)
ACM Trans. Inf. Syst.
, vol.31
, Issue.2
, pp. 9.1-9.24
-
-
Zhu, X.1
Huang, Z.2
Cheng, H.3
Cui, J.4
Shen, H.T.5
-
23
-
-
85043131956
-
A general analysis of the convergence of admm, arXiv preprint
-
arXiv:1502.02009
-
[23] R. Nishihara, L. Lessard, B. Recht, A. Packard, M.I. Jordan, A general analysis of the convergence of admm, arXiv preprint arXiv:1502.02009.
-
-
-
Nishihara, R.1
Lessard, L.2
Recht, B.3
Packard, A.4
Jordan, M.I.5
-
24
-
-
78649402552
-
Missing value estimation for mixed-attribute data sets
-
[24] Zhu, X., Zhang, S., Jin, Z., Zhang, Z., Xu, Z., Missing value estimation for mixed-attribute data sets. IEEE Trans. Knowl. Data Eng. 23:1 (2011), 110–121.
-
(2011)
IEEE Trans. Knowl. Data Eng.
, vol.23
, Issue.1
, pp. 110-121
-
-
Zhu, X.1
Zhang, S.2
Jin, Z.3
Zhang, Z.4
Xu, Z.5
-
25
-
-
85000796800
-
On the equivalent of low-rank linear regressions and linear discriminant analysis based regressions
-
[25] X. Cai, C. Ding, F. Nie, H. Huang, On the equivalent of low-rank linear regressions and linear discriminant analysis based regressions, in: SIGKDD, 2013, pp. 1124–1132.
-
(2013)
SIGKDD
, pp. 1124-1132
-
-
Cai, X.1
Ding, C.2
Nie, F.3
Huang, H.4
-
26
-
-
85043109107
-
-
Compound rank-k projections for bilinear analysis, IEEE Trans. Neural Netw. Learn. Syst.
-
[26] X. Chang, F. Nie, S. Wang, Y. Yang, X. Zhou, C. Zhang, Compound rank-k projections for bilinear analysis, IEEE Trans. Neural Netw. Learn. Syst.
-
-
-
Chang, X.1
Nie, F.2
Wang, S.3
Yang, Y.4
Zhou, X.5
Zhang, C.6
-
27
-
-
84866033003
-
Self-taught dimensionality reduction on the high-dimensional small-sized data
-
[27] Zhu, X., Huang, Z., Yang, Y., Shen, H.T., Xu, C., Luo, J., Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recognit. 46:1 (2013), 215–229.
-
(2013)
Pattern Recognit.
, vol.46
, Issue.1
, pp. 215-229
-
-
Zhu, X.1
Huang, Z.2
Yang, Y.3
Shen, H.T.4
Xu, C.5
Luo, J.6
-
28
-
-
84916886108
-
Graph-based learning via auto-grouped sparse regularization and kernelized extension
-
[28] Fang, Y., Wang, R., Dai, B., Wu, X., Graph-based learning via auto-grouped sparse regularization and kernelized extension. IEEE Trans. Knowl. Data Eng. 27:1 (2015), 142–154.
-
(2015)
IEEE Trans. Knowl. Data Eng.
, vol.27
, Issue.1
, pp. 142-154
-
-
Fang, Y.1
Wang, R.2
Dai, B.3
Wu, X.4
-
29
-
-
84984650296
-
Unsupervised feature analysis with class margin optimization
-
Springer International Publishing
-
[29] Wang, S., Nie, F., Chang, X., Yao, L., Li, X., Sheng, Q.Z., Unsupervised feature analysis with class margin optimization. 2015, Springer International Publishing, 383–398.
-
(2015)
, pp. 383-398
-
-
Wang, S.1
Nie, F.2
Chang, X.3
Yao, L.4
Li, X.5
Sheng, Q.Z.6
-
30
-
-
38949194197
-
Clustering-based missing value imputation for data preprocessing
-
[30] C. Zhang, Y. Qin, X. Zhu, J. Zhang, S. Zhang, Clustering-based missing value imputation for data preprocessing, in: IEEE International Conference on Industrial Informatics, 2006, pp. 1081–1086.
-
(2006)
IEEE International Conference on Industrial Informatics
, pp. 1081-1086
-
-
Zhang, C.1
Qin, Y.2
Zhu, X.3
Zhang, J.4
Zhang, S.5
-
31
-
-
84996465188
-
Multi-classes maximum variance method applied in image segmentation
-
[31] Yi, L.I., Cai, Z.X., Ming-Qin, G.U., Multi-classes maximum variance method applied in image segmentation. J. Chin. Comput. Syst. 35:5 (2014), 1184–1187.
-
(2014)
J. Chin. Comput. Syst.
, vol.35
, Issue.5
, pp. 1184-1187
-
-
Yi, L.I.1
Cai, Z.X.2
Ming-Qin, G.U.3
-
32
-
-
84864039505
-
Laplacian score for feature selection
-
[32] X. He, D. Cai, P. Niyogi, Laplacian score for feature selection, in: NIPS, 2005, pp. 507–514.
-
(2005)
NIPS
, pp. 507-514
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
33
-
-
77956216411
-
Unsupervised feature selection for multi-cluster data
-
[33] D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in: SIGKDD, 2010, pp. 333–342.
-
(2010)
SIGKDD
, pp. 333-342
-
-
Cai, D.1
Zhang, C.2
He, X.3
-
34
-
-
84922134207
-
Unsupervised feature selection using an improved version of differential evolution
-
[34] Bhadra, T., Bandyopadhyay, S., Unsupervised feature selection using an improved version of differential evolution. Exp. Syst. Appl. 42:8 (2015), 4042–4053.
-
(2015)
Exp. Syst. Appl.
, vol.42
, Issue.8
, pp. 4042-4053
-
-
Bhadra, T.1
Bandyopadhyay, S.2
-
35
-
-
84920847993
-
Multi-task support vector machines for feature selection with shared knowledge discovery
-
[35] Wang, S., Chang, X., Li, X., Sheng, Q.Z., Chen, W., Multi-task support vector machines for feature selection with shared knowledge discovery. Signal Process. 120 (2016), 746–753.
-
(2016)
Signal Process.
, vol.120
, pp. 746-753
-
-
Wang, S.1
Chang, X.2
Li, X.3
Sheng, Q.Z.4
Chen, W.5
-
36
-
-
78650979629
-
Heterogeneous feature selection by group lasso with logistic regression
-
[36] F. Wu, Y. Yuan, Y. Zhuang, Heterogeneous feature selection by group lasso with logistic regression, in: ACM MM, 2010, pp. 983–986.
-
(2010)
ACM MM
, pp. 983-986
-
-
Wu, F.1
Yuan, Y.2
Zhuang, Y.3
-
37
-
-
84864065280
-
Web image annotation via subspace-sparsity collaborated feature selection
-
[37] Ma, Z., Nie, F., Yang, Y., Uijlings, J.R., Sebe, N., Web image annotation via subspace-sparsity collaborated feature selection. IEEE Trans. Multimed. 14:4 (2012), 1021–1030.
-
(2012)
IEEE Trans. Multimed.
, vol.14
, Issue.4
, pp. 1021-1030
-
-
Ma, Z.1
Nie, F.2
Yang, Y.3
Uijlings, J.R.4
Sebe, N.5
-
38
-
-
84931043652
-
Discriminative dictionary learning based on supervised feature selection for image classification
-
[38] S. Feng, H. Lu, X. Long, Discriminative dictionary learning based on supervised feature selection for image classification, in: ISCID, 2015, pp. 225–228.
-
(2015)
ISCID
, pp. 225-228
-
-
Feng, S.1
Lu, H.2
Long, X.3
-
39
-
-
85043114183
-
Semi-supervised Feature Analysis for Multimedia Annotation by Mining Label Correlation
-
Springer International Publishing
-
[39] Chang, X., Shen, H., Wang, S., Liu, J., Li, X., Semi-supervised Feature Analysis for Multimedia Annotation by Mining Label Correlation. 2014, Springer International Publishing.
-
(2014)
-
-
Chang, X.1
Shen, H.2
Wang, S.3
Liu, J.4
Li, X.5
-
40
-
-
44649111202
-
Locality sensitive semi-supervised feature selection
-
[40] Zhao, J., Lu, K., He, X., Locality sensitive semi-supervised feature selection. Neurocomputing 71:10 (2008), 1842–1849.
-
(2008)
Neurocomputing
, vol.71
, Issue.10
, pp. 1842-1849
-
-
Zhao, J.1
Lu, K.2
He, X.3
-
41
-
-
84455161745
-
Exploiting the entire feature space with sparsity for automatic image annotation
-
[41] Z. Ma, Y. Yang, F. Nie, J. Uijlings, N. Sebe, Exploiting the entire feature space with sparsity for automatic image annotation, in: ACM MM, 2011, pp. 283–292.
-
(2011)
ACM MM
, pp. 283-292
-
-
Ma, Z.1
Yang, Y.2
Nie, F.3
Uijlings, J.4
Sebe, N.5
-
42
-
-
84921514115
-
Semisupervised feature selection via spline regression for video semantic recognition
-
[42] Han, Y., Yang, Y., Yan, Y., Ma, Z., Sebe, N., Zhou, X., Semisupervised feature selection via spline regression for video semantic recognition. IEEE Trans. Neural Netw. Learn. Syst. 26:2 (2015), 252–264.
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, Issue.2
, pp. 252-264
-
-
Han, Y.1
Yang, Y.2
Yan, Y.3
Ma, Z.4
Sebe, N.5
Zhou, X.6
-
43
-
-
84870197517
-
Robust recovery of subspace structures by low-rank representation
-
[43] Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y., Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35:1 (2013), 171–184.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.1
, pp. 171-184
-
-
Liu, G.1
Lin, Z.2
Yan, S.3
Sun, J.4
Yu, Y.5
Ma, Y.6
-
44
-
-
77957019256
-
A novel local preserving projection scheme for use with face recognition
-
[44] Xu, Y., Song, F., Feng, G., Zhao, Y., A novel local preserving projection scheme for use with face recognition. Exp. Syst. Appl. 37:9 (2010), 6718–6721.
-
(2010)
Exp. Syst. Appl.
, vol.37
, Issue.9
, pp. 6718-6721
-
-
Xu, Y.1
Song, F.2
Feng, G.3
Zhao, Y.4
-
45
-
-
84898079839
-
Robust pca via principal component pursuit: a review for a comparative evaluation in video surveillance
-
[45] Bouwmans, T., Zahzah, E.H., Robust pca via principal component pursuit: a review for a comparative evaluation in video surveillance. Comput. Vis. Image Underst. 122 (2014), 22–34.
-
(2014)
Comput. Vis. Image Underst.
, vol.122
, pp. 22-34
-
-
Bouwmans, T.1
Zahzah, E.H.2
-
46
-
-
84901262981
-
Structural Laplacian eigenmaps for modeling sets of multivariate sequences
-
[46] Lewandowski, M., Makris, D., Velastin, S., Nebel, J.C., Structural Laplacian eigenmaps for modeling sets of multivariate sequences. IEEE Trans. Cybern. 44:6 (2014), 936–949.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, Issue.6
, pp. 936-949
-
-
Lewandowski, M.1
Makris, D.2
Velastin, S.3
Nebel, J.C.4
-
47
-
-
85162044493
-
-
2,1-norms minimization, in: NIPS
-
2,1-norms minimization, in: NIPS, 2010, pp. 1813–1821.
-
(2010)
, pp. 1813-1821
-
-
Nie, F.1
Huang, H.2
Cai, X.3
Ding, C.H.4
|