메뉴 건너뛰기




Volumn 220, Issue , 2017, Pages 130-137

Graph self-representation method for unsupervised feature selection

Author keywords

Alternating direction method multipliers; Dimensionality reduction; Locality preserving projection; Self representation

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTERING ALGORITHMS; COMPUTER VISION; LEARNING SYSTEMS;

EID: 84979702281     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2016.05.081     Document Type: Article
Times cited : (155)

References (47)
  • 1
    • 85043106548 scopus 로고    scopus 로고
    • Robust joint graph sparse coding for unsupervised spectral feature selection, IEEE Trans. Neural Netw. Learn. Syst.
    • [1] X. Zhu, X. Li, S. Zhang, C. Ju, X. Wu, Robust joint graph sparse coding for unsupervised spectral feature selection, IEEE Trans. Neural Netw. Learn. Syst.
    • Zhu, X.1    Li, X.2    Zhang, S.3    Ju, C.4    Wu, X.5
  • 2
    • 84923658744 scopus 로고    scopus 로고
    • Block-row sparse multiview multilabel learning for image classification
    • [2] Zhu, X., Li, X., Zhang, S., Block-row sparse multiview multilabel learning for image classification. IEEE Trans. Cybern. 46:2 (2016), 450–461.
    • (2016) IEEE Trans. Cybern. , vol.46 , Issue.2 , pp. 450-461
    • Zhu, X.1    Li, X.2    Zhang, S.3
  • 3
    • 85043122321 scopus 로고    scopus 로고
    • Alzheimers Disease Neuroimaging Initiative, et al., A novel relational regularization feature selection method for joint regression and classification in ad diagnosis, Medical image analysis.
    • [3] X. Zhu, H.-I. Suk, L. Wang, S.-W. Lee, D. Shen, Alzheimers Disease Neuroimaging Initiative, et al., A novel relational regularization feature selection method for joint regression and classification in ad diagnosis, Medical image analysis.
    • Zhu, X.1    Suk, H.-I.2    Wang, L.3    Lee, S.-W.4    Shen, D.5
  • 4
    • 84857794867 scopus 로고    scopus 로고
    • Cost-sensitive classification with inadequate labeled data
    • [4] Wang, T., Qin, Z., Zhang, S., Zhang, C., Cost-sensitive classification with inadequate labeled data. Inf. Syst. 37:5 (2012), 508–516.
    • (2012) Inf. Syst. , vol.37 , Issue.5 , pp. 508-516
    • Wang, T.1    Qin, Z.2    Zhang, S.3    Zhang, C.4
  • 5
    • 84964888387 scopus 로고    scopus 로고
    • Robust image hashing with ring partition and invariant vector distance
    • [5] Tang, Z., Zhang, X., Li, X., Zhang, S., Robust image hashing with ring partition and invariant vector distance. IEEE Trans. Inf. Forensics Secur. 11:1 (2016), 200–214.
    • (2016) IEEE Trans. Inf. Forensics Secur. , vol.11 , Issue.1 , pp. 200-214
    • Tang, Z.1    Zhang, X.2    Li, X.3    Zhang, S.4
  • 6
    • 84962091523 scopus 로고    scopus 로고
    • Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification
    • [6] Zhu, X., Suk, H., Lee, S., Shen, D., Subspace regularized sparse multitask learning for multiclass neurodegenerative disease identification. IEEE Trans. Biomed. Eng. 63:3 (2016), 607–618.
    • (2016) IEEE Trans. Biomed. Eng. , vol.63 , Issue.3 , pp. 607-618
    • Zhu, X.1    Suk, H.2    Lee, S.3    Shen, D.4
  • 7
    • 84905046755 scopus 로고    scopus 로고
    • A sparse embedding and least variance encoding approach to hashing
    • [7] Zhu, X., Zhang, L., Huang, Z., A sparse embedding and least variance encoding approach to hashing. IEEE Trans. Image Process. 23:9 (2014), 3737–3750.
    • (2014) IEEE Trans. Image Process. , vol.23 , Issue.9 , pp. 3737-3750
    • Zhu, X.1    Zhang, L.2    Huang, Z.3
  • 9
    • 84862798157 scopus 로고    scopus 로고
    • Dimensionality reduction by mixed kernel canonical correlation analysis
    • [9] Zhu, X., Huang, Z., Shen, H.T., Cheng, J., Xu, C., Dimensionality reduction by mixed kernel canonical correlation analysis. Pattern Recognit. 45:8 (2012), 3003–3016.
    • (2012) Pattern Recognit. , vol.45 , Issue.8 , pp. 3003-3016
    • Zhu, X.1    Huang, Z.2    Shen, H.T.3    Cheng, J.4    Xu, C.5
  • 10
    • 84857357329 scopus 로고    scopus 로고
    • Decision tree classifiers sensitive to heterogeneous costs
    • [10] Zhang, S., Decision tree classifiers sensitive to heterogeneous costs. J. Syst. Softw. 85:4 (2012), 771–779.
    • (2012) J. Syst. Softw. , vol.85 , Issue.4 , pp. 771-779
    • Zhang, S.1
  • 11
    • 84906975457 scopus 로고    scopus 로고
    • A novel multi-relation regularization method for regression and classification in AD diagnosis
    • [11] X. Zhu, H. Suk, D. Shen, A novel multi-relation regularization method for regression and classification in AD diagnosis, in: MICCAI, 2014, pp. 401–408.
    • (2014) MICCAI , pp. 401-408
    • Zhu, X.1    Suk, H.2    Shen, D.3
  • 12
    • 68949155378 scopus 로고    scopus 로고
    • Feature subset selection in large dimensionality domains
    • [12] Gheyas, I.A., Smith, L.S., Feature subset selection in large dimensionality domains. Pattern Recognit. 43:1 (2010), 5–13.
    • (2010) Pattern Recognit. , vol.43 , Issue.1 , pp. 5-13
    • Gheyas, I.A.1    Smith, L.S.2
  • 13
    • 84900460549 scopus 로고    scopus 로고
    • An unsupervised feature selection algorithm based on ant colony optimization
    • [13] Tabakhi, S., Moradi, P., Akhlaghian, F., An unsupervised feature selection algorithm based on ant colony optimization. Eng. Appl. Artif. Intell. 32 (2014), 112–123.
    • (2014) Eng. Appl. Artif. Intell. , vol.32 , pp. 112-123
    • Tabakhi, S.1    Moradi, P.2    Akhlaghian, F.3
  • 14
    • 76849096874 scopus 로고    scopus 로고
    • A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification
    • [14] Leung, Y., Hung, Y., A multiple-filter-multiple-wrapper approach to gene selection and microarray data classification. IEEE/ACM Trans. Comput. Biol. Bioinf. 7:1 (2010), 108–117.
    • (2010) IEEE/ACM Trans. Comput. Biol. Bioinf. , vol.7 , Issue.1 , pp. 108-117
    • Leung, Y.1    Hung, Y.2
  • 15
    • 77956611003 scopus 로고    scopus 로고
    • Mr2pso: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
    • [15] Unler, A., Murat, A., Chinnam, R.B., Mr2pso: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Inf. Sci. 181:20 (2011), 4625–4641.
    • (2011) Inf. Sci. , vol.181 , Issue.20 , pp. 4625-4641
    • Unler, A.1    Murat, A.2    Chinnam, R.B.3
  • 16
    • 65749115769 scopus 로고    scopus 로고
    • Variable selection for clustering with gaussian mixture models
    • [16] Maugis, C., Celeux, G., Martin-Magniette, M.L., Variable selection for clustering with gaussian mixture models. Biometrics 65:3 (2009), 701–709.
    • (2009) Biometrics , vol.65 , Issue.3 , pp. 701-709
    • Maugis, C.1    Celeux, G.2    Martin-Magniette, M.L.3
  • 18
    • 84924370444 scopus 로고    scopus 로고
    • A framework of joint graph embedding and sparse regression for dimensionality reduction
    • [18] Shi, X., Guo, Z., Lai, Z., Yang, Y., Bao, Z., Zhang, D., A framework of joint graph embedding and sparse regression for dimensionality reduction. IEEE Trans. Image Process. 24:4 (2015), 1341–1355.
    • (2015) IEEE Trans. Image Process. , vol.24 , Issue.4 , pp. 1341-1355
    • Shi, X.1    Guo, Z.2    Lai, Z.3    Yang, Y.4    Bao, Z.5    Zhang, D.6
  • 19
    • 84881135320 scopus 로고    scopus 로고
    • Cost-sensitive imputing missing values with ordering
    • [19] X. Zhu, S. Zhang, J. Zhang, C. Zhang, Cost-sensitive imputing missing values with ordering, in: AAAI, 2007, pp. 1922–1923.
    • (2007) AAAI , pp. 1922-1923
    • Zhu, X.1    Zhang, S.2    Zhang, J.3    Zhang, C.4
  • 20
    • 84906985073 scopus 로고    scopus 로고
    • Multi-modality canonical feature selection for Alzheimer's disease diagnosis
    • [20] X. Zhu, H. Suk, D. Shen, Multi-modality canonical feature selection for Alzheimer's disease diagnosis, in: MICCAI, 2014, pp. 162–169.
    • (2014) MICCAI , pp. 162-169
    • Zhu, X.1    Suk, H.2    Shen, D.3
  • 21
    • 34250704657 scopus 로고    scopus 로고
    • Semi-parametric optimization for missing data imputation
    • [21] Qin, Y., Zhang, S., Zhu, X., Zhang, J., Zhang, C., Semi-parametric optimization for missing data imputation. Appl. Intell. 27:1 (2007), 79–88.
    • (2007) Appl. Intell. , vol.27 , Issue.1 , pp. 79-88
    • Qin, Y.1    Zhang, S.2    Zhu, X.3    Zhang, J.4    Zhang, C.5
  • 23
    • 85043131956 scopus 로고    scopus 로고
    • A general analysis of the convergence of admm, arXiv preprint
    • arXiv:1502.02009
    • [23] R. Nishihara, L. Lessard, B. Recht, A. Packard, M.I. Jordan, A general analysis of the convergence of admm, arXiv preprint arXiv:1502.02009.
    • Nishihara, R.1    Lessard, L.2    Recht, B.3    Packard, A.4    Jordan, M.I.5
  • 24
    • 78649402552 scopus 로고    scopus 로고
    • Missing value estimation for mixed-attribute data sets
    • [24] Zhu, X., Zhang, S., Jin, Z., Zhang, Z., Xu, Z., Missing value estimation for mixed-attribute data sets. IEEE Trans. Knowl. Data Eng. 23:1 (2011), 110–121.
    • (2011) IEEE Trans. Knowl. Data Eng. , vol.23 , Issue.1 , pp. 110-121
    • Zhu, X.1    Zhang, S.2    Jin, Z.3    Zhang, Z.4    Xu, Z.5
  • 25
    • 85000796800 scopus 로고    scopus 로고
    • On the equivalent of low-rank linear regressions and linear discriminant analysis based regressions
    • [25] X. Cai, C. Ding, F. Nie, H. Huang, On the equivalent of low-rank linear regressions and linear discriminant analysis based regressions, in: SIGKDD, 2013, pp. 1124–1132.
    • (2013) SIGKDD , pp. 1124-1132
    • Cai, X.1    Ding, C.2    Nie, F.3    Huang, H.4
  • 26
    • 85043109107 scopus 로고    scopus 로고
    • Compound rank-k projections for bilinear analysis, IEEE Trans. Neural Netw. Learn. Syst.
    • [26] X. Chang, F. Nie, S. Wang, Y. Yang, X. Zhou, C. Zhang, Compound rank-k projections for bilinear analysis, IEEE Trans. Neural Netw. Learn. Syst.
    • Chang, X.1    Nie, F.2    Wang, S.3    Yang, Y.4    Zhou, X.5    Zhang, C.6
  • 27
    • 84866033003 scopus 로고    scopus 로고
    • Self-taught dimensionality reduction on the high-dimensional small-sized data
    • [27] Zhu, X., Huang, Z., Yang, Y., Shen, H.T., Xu, C., Luo, J., Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recognit. 46:1 (2013), 215–229.
    • (2013) Pattern Recognit. , vol.46 , Issue.1 , pp. 215-229
    • Zhu, X.1    Huang, Z.2    Yang, Y.3    Shen, H.T.4    Xu, C.5    Luo, J.6
  • 28
    • 84916886108 scopus 로고    scopus 로고
    • Graph-based learning via auto-grouped sparse regularization and kernelized extension
    • [28] Fang, Y., Wang, R., Dai, B., Wu, X., Graph-based learning via auto-grouped sparse regularization and kernelized extension. IEEE Trans. Knowl. Data Eng. 27:1 (2015), 142–154.
    • (2015) IEEE Trans. Knowl. Data Eng. , vol.27 , Issue.1 , pp. 142-154
    • Fang, Y.1    Wang, R.2    Dai, B.3    Wu, X.4
  • 29
    • 84984650296 scopus 로고    scopus 로고
    • Unsupervised feature analysis with class margin optimization
    • Springer International Publishing
    • [29] Wang, S., Nie, F., Chang, X., Yao, L., Li, X., Sheng, Q.Z., Unsupervised feature analysis with class margin optimization. 2015, Springer International Publishing, 383–398.
    • (2015) , pp. 383-398
    • Wang, S.1    Nie, F.2    Chang, X.3    Yao, L.4    Li, X.5    Sheng, Q.Z.6
  • 31
    • 84996465188 scopus 로고    scopus 로고
    • Multi-classes maximum variance method applied in image segmentation
    • [31] Yi, L.I., Cai, Z.X., Ming-Qin, G.U., Multi-classes maximum variance method applied in image segmentation. J. Chin. Comput. Syst. 35:5 (2014), 1184–1187.
    • (2014) J. Chin. Comput. Syst. , vol.35 , Issue.5 , pp. 1184-1187
    • Yi, L.I.1    Cai, Z.X.2    Ming-Qin, G.U.3
  • 32
    • 84864039505 scopus 로고    scopus 로고
    • Laplacian score for feature selection
    • [32] X. He, D. Cai, P. Niyogi, Laplacian score for feature selection, in: NIPS, 2005, pp. 507–514.
    • (2005) NIPS , pp. 507-514
    • He, X.1    Cai, D.2    Niyogi, P.3
  • 33
    • 77956216411 scopus 로고    scopus 로고
    • Unsupervised feature selection for multi-cluster data
    • [33] D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in: SIGKDD, 2010, pp. 333–342.
    • (2010) SIGKDD , pp. 333-342
    • Cai, D.1    Zhang, C.2    He, X.3
  • 34
    • 84922134207 scopus 로고    scopus 로고
    • Unsupervised feature selection using an improved version of differential evolution
    • [34] Bhadra, T., Bandyopadhyay, S., Unsupervised feature selection using an improved version of differential evolution. Exp. Syst. Appl. 42:8 (2015), 4042–4053.
    • (2015) Exp. Syst. Appl. , vol.42 , Issue.8 , pp. 4042-4053
    • Bhadra, T.1    Bandyopadhyay, S.2
  • 35
    • 84920847993 scopus 로고    scopus 로고
    • Multi-task support vector machines for feature selection with shared knowledge discovery
    • [35] Wang, S., Chang, X., Li, X., Sheng, Q.Z., Chen, W., Multi-task support vector machines for feature selection with shared knowledge discovery. Signal Process. 120 (2016), 746–753.
    • (2016) Signal Process. , vol.120 , pp. 746-753
    • Wang, S.1    Chang, X.2    Li, X.3    Sheng, Q.Z.4    Chen, W.5
  • 36
    • 78650979629 scopus 로고    scopus 로고
    • Heterogeneous feature selection by group lasso with logistic regression
    • [36] F. Wu, Y. Yuan, Y. Zhuang, Heterogeneous feature selection by group lasso with logistic regression, in: ACM MM, 2010, pp. 983–986.
    • (2010) ACM MM , pp. 983-986
    • Wu, F.1    Yuan, Y.2    Zhuang, Y.3
  • 37
    • 84864065280 scopus 로고    scopus 로고
    • Web image annotation via subspace-sparsity collaborated feature selection
    • [37] Ma, Z., Nie, F., Yang, Y., Uijlings, J.R., Sebe, N., Web image annotation via subspace-sparsity collaborated feature selection. IEEE Trans. Multimed. 14:4 (2012), 1021–1030.
    • (2012) IEEE Trans. Multimed. , vol.14 , Issue.4 , pp. 1021-1030
    • Ma, Z.1    Nie, F.2    Yang, Y.3    Uijlings, J.R.4    Sebe, N.5
  • 38
    • 84931043652 scopus 로고    scopus 로고
    • Discriminative dictionary learning based on supervised feature selection for image classification
    • [38] S. Feng, H. Lu, X. Long, Discriminative dictionary learning based on supervised feature selection for image classification, in: ISCID, 2015, pp. 225–228.
    • (2015) ISCID , pp. 225-228
    • Feng, S.1    Lu, H.2    Long, X.3
  • 39
    • 85043114183 scopus 로고    scopus 로고
    • Semi-supervised Feature Analysis for Multimedia Annotation by Mining Label Correlation
    • Springer International Publishing
    • [39] Chang, X., Shen, H., Wang, S., Liu, J., Li, X., Semi-supervised Feature Analysis for Multimedia Annotation by Mining Label Correlation. 2014, Springer International Publishing.
    • (2014)
    • Chang, X.1    Shen, H.2    Wang, S.3    Liu, J.4    Li, X.5
  • 40
    • 44649111202 scopus 로고    scopus 로고
    • Locality sensitive semi-supervised feature selection
    • [40] Zhao, J., Lu, K., He, X., Locality sensitive semi-supervised feature selection. Neurocomputing 71:10 (2008), 1842–1849.
    • (2008) Neurocomputing , vol.71 , Issue.10 , pp. 1842-1849
    • Zhao, J.1    Lu, K.2    He, X.3
  • 41
    • 84455161745 scopus 로고    scopus 로고
    • Exploiting the entire feature space with sparsity for automatic image annotation
    • [41] Z. Ma, Y. Yang, F. Nie, J. Uijlings, N. Sebe, Exploiting the entire feature space with sparsity for automatic image annotation, in: ACM MM, 2011, pp. 283–292.
    • (2011) ACM MM , pp. 283-292
    • Ma, Z.1    Yang, Y.2    Nie, F.3    Uijlings, J.4    Sebe, N.5
  • 42
    • 84921514115 scopus 로고    scopus 로고
    • Semisupervised feature selection via spline regression for video semantic recognition
    • [42] Han, Y., Yang, Y., Yan, Y., Ma, Z., Sebe, N., Zhou, X., Semisupervised feature selection via spline regression for video semantic recognition. IEEE Trans. Neural Netw. Learn. Syst. 26:2 (2015), 252–264.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.2 , pp. 252-264
    • Han, Y.1    Yang, Y.2    Yan, Y.3    Ma, Z.4    Sebe, N.5    Zhou, X.6
  • 44
    • 77957019256 scopus 로고    scopus 로고
    • A novel local preserving projection scheme for use with face recognition
    • [44] Xu, Y., Song, F., Feng, G., Zhao, Y., A novel local preserving projection scheme for use with face recognition. Exp. Syst. Appl. 37:9 (2010), 6718–6721.
    • (2010) Exp. Syst. Appl. , vol.37 , Issue.9 , pp. 6718-6721
    • Xu, Y.1    Song, F.2    Feng, G.3    Zhao, Y.4
  • 45
    • 84898079839 scopus 로고    scopus 로고
    • Robust pca via principal component pursuit: a review for a comparative evaluation in video surveillance
    • [45] Bouwmans, T., Zahzah, E.H., Robust pca via principal component pursuit: a review for a comparative evaluation in video surveillance. Comput. Vis. Image Underst. 122 (2014), 22–34.
    • (2014) Comput. Vis. Image Underst. , vol.122 , pp. 22-34
    • Bouwmans, T.1    Zahzah, E.H.2
  • 46
    • 84901262981 scopus 로고    scopus 로고
    • Structural Laplacian eigenmaps for modeling sets of multivariate sequences
    • [46] Lewandowski, M., Makris, D., Velastin, S., Nebel, J.C., Structural Laplacian eigenmaps for modeling sets of multivariate sequences. IEEE Trans. Cybern. 44:6 (2014), 936–949.
    • (2014) IEEE Trans. Cybern. , vol.44 , Issue.6 , pp. 936-949
    • Lewandowski, M.1    Makris, D.2    Velastin, S.3    Nebel, J.C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.