메뉴 건너뛰기




Volumn 8, Issue 3, 2017, Pages

Learning k for kNN Classification

Author keywords

kNN method; Missing data imputation; Sparse learning

Indexed keywords

DATA MINING; MATRIX ALGEBRA; NEAREST NEIGHBOR SEARCH; TESTING;

EID: 85011392056     PISSN: 21576904     EISSN: 21576912     Source Type: Journal    
DOI: 10.1145/2990508     Document Type: Article
Times cited : (556)

References (55)
  • 1
    • 44049098082 scopus 로고    scopus 로고
    • Nearest neighbor classification of remote sensing images with the maximal margin principle
    • 2008
    • Enrico Blanzieri and Farid Melgani. 2008. Nearest neighbor classification of remote sensing images with the maximal margin principle. IEEE Trans. Geosci. Remote Sens. 46, 6 (2008), 1804-1811.
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.6 , pp. 1804-1811
    • Blanzieri, E.1    Melgani, F.2
  • 2
    • 1842665177 scopus 로고    scopus 로고
    • Jackknife variance estimation for nearest-neighbor imputation
    • 2001
    • Jiahua Chen and Jun Shao. 2001. Jackknife variance estimation for nearest-neighbor imputation. J. Am. Statist. Assoc. 96, 453 (2001), 260-269.
    • (2001) J. Am. Statist. Assoc , vol.96 , Issue.453 , pp. 260-269
    • Chen, J.1    Shao, J.2
  • 3
    • 84960075180 scopus 로고    scopus 로고
    • Nonconvex plus quadratic penalized low-rank and sparse decomposition for noisy image alignment
    • 2016
    • Xiai Chen, Zhi Han, Yao Wang, Yandong Tang, and Haibin Yu. 2016. Nonconvex plus quadratic penalized low-rank and sparse decomposition for noisy image alignment. Sci. Chin. Infor. Sci. 5 (2016), 1-13.
    • (2016) Sci. Chin. Infor. Sci , vol.5 , pp. 1-13
    • Chen, X.1    Han, Z.2    Wang, Y.3    Tang, Y.4    Yu, H.5
  • 4
    • 85020567237 scopus 로고    scopus 로고
    • Feature selection by combining subspace learning with sparse representation
    • 2015
    • Debo Cheng, Shichao Zhang, Xingyi Liu, Ke Sun, and Ming Zong. 2015. Feature selection by combining subspace learning with sparse representation. Multimedia Syst. (2015), 1-7.
    • (2015) Multimedia Syst , pp. 1-7
    • Cheng, D.1    Zhang, S.2    Liu, X.3    Sun, K.4    Zong, M.5
  • 5
    • 77949704355 scopus 로고    scopus 로고
    • Iteratively reweighted least squares minimization for sparse recovery
    • 2010
    • Ingrid Daubechies, Ronald DeVore, Massimo Fornasier, and C. Sinan Günt ürk. 2010. Iteratively reweighted least squares minimization for sparse recovery. Commun. Pure Appl. Math. 63, 1 (2010), 1-38.
    • (2010) Commun. Pure Appl. Math , vol.63 , Issue.1 , pp. 1-38
    • Daubechies, I.1    DeVore, R.2    Fornasier, M.3    Güntürk, C.S.4
  • 6
    • 84946232826 scopus 로고    scopus 로고
    • Nonnegative multiresolution representation-based texture image classification
    • 2015
    • Yongsheng Dong, Dacheng Tao, and Xuelong Li. 2015b. Nonnegative multiresolution representation-based texture image classification. ACM Trans. Intell. Syst. Technol. 7, 1 (2015), 4.
    • (2015) ACM Trans. Intell. Syst. Technol , vol.7 , Issue.1 , pp. 4
    • Dong, Y.1    Tao, D.2    Li, X.3
  • 7
    • 84953838027 scopus 로고    scopus 로고
    • Nonnegative correlation coding for image classification
    • 2015
    • Zhen Dong, Wei Liang, Yuwei Wu, Mingtao Pei, and Yunde Jia. 2015a. Nonnegative correlation coding for image classification. Sci. Chin. Infor. Sci. 59, 1 (2015), 1-14.
    • (2015) Sci. Chin. Infor. Sci , vol.59 , Issue.1 , pp. 1-14
    • Dong, Z.1    Liang, W.2    Wu, Y.3    Pei, M.4    Jia, Y.5
  • 8
    • 84939496346 scopus 로고    scopus 로고
    • Hierarchical learning of tree classifiers for large-scale plant species identification
    • 2015
    • Jianping Fan, Jinye Peng, Ling Gao, and Ning Zhou. 2015. Hierarchical learning of tree classifiers for large-scale plant species identification. IEEE Trans. Image Process. 24, 11 (2015), 4172-84.
    • (2015) IEEE Trans. Image Process , vol.24 , Issue.11 , pp. 4172-4184
    • Fan, J.1    Peng, J.2    Gao, L.3    Zhou, N.4
  • 9
    • 61849150502 scopus 로고    scopus 로고
    • K nearest neighbours with mutual information for simultaneous classification and missing data imputation
    • 2009
    • Pedro J. García-Laencina, José-Luis Sancho-Gómez, Aníbal R. Figueiras-Vidal, and Michel Verleysen. 2009. K nearest neighbours with mutual information for simultaneous classification and missing data imputation. Neurocomputing 72, 7 (2009), 1483-1493.
    • (2009) Neurocomputing , vol.72 , Issue.7 , pp. 1483-1493
    • García-Laencina, P.J.1    Sancho-Gómez, J.2    Figueiras-Vidal, A.R.3    Verleysen, M.4
  • 11
    • 84964545783 scopus 로고    scopus 로고
    • A-optimal projection for image representation
    • 2016
    • Xiaofei He, Chiyuan Zhang, Lijun Zhang, and Xuelong Li. 2016. A-optimal projection for image representation. IEEE Trans. Pattern Anal. Mach. Intell. 38, 5 (2016), 1009-1015.
    • (2016) IEEE Trans. Pattern Anal. Mach. Intell , vol.38 , Issue.5 , pp. 1009-1015
    • He, X.1    Zhang, C.2    Zhang, L.3    Li, X.4
  • 12
    • 39649087581 scopus 로고    scopus 로고
    • The nearest neighbor algorithm of local probability centers
    • 2008
    • Boyu Li, Yun Wen Chen, and Yan Qiu Chen. 2008. The nearest neighbor algorithm of local probability centers. IEEE Trans. Syst. Man Cybernet. B 38, 1 (2008), 141-154.
    • (2008) IEEE Trans. Syst. Man Cybernet. B , vol.38 , Issue.1 , pp. 141-154
    • Li, B.1    Wen Chen, Y.2    Qiu Chen, Y.3
  • 13
    • 84974604979 scopus 로고    scopus 로고
    • Spatiotemporal statistics for video quality assessment
    • 2016
    • Xuelong Li, Qun Guo, and Xiaoqiang Lu. 2016. Spatiotemporal statistics for video quality assessment. IEEE Trans. Image Process. 25, 7 (2016), 3329-3342.
    • (2016) IEEE Trans. Image Process , vol.25 , Issue.7 , pp. 3329-3342
    • Li, X.1    Guo, Q.2    Lu, X.3
  • 14
    • 85027941907 scopus 로고    scopus 로고
    • Scene parsing from an MAP perspective
    • 2015
    • Xuelong Li, Lichao Mou, and Xiaoqiang Lu. 2015. Scene parsing from an MAP perspective. IEEE Trans. Cybernet. 45, 9 (2015), 1876-1886.
    • (2015) IEEE Trans. Cybernet , vol.45 , Issue.9 , pp. 1876-1886
    • Li, X.1    Mou, L.2    Lu, X.3
  • 15
    • 72949091678 scopus 로고    scopus 로고
    • Deterministic column-based matrix decomposition
    • 2009
    • Xuelong Li and Yanwei Pang. 2009. Deterministic column-based matrix decomposition. IEEE Trans. Knowl. Data Eng. 22, 1 (2009), 145-149.
    • (2009) IEEE Trans. Knowl. Data Eng , vol.22 , Issue.1 , pp. 145-149
    • Li, X.1    Pang, Y.2
  • 16
    • 84981276306 scopus 로고    scopus 로고
    • Surveillance video synopsis via scaling down objects
    • 2016
    • Xuelong Li, Zhigang Wang, and Xiaoqiang Lu. 2016. Surveillance video synopsis via scaling down objects. IEEE Trans. Image Process. 25, 2 (2016), 740-755.
    • (2016) IEEE Trans. Image Process , vol.25 , Issue.2 , pp. 740-755
    • Li, X.1    Wang, Z.2    Lu, X.3
  • 17
    • 84947060427 scopus 로고    scopus 로고
    • Local structure-based sparse representation for face recognition
    • 2015
    • Fan Liu, Jinhui Tang, Yan Song, Liyan Zhang, and Zhenmin Tang. 2015. Local structure-based sparse representation for face recognition. ACM Trans. Intell. Syst. Technol. 7, 1 (2015), 2.
    • (2015) ACM Trans. Intell. Syst. Technol , vol.7 , Issue.1 , pp. 2
    • Liu, F.1    Tang, J.2    Song, Y.3    Zhang, L.4    Tang, Z.5
  • 18
    • 84969924814 scopus 로고    scopus 로고
    • Telco user activity level prediction with massive mobile broadband data
    • 2016
    • Chen Luo, Jia Zeng, Mingxuan Yuan,Wenyuan Dai, and Qiang Yang. 2016. Telco user activity level prediction with massive mobile broadband data. ACM Trans. Intell. Syst. Technol. 7, 4 (2016), 63.
    • (2016) ACM Trans. Intell. Syst. Technol , vol.7 , Issue.4 , pp. 63
    • Luo, C.1    Zeng, J.2    Yuan, M.3    Dai, W.4    Yang, Q.5
  • 19
    • 84914178794 scopus 로고    scopus 로고
    • Joint block structure sparse representation for multiinput- multi-output (MIMO) T-S fuzzy system identification
    • 2014
    • Minnan Luo, Fuchun Sun, and Huaping Liu. 2014. Joint block structure sparse representation for multiinput- multi-output (MIMO) T-S fuzzy system identification. IEEE Trans. Fuzzy Syst. 22, 6 (2014), 1387-1400.
    • (2014) IEEE Trans. Fuzzy Syst , vol.22 , Issue.6 , pp. 1387-1400
    • Luo, M.1    Sun, F.2    Liu, H.3
  • 20
    • 70349852759 scopus 로고    scopus 로고
    • Tailored aggregation for classification
    • 2009
    • Tristan Mary-Huard and Stephane Robin. 2009. Tailored aggregation for classification. IEEE Trans. Pattern Anal. Mach. Intell. 31, 11 (2009), 2098-2105.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell , vol.31 , Issue.11 , pp. 2098-2105
    • Mary-Huard, T.1    Robin, S.2
  • 21
    • 52449099188 scopus 로고    scopus 로고
    • Combination of knn-based feature selection and knnbased missing-value imputation of microarray data
    • Phayung Meesad and Kairung Hengpraprohm. 2008. Combination of knn-based feature selection and knnbased missing-value imputation of microarray data. In ICICIC. 341-341.
    • (2008) ICICIC , pp. 341
    • Meesad, P.1    Hengpraprohm, K.2
  • 23
    • 69349097340 scopus 로고    scopus 로고
    • An adaptable-nearest neighbors algorithm for MMSE image interpolation
    • 2009
    • Karl S. Ni and Truong Q. Nguyen. 2009. An adaptable-nearest neighbors algorithm for MMSE image interpolation. IEEE Trans. Image Process. 18, 9 (2009), 1976-1987.
    • (2009) IEEE Trans. Image Process , vol.18 , Issue.9 , pp. 1976-1987
    • Ni, K.S.1    Nguyen, T.Q.2
  • 24
    • 13444286179 scopus 로고    scopus 로고
    • Locality preserving projections
    • X. Niyogi. 2004. Locality preserving projections. In NIPS, Vol. 16. 153.
    • (2004) NIPS , vol.16 , pp. 153
    • Niyogi, X.1
  • 25
    • 34250704657 scopus 로고    scopus 로고
    • Semi-parametric optimization for missing data imputation
    • 2007
    • Yongsong Qin, Shichao Zhang, Xiaofeng Zhu, Jilian Zhang, and Chengqi Zhang. 2007. Semi-parametric optimization for missing data imputation. Appl. Intell. 27, 1 (2007), 79-88.
    • (2007) Appl. Intell , vol.27 , Issue.1 , pp. 79-88
    • Qin, Y.1    Zhang, S.2    Zhu, X.3    Zhang, J.4    Zhang, C.5
  • 26
    • 84904763709 scopus 로고    scopus 로고
    • Assessing the validity of QSARs for ready biodegradability of chemicals: An applicability domain perspective
    • 2014
    • F. Sahigara, D. Ballabio, R. Todeschini, and V. Consonni. 2014. Assessing the validity of QSARs for ready biodegradability of chemicals: An applicability domain perspective. Curr. Comput.- Aid. Drug Des. 10, 10 (2014), 137-147.
    • (2014) Curr. Comput.- Aid. Drug des , vol.10 , Issue.10 , pp. 137-147
    • Sahigara, F.1    Ballabio, D.2    Todeschini, R.3    Consonni, V.4
  • 27
    • 84891776309 scopus 로고    scopus 로고
    • Audio classification with low-rank matrix representation features
    • 2013
    • Ziqiang Shi, Jiqing Han, and Tieran Zheng. 2013. Audio classification with low-rank matrix representation features. ACM Trans. Intell. Syst. Technol. 5, 1 (2013), 15.
    • (2013) ACM Trans. Intell. Syst. Technol , vol.5 , Issue.1 , pp. 15
    • Shi, Z.1    Han, J.2    Zheng, T.3
  • 28
    • 61849145344 scopus 로고    scopus 로고
    • Iknn: Informative k-nearest neighbor pattern classification
    • Yang Song, Jian Huang, Ding Zhou, Hongyuan Zha, and C. Lee Giles. 2007. Iknn: Informative k-nearest neighbor pattern classification. In PKDD. 248-264.
    • (2007) PKDD , pp. 248-264
    • Song, Y.1    Huang, J.2    Zhou, D.3    Zha, H.4    Lee Giles, C.5
  • 29
    • 84900024177 scopus 로고    scopus 로고
    • Big data analytics for healthcare
    • Jimeng Sun and Chandan K. Reddy. 2013. Big data analytics for healthcare. In KDD. 1525-1525.
    • (2013) KDD , pp. 1525
    • Sun, J.1    Reddy, C.K.2
  • 30
    • 85011378315 scopus 로고    scopus 로고
    • K-nearest neighbor temporal aggregate queries
    • 2015
    • Yu Sun, Jianzhong Qi, Yu Zheng, Zhang, and Rui. 2015. K-nearest neighbor temporal aggregate queries. Inproceedings (2015).
    • (2015) Inproceedings
    • Sun, Y.1    Qi, J.2    Zheng, Y.3    Zhang4    Rui5
  • 32
    • 11144330519 scopus 로고    scopus 로고
    • K-local hyperplane and convex distance nearest neighbor algorithms
    • Pascal Vincent and Yoshua Bengio. 2001. K-local hyperplane and convex distance nearest neighbor algorithms. In NIPS. 985-992.
    • (2001) NIPS , pp. 985-992
    • Vincent, P.1    Bengio, Y.2
  • 33
    • 33645990298 scopus 로고    scopus 로고
    • Nearest neighbors by neighborhood counting
    • 2006
    • Hui Wang. 2006. Nearest neighbors by neighborhood counting. IEEE Trans. Pattern Anal. Mach. Intell. 28, 6 (2006), 942-953.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell , vol.28 , Issue.6 , pp. 942-953
    • Wang, H.1
  • 35
    • 61749090884 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • 2006
    • Kilian Q. Weinberger and Lawrence K. Saul. 2006. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 1 (2006), 207-244.
    • (2006) J. Mach. Learn. Res , vol.10 , Issue.1 , pp. 207-244
    • Weinberger, K.Q.1    Saul, L.K.2
  • 39
    • 84870247727 scopus 로고    scopus 로고
    • Image collection summarization via dictionary learning for sparse representation
    • 2012
    • Chunlei Yang, Jialie Shen, Jinye Peng, and Jianping Fan. 2012. Image collection summarization via dictionary learning for sparse representation. Pattern Recogn. 46, 3 (2012), 948-961.
    • (2012) Pattern Recogn , vol.46 , Issue.3 , pp. 948-961
    • Yang, C.1    Shen, J.2    Peng, J.3    Fan, J.4
  • 40
    • 33947313355 scopus 로고    scopus 로고
    • A regression-based K nearest neighbor algorithm for gene function prediction from heterogeneous data
    • 2006
    • Zizhen Yao and Walter L. Ruzzo. 2006. A regression-based K nearest neighbor algorithm for gene function prediction from heterogeneous data. BMC Bioinfor. 7, Suppl. 1 (2006), S11.
    • (2006) BMC Bioinfor , vol.7 , pp. S11
    • Yao, Z.1    Ruzzo, W.L.2
  • 41
    • 84928252705 scopus 로고    scopus 로고
    • Compact structure hashing via sparse and similarity preserving embedding
    • 2016
    • Renzhen Ye and Xuelong Li. 2016. Compact structure hashing via sparse and similarity preserving embedding. IEEE Trans. Cybernet. 46, 3 (2016), 718-729.
    • (2016) IEEE Trans. Cybernet , vol.46 , Issue.3 , pp. 718-729
    • Ye, R.1    Li, X.2
  • 43
    • 38149046554 scopus 로고    scopus 로고
    • GBKII: An imputation method for missing values
    • Chengqi Zhang, Xiaofeng Zhu, Jilian Zhang, Yongsong Qin, and Shichao Zhang. 2007. GBKII: An imputation method for missing values. In PAKDD. 1080-1087.
    • (2007) PAKDD , pp. 1080-1087
    • Zhang, C.1    Zhu, X.2    Zhang, J.3    Qin, Y.4    Zhang, S.5
  • 44
    • 84857372439 scopus 로고    scopus 로고
    • KNN-CF approach: Incorporating certainty factor to kNN classification
    • 2010
    • Shizhao Zhang. 2010. KNN-CF approach: Incorporating certainty factor to kNN classification. IEEE Intell. Infor. Bull. 11, 1 (2010), 24-33.
    • (2010) IEEE Intell. Infor. Bull , vol.11 , Issue.1 , pp. 24-33
    • Zhang, S.1
  • 45
    • 79959375445 scopus 로고    scopus 로고
    • Shell-neighbor method and its application in missing data imputation
    • 2011
    • Shichao Zhang. 2011. Shell-neighbor method and its application in missing data imputation. Appl. Intell. 35, 1 (2011), 123-133.
    • (2011) Appl. Intell , vol.35 , Issue.1 , pp. 123-133
    • Zhang, S.1
  • 46
    • 84968375601 scopus 로고    scopus 로고
    • Self-representation nearest neighbor search for classification
    • 2016
    • Shichao Zhang, Debo Cheng, Ming Zong, and Lianli Gao. 2016. Self-representation nearest neighbor search for classification. Neurocomputing 195 (2016), 137-142.
    • (2016) Neurocomputing , vol.195 , pp. 137-142
    • Zhang, S.1    Cheng, D.2    Zong, M.3    Gao, L.4
  • 47
    • 84918804435 scopus 로고    scopus 로고
    • Efficient kNN algorithm based on graph sparse reconstruction
    • Shichao Zhang, Ming Zong, Ke Sun, Yue Liu, and Debo Cheng. 2014. Efficient kNN algorithm based on graph sparse reconstruction. In ADMA. 356-369.
    • (2014) ADMA , pp. 356-369
    • Zhang, S.1    Zong, M.2    Sun, K.3    Liu, Y.4    Cheng, D.5
  • 48
    • 84881040969 scopus 로고    scopus 로고
    • Learning inter-related statistical query translation models for English-Chinese bi-directional CLIR
    • Yuejie Zhang, Lei Cen, Cheng Jin, Xiangyang Xue, and Jianping Fan. 2011. Learning inter-related statistical query translation models for English-Chinese bi-directional CLIR. In International Joint Conference on Artificial Intelligence. 1915-1920.
    • (2011) International Joint Conference on Artificial Intelligence , pp. 1915-1920
    • Zhang, Y.1    Cen, L.2    Jin, C.3    Xue, X.4    Fan, J.5
  • 50
    • 84866033003 scopus 로고    scopus 로고
    • Self-taught dimensionality reduction on the high-dimensional small-sized data
    • 2013
    • Xiaofeng Zhu, Zi Huang, Yang Yang, Heng Tao Shen, Changsheng Xu, and Jiebo Luo. 2013b. Self-taught dimensionality reduction on the high-dimensional small-sized data. Pattern Recogn. 46, 1 (2013), 215-229.
    • (2013) Pattern Recogn , vol.46 , Issue.1 , pp. 215-229
    • Zhu, X.1    Huang, Z.2    Yang, Y.3    Tao Shen, H.4    Xu, C.5    Luo, J.6
  • 51
    • 84923658744 scopus 로고    scopus 로고
    • Block-row sparse multiview multilabel learning for image classification
    • 2016
    • Xiaofeng Zhu, Xuelong Li, and Shichao Zhang. 2016a. Block-row sparse multiview multilabel learning for image classification. IEEE Trans. Cybernet. 46, 2 (2016), 450-461.
    • (2016) IEEE Trans. Cybernet , vol.46 , Issue.2 , pp. 450-461
    • Zhu, X.1    Li, X.2    Zhang, S.3
  • 52
    • 85024124480 scopus 로고    scopus 로고
    • Robust joint graph sparse coding for unsupervised spectral feature selection
    • 2016
    • Xiaofeng Zhu, Xuelong Li, Shichao Zhang, Chunhua Ju, and Xindong Wu. 2016b. Robust joint graph sparse coding for unsupervised spectral feature selection. IEEE Trans. Neur. Netw. Learn. Syst. (2016).
    • (2016) IEEE Trans. Neur. Netw. Learn. Syst
    • Zhu, X.1    Li, X.2    Zhang, S.3    Ju, C.4    Wu, X.5
  • 53
    • 84911457687 scopus 로고    scopus 로고
    • Matrix-similarity based loss function and feature selection for Alzheimer's disease diagnosis
    • Xiaofeng Zhu, Heung-Il Suk, and Dinggang Shen. 2014. Matrix-similarity based loss function and feature selection for alzheimer's disease diagnosis. In CVPR. 3089-3096.
    • (2014) CVPR , pp. 3089-3096
    • Zhu, X.1    Suk, H.2    Shen, D.3
  • 54
    • 78649402552 scopus 로고    scopus 로고
    • Missing value estimation for mixed-attribute data sets
    • 2011
    • Xiaofeng Zhu, Shichao Zhang, Zhi Jin, Zili Zhang, and Zhuoming Xu. 2011. Missing value estimation for mixed-attribute data sets. IEEE Trans. Knowl. Data Eng. 23, 1 (2011), 110-121.
    • (2011) IEEE Trans. Knowl. Data Eng , vol.23 , Issue.1 , pp. 110-121
    • Zhu, X.1    Zhang, S.2    Jin, Z.3    Zhang, Z.4    Xu, Z.5
  • 55
    • 84881135320 scopus 로고    scopus 로고
    • Cost-sensitive imputing missing values with ordering
    • Xiaofeng Zhu, Shichao Zhang, Jilian Zhang, and Chengqi Zhang. 2007. Cost-sensitive imputing missing values with ordering. In AAAI. 1922-1923.
    • (2007) AAAI , pp. 1922-1923
    • Zhu, X.1    Zhang, S.2    Zhang, J.3    Zhang, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.