-
1
-
-
84866453901
-
-
(Data Mining and Knowledge Discovery Series). Boca Raton, FL, USA: Chapman and Hall-CRC
-
Z. Zhao and H. Liu, Spectral Feature Selection for Data Mining (Data Mining and Knowledge Discovery Series). Boca Raton, FL, USA: Chapman and Hall-CRC, 2012.
-
(2012)
Spectral Feature Selection for Data Mining
-
-
Zhao, Z.1
Liu, H.2
-
2
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
Sept.
-
R. Fisher, "The use of multiple measurements in taxonomic problems," Ann. Eugen, vol. 7, no. 2, pp. 179-188, Sept. 1936.
-
(1936)
Ann. Eugen
, vol.7
, Issue.2
, pp. 179-188
-
-
Fisher, R.1
-
4
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
DOI 10.1126/science.290.5500.2323
-
S. T. Roweis and L. K. Saul, "Nonlinear dimensionality reduction by local linear embedding," Science, vol. 290, no. 5500, pp. 2323-2326, Dec. 2000. (Pubitemid 32041578)
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.T.1
Saul, L.K.2
-
5
-
-
0347243182
-
Nonlinear Component Analysis as a Kernel Eigenvalue Problem
-
B. Scholkopf, A. Smola, and K. R. Muller, "Nonlinear component analysis as a Kernel Eigenvalue problem," Neural Comput., vol. 10, no. 5, pp. 1299-1319, 1998. (Pubitemid 128463674)
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Scholkopf, B.1
Smola, A.2
Muller, K.-R.3
-
6
-
-
13444286179
-
Locality preserving projections
-
X. He and P. Niyogi, "Locality preserving projections," in Proc. NIPS, 2004.
-
(2004)
Proc. NIPS
-
-
He, X.1
Niyogi, P.2
-
7
-
-
84880203756
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
M. Belkin and P. Niyogi, "Laplacian eigenmaps and spectral techniques for embedding and clustering," in Proc. NIPS, 2002.
-
(2002)
Proc. NIPS
-
-
Belkin, M.1
Niyogi, P.2
-
8
-
-
33745561205
-
An introduction to variable and feature selection
-
Mar.
-
I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Mar. 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
9
-
-
26444454606
-
Feature selection for unsupervised learning
-
Aug.
-
J. G. Dy and C. E. Brodley, "Feature selection for unsupervised learning," J. Mach. Learn. Res., vol. 5, pp. 845-889, Aug. 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 845-889
-
-
Dy, J.G.1
Brodley, C.E.2
-
10
-
-
0003922190
-
-
New York, NY, USA: Wiley Interscience
-
R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York, NY, USA: Wiley Interscience, 2000.
-
(2000)
Pattern Classification.
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
11
-
-
0141990695
-
Theoretical and empirical analysis of relief and relieff
-
M. Robnik-Sikonja and I. Kononenko, "Theoretical and empirical analysis of relief and relieff," Mach. Learn., vol. 53, no. 1-2, pp. 23-69, 2003.
-
(2003)
Mach. Learn.
, vol.53
, Issue.1-2
, pp. 23-69
-
-
Robnik-Sikonja, M.1
Kononenko, I.2
-
12
-
-
25144492516
-
Efficient feature selection via analysis of relevance and redundancy
-
Oct.
-
L. Yu and H. Liu, "Efficient feature selection via analysis of relevance and redundancy," J. Mach. Learn. Res., vol. 5, pp. 1205-1224, Oct. 2004.
-
(2004)
J. Mach. Learn. Res.
, vol.5
, pp. 1205-1224
-
-
Yu, L.1
Liu, H.2
-
13
-
-
34547981441
-
Spectral feature selection for supervised and unsupervised learning
-
Corvallis, OR, USA
-
Z. Zhao and H. Liu, "Spectral feature selection for supervised and unsupervised learning," in Proc. 24th Int. Conf. Mach. Learn., Corvallis, OR, USA, 2007.
-
(2007)
Proc. 24th Int. Conf. Mach. Learn.
-
-
Zhao, Z.1
Liu, H.2
-
15
-
-
84864039505
-
Laplacian score for feature selection
-
Vancouver, BC, Canada
-
X. He, D. Cai, and P. Niyogi, "Laplacian score for feature selection," in Proc. NIPS, Vancouver, BC, Canada, 2005.
-
(2005)
Proc. NIPS
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
16
-
-
84862024860
-
Feature selection via dependence maximization
-
Jan.
-
L. Song, A. Smola, A. Gretton, J. Bedo, and K. Borgwardt, "Feature selection via dependence maximization," J. Mach. Learn. Res., vol. 13, no. 1, pp. 1393-1434, Jan. 2012.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, Issue.1
, pp. 1393-1434
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Bedo, J.4
Borgwardt, K.5
-
17
-
-
70449102559
-
Semi-supervised feature selection via spectral analysis
-
Tempe, AZ, USA
-
Z. Zhao and H. Liu, "Semi-supervised feature selection via spectral analysis," in Proc. SIAM Int. Conf. Data Mining, Tempe, AZ, USA, 2007, pp. 641-646.
-
(2007)
Proc. SIAM Int. Conf. Data Mining
, pp. 641-646
-
-
Zhao, Z.1
Liu, H.2
-
18
-
-
21844457672
-
Learning a mahalanobis metric from equivalence constraints
-
Jan.
-
A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall, "Learning a Mahalanobis metric from equivalence constraints," J. Mach. Learn. Res., vol. 6, pp. 937-965, Jan. 2005.
-
(2005)
J. Mach. Learn. Res.
, vol.6
, pp. 937-965
-
-
Bar-Hillel, A.1
Hertz, T.2
Shental, N.3
Weinshall, D.4
-
19
-
-
57749197763
-
Semi-supervised dimensionality reduction
-
Pittsburgh, PA, USA
-
D. Zhang, Z. Zhou, and S. Chen, "Semi-supervised dimensionality reduction," in Proc. SIAM Int. Conf. Data Mining, Pittsburgh, PA, USA, 2007.
-
(2007)
Proc. SIAM Int. Conf. Data Mining
-
-
Zhang, D.1
Zhou, Z.2
Chen, S.3
-
20
-
-
38349093039
-
Constraint score: A new filter method for feature selection with pairwise constraints
-
D. Zhang, S. Chen, and Z. Zhou, "Constraint score: A new filter method for feature selection with pairwise constraints," Pattern Recognit., vol. 41, no. 5, pp. 1440-1451, 2008.
-
(2008)
Pattern Recognit.
, vol.41
, Issue.5
, pp. 1440-1451
-
-
Zhang, D.1
Chen, S.2
Zhou, Z.3
-
21
-
-
78751645408
-
Constraint scores for semi-supervised feature selection: A comparative study
-
M. Kalakech, P. Biela, L. Macaire, and D. Hamad, "Constraint scores for semi-supervised feature selection: A comparative study," Pattern Recognit. Lett., vol. 32, no. 5, pp. 656-665, 2011.
-
(2011)
Pattern Recognit. Lett.
, vol.32
, Issue.5
, pp. 656-665
-
-
Kalakech, M.1
Biela, P.2
MacAire, L.3
Hamad, D.4
-
22
-
-
80052407690
-
Constrained laplacian score for semi-supervised feature selection
-
Athens, Greece
-
K. Benabdeslem and M. Hindawi, "Constrained Laplacian score for semi-supervised feature selection," in Proc. ECML-PKDD, Athens, Greece, 2011, pp. 204-218.
-
(2011)
Proc. ECML-PKDD
, pp. 204-218
-
-
Benabdeslem, K.1
Hindawi, M.2
-
23
-
-
38049127336
-
Measuring constraintset utility for partitional clustering algorithms
-
I. Davidson, K. Wagstaff, and S. Basu, "Measuring constraintset utility for partitional clustering algorithms," in Proc. ECML/PKDD, 2006.
-
(2006)
Proc. ECML/PKDD
-
-
Davidson, I.1
Wagstaff, K.2
Basu, S.3
-
24
-
-
80052500135
-
Constraint selection for semisupervised topological clustering
-
Athens, Greece
-
K. Allab and K. Benabdeslem, "Constraint selection for semisupervised topological clustering," in Proc. ECML-PKDD, Athens, Greece, 2011, pp. 28-43.
-
(2011)
Proc. ECML-PKDD
, pp. 28-43
-
-
Allab, K.1
Benabdeslem, K.2
-
25
-
-
85158826352
-
Efficient spectral feature selection with minimum redundancy
-
Z. Zhao, L. Wang, and H. Liu, "Efficient spectral feature selection with minimum redundancy," in Proc. AAAI, 2010.
-
(2010)
Proc. AAAI
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
-
26
-
-
84960463485
-
Minimum redundancy feature selection from microarray gene expression data
-
C. Ding and H. C. Peng, "Minimum redundancy feature selection from microarray gene expression data," in Proc. IEEE CSB, 2003, pp. 523-528.
-
(2003)
Proc. IEEE CSB
, pp. 523-528
-
-
Ding, C.1
Peng, H.C.2
-
27
-
-
24344458137
-
Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
-
DOI 10.1109/TPAMI.2005.159
-
H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, Aug. 2005. (Pubitemid 41245053)
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
28
-
-
77954875021
-
Comparison of redundancy and relevance measures for feature selection in tissue classification of CT images
-
Berlin, Germany
-
B. Auffarth, M. Lopez, and J. Cerquides, "Comparison of redundancy and relevance measures for feature selection in tissue classification of CT images," in Proc. 10th ICDM, Berlin, Germany, 2010, pp. 248-262.
-
(2010)
Proc. 10th ICDM
, pp. 248-262
-
-
Auffarth, B.1
Lopez, M.2
Cerquides, J.3
-
29
-
-
84890520049
-
Use the zero norm with linear models and kernel methods
-
Mar.
-
J. Weston, A. Elisseff, B. Schoelkopf, and M. Tipping, "Use the zero norm with linear models and kernel methods," J. Mach. Learn. Res., vol. 3, pp. 1439-1461, Mar. 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseff, A.2
Schoelkopf, B.3
Tipping, M.4
-
30
-
-
84873278481
-
On similarity preserving feature selection
-
Mar.
-
Z. Zhao, L. Wang, H. Liu, and J. Ye, "On similarity preserving feature selection," IEEE Trans. Knowl. Data Eng., vol. 25, no. 3, pp. 619-632, Mar. 2013.
-
(2013)
IEEE Trans. Knowl. Data Eng.
, vol.25
, Issue.3
, pp. 619-632
-
-
Zhao, Z.1
Wang, L.2
Liu, H.3
Ye, J.4
-
31
-
-
0003882879
-
-
Providence, RI, USA: American Mathematical SoCiety
-
F. Chung, Spectral Graph Theory. Providence, RI, USA: American Mathematical SoCiety, 1997.
-
(1997)
Spectral Graph Theory
-
-
Chung, F.1
-
32
-
-
84857166060
-
Constraint selection based semi-supervised feature selection
-
Vancouver, BC, Canada
-
M. Hindawi, K. Allab, and K. Benabdeslem, "Constraint selection based semi-supervised feature selection," in Proc. IEEE ICDM, Vancouver, BC, Canada, 2011, pp. 1080-1085.
-
(2011)
Proc. IEEE ICDM
, pp. 1080-1085
-
-
Hindawi, M.1
Allab, K.2
Benabdeslem, K.3
-
33
-
-
0003410791
-
-
Berlin, Germany: Springer Verlag
-
T. Kohonen, Self OrGaNizing Map. Berlin, Germany: Springer Verlag, 2001.
-
(2001)
Self OrGaNizing Map
-
-
Kohonen, T.1
-
34
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
Berkley, CA, USA
-
J. B. MacQueen, "Some methods for classification and analysis of multivariate observations," in Proc. 5th Symp. Math. Statist. Probab., Berkley, CA, USA, 1967, pp. 281-297.
-
(1967)
Proc. 5th Symp. Math. Statist. Probab.
, pp. 281-297
-
-
MacQueen, J.B.1
-
35
-
-
84944178665
-
Hierarchical grouping to optimize an objective function
-
J. H. Ward, "Hierarchical grouping to optimize an objective function," J. Amer. Statist. AsSoC., vol. 58, no. 301, pp. 236-244, 1963.
-
(1963)
J. Amer. Statist. AsSoC.
, vol.58
, Issue.301
, pp. 236-244
-
-
Ward, J.H.1
-
36
-
-
0042341570
-
Clustering and its validation in a symbolic framework
-
M. Kalyani and M. Sushmita, "Clustering and its validation in a symbolic framework," Pattern Recognit. Lett., vol. 24, no. 14, pp. 2367-2376, 2003.
-
(2003)
Pattern Recognit. Lett.
, vol.24
, Issue.14
, pp. 2367-2376
-
-
Kalyani, M.1
Sushmita, M.2
-
37
-
-
33745881038
-
Neighborhood preserving embedding
-
1544858, Proceedings - 10th IEEE International Conference on Computer Vision, ICCV 2005
-
X. He, D. Cai, S. Yan, and H. Jiang Zhang, "Neighborhood preserving embedding," in Proc. 10th IEEE Int. Conf. Comput. Vision, Beijing, Germany, 2005, pp. 1208-1213. (Pubitemid 44042318)
-
(2005)
Proceedings of the IEEE International Conference on Computer Vision
, vol.II
, pp. 1208-1213
-
-
He, X.1
Cai, D.2
Yan, S.3
Zhang, H.-J.4
-
38
-
-
85162319688
-
Sparse manifold clustering and embedding
-
E. Elhamifar and R. Vidal, "Sparse manifold clustering and embedding," in Proc. NIPS, 2011, pp. 55-63.
-
(2011)
Proc. NIPS
, pp. 55-63
-
-
Elhamifar, E.1
Vidal, R.2
-
39
-
-
0004257992
-
-
(Wiley Series in Probability and Mathematical Statistics). New York, NY, USA: Wiley
-
S. Kullback, Information Theory and Statistics (Wiley Series in Probability and Mathematical Statistics). New York, NY, USA: Wiley, 1959.
-
(1959)
Information Theory and Statistics
-
-
Kullback, S.1
-
40
-
-
0004116989
-
-
Cambridge, MA, USA: McGraw-Hill Higher Education
-
T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction to Algorithms. Cambridge, MA, USA: McGraw-Hill Higher Education, 2001.
-
(2001)
Introduction to Algorithms
-
-
Cormen, T.H.1
Stein, C.2
Rivest, R.L.3
Leiserson, C.E.4
-
42
-
-
79955702502
-
LIBSVM: A library for support vector machines
-
[Online]
-
C. C. Chang and C. J. Lin, "LIBSVM: A library for support vector machines," ACM Trans. Intell. Syst. Technol., vol. 2, pp. 27:1-27:27, 2011 [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm
-
(2011)
ACM Trans. Intell. Syst. Technol.
, vol.2
, pp. 1-27
-
-
Chang, C.C.1
Lin, C.J.2
-
43
-
-
84950632109
-
Objective criteria for the evaluation of clustering method
-
Dec.
-
W. M. Rand, "Objective criteria for the evaluation of clustering method," J. Amer. Statist. AsSoC., vol. 66, no. 336, pp. 846-850, Dec. 1971.
-
(1971)
J. Amer. Statist. AsSoC.
, vol.66
, Issue.336
, pp. 846-850
-
-
Rand, W.M.1
|