메뉴 건너뛰기




Volumn , Issue , 2010, Pages 793-801

Semi-supervised feature selection for graph classification

Author keywords

Data mining; Feature selection; Graph classification; Semi supervised learning

Indexed keywords

BRANCH-AND-BOUND ALGORITHMS; CURRENT RESEARCHES; EMPIRICAL STUDIES; FEATURE EVALUATION; FEATURE MINING; FEATURE SELECTION; FEATURE SELECTION METHODS; FEATURE SETS; GRAPH CLASSIFICATION; GRAPH DATA; NOVEL SOLUTIONS; REAL-WORLD TASK; SEARCH SPACES; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; SUBGRAPHS;

EID: 77956201235     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1835804.1835905     Document Type: Conference Paper
Times cited : (106)

References (16)
  • 3
    • 0035113097 scopus 로고    scopus 로고
    • The predictive toxicology challenge 2000-2001
    • C. Helma, R. King, S. Kramer, and A. Srinivasan. The predictive toxicology challenge 2000-2001. Bioinformatics, 17(1):107-108, 2001.
    • (2001) Bioinformatics , vol.17 , Issue.1 , pp. 107-108
    • Helma, C.1    King, R.2    Kramer, S.3    Srinivasan, A.4
  • 7
    • 84898968571 scopus 로고    scopus 로고
    • An application of boosting to graph classification
    • L. K. Saul, Y. Weiss, and L. Bottou, editors Cambridge, MA: MIT Press
    • T. Kudo, E. Maeda, and Y. Matsumoto. An application of boosting to graph classification. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 729-736. Cambridge, MA: MIT Press, 2005.
    • (2005) Advances in Neural Information Processing Systems 17 , pp. 729-736
    • Kudo, T.1    Maeda, E.2    Matsumoto, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.