-
1
-
-
78751645408
-
Constraint scores for semi-supervised feature selection: a comparative study
-
[1] Kalakech, M., Biela, P., Macaire, L., Hamad, D., Constraint scores for semi-supervised feature selection: a comparative study. Pattern Recognit. Lett. 32 (2011), 656–665, 10.1016/j.patrec.2010.12.014.
-
(2011)
Pattern Recognit. Lett.
, vol.32
, pp. 656-665
-
-
Kalakech, M.1
Biela, P.2
Macaire, L.3
Hamad, D.4
-
2
-
-
83655161380
-
Trace ratio criterion based generalized discriminative learning for semi-supervised dimensionality reduction
-
[2] Zhao, M., Zhang, Z., Chow, T.W.S., Trace ratio criterion based generalized discriminative learning for semi-supervised dimensionality reduction. Pattern Recognit. 45 (2012), 1482–1499, 10.1016/j.patcog.2011.10.008.
-
(2012)
Pattern Recognit.
, vol.45
, pp. 1482-1499
-
-
Zhao, M.1
Zhang, Z.2
Chow, T.W.S.3
-
3
-
-
84857166060
-
-
M.Hindawi, K.Allab, K.Benabdeslem, Constraint selection-based semi-supervised feature selection, in: Proceedings of the ICDM, IEEE, 2011, pp. 1080–1085.
-
[3] M.Hindawi, K.Allab, K.Benabdeslem, Constraint selection-based semi-supervised feature selection, in: Proceedings of the ICDM, IEEE, 2011, pp. 1080–1085.
-
-
-
-
4
-
-
36849082989
-
Feature selection via sensitivity analysis of SVM probabilistic outputs
-
[4] Shen, K.-Q., Ong, C.-J., Li, X.-P., Wilder-Smith, E.P.V., Feature selection via sensitivity analysis of SVM probabilistic outputs. Mach. Learn. 70 (2008), 1–20, 10.1007/s10994-007-5025-7.
-
(2008)
Mach. Learn.
, vol.70
, pp. 1-20
-
-
Shen, K.-Q.1
Ong, C.-J.2
Li, X.-P.3
Wilder-Smith, E.P.V.4
-
5
-
-
84901006505
-
Efficient semi-supervised feature selection: constraint, relevance, and redundancy
-
[5] Benabdeslem, K., Hindawi, M., Efficient semi-supervised feature selection: constraint, relevance, and redundancy. IEEE Trans. Knowl. Data Eng. 26 (2014), 1131–1143, 10.1109/TKDE.2013.86.
-
(2014)
IEEE Trans. Knowl. Data Eng.
, vol.26
, pp. 1131-1143
-
-
Benabdeslem, K.1
Hindawi, M.2
-
6
-
-
38349093039
-
Constraint score: a new filter method for feature selection with pairwise constraints
-
[6] Zhang, D., Chen, S., Zhou, Z.-H., Constraint score: a new filter method for feature selection with pairwise constraints. Pattern Recognit. 41 (2008), 1440–1451, 10.1016/j.patcog.2007.10.009.
-
(2008)
Pattern Recognit.
, vol.41
, pp. 1440-1451
-
-
Zhang, D.1
Chen, S.2
Zhou, Z.-H.3
-
7
-
-
84891632626
-
Efficient feature size reduction via predictive forward selection
-
[7] Reif, M., Shafait, F., Efficient feature size reduction via predictive forward selection. Pattern Recognit. 47 (2014), 1664–1673, 10.1016/j.patcog.2013.10.009.
-
(2014)
Pattern Recognit.
, vol.47
, pp. 1664-1673
-
-
Reif, M.1
Shafait, F.2
-
8
-
-
84887799080
-
Particle swarm optimization for feature selection in classification: a multi-objective approach
-
[8] Xue, B., Zhang, M., Member, S., Browne, W.N., Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43 (2013), 1656–1671.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, pp. 1656-1671
-
-
Xue, B.1
Zhang, M.2
Member, S.3
Browne, W.N.4
-
9
-
-
84922845754
-
Embedded feature-selection support vector machine for driving pattern recognition
-
[9] Zhang, X., Wu, G., Dong, Z., Crawford, C., Embedded feature-selection support vector machine for driving pattern recognition. J. Frankl. Inst. 352 (2015), 669–685, 10.1016/j.jfranklin.2014.04.021.
-
(2015)
J. Frankl. Inst.
, vol.352
, pp. 669-685
-
-
Zhang, X.1
Wu, G.2
Dong, Z.3
Crawford, C.4
-
10
-
-
84877608131
-
Effective search for genetic-based machine learning systems via estimation of distribution algorithms and embedded feature reduction techniques
-
[10] Yang, J.D., Xu, H., Jia, P.F., Effective search for genetic-based machine learning systems via estimation of distribution algorithms and embedded feature reduction techniques. Neurocomputing 113 (2013), 105–121, 10.1016/J.Neucom.2013.01.014.
-
(2013)
Neurocomputing
, vol.113
, pp. 105-121
-
-
Yang, J.D.1
Xu, H.2
Jia, P.F.3
-
11
-
-
84055184264
-
-
H.Cheng, W.Deng, C.Fu, Y.Wang, Z.Qin, Graph-based semi-supervised feature selection with application to automatic spam image identification, in: Proceedings of the Computer Science for Environmental Engineering and EcoInformatics, Springer, 2011, pp. 259–264.
-
[11] H.Cheng, W.Deng, C.Fu, Y.Wang, Z.Qin, Graph-based semi-supervised feature selection with application to automatic spam image identification, in: Proceedings of the Computer Science for Environmental Engineering and EcoInformatics, Springer, 2011, pp. 259–264.
-
-
-
-
12
-
-
77958005784
-
Semisupervised feature selection for unbalanced sample sets of VHR images
-
[12] Chen, X., Fang, T., Huo, H., Li, D., Semisupervised feature selection for unbalanced sample sets of VHR images. IEEE Geosci. Remote Sens. Lett. 7 (2010), 781–785, 10.1109/LGRS.2010.2048197.
-
(2010)
IEEE Geosci. Remote Sens. Lett.
, vol.7
, pp. 781-785
-
-
Chen, X.1
Fang, T.2
Huo, H.3
Li, D.4
-
13
-
-
84938294283
-
Emotion recognition using semi-supervised feature selection with speaker normalization
-
[13] Sun, Y., Wen, G., Emotion recognition using semi-supervised feature selection with speaker normalization. Int. J. Speech Technol., 2015, 1–15, 10.1007/s10772-015-9272-x.
-
(2015)
Int. J. Speech Technol.
, pp. 1-15
-
-
Sun, Y.1
Wen, G.2
-
14
-
-
84878314938
-
A semi-supervised feature selection method using a non-parametric technique with pairwise instance constraints
-
[14] Chen, C.-H., A semi-supervised feature selection method using a non-parametric technique with pairwise instance constraints. J. Inf. Sci. 39 (2013), 359–371, 10.1177/0165551512456502.
-
(2013)
J. Inf. Sci.
, vol.39
, pp. 359-371
-
-
Chen, C.-H.1
-
15
-
-
38049052393
-
Simultaneous feature selection and classification via semi-supervised models,
-
Proceedings of the Third International Conference on Natural Computation, ICNC 2007, 2007, pp. 646–650.
-
[15] L. Yang, L. Wang, Simultaneous feature selection and classification via semi-supervised models, in: Proceedings of the Third International Conference on Natural Computation, ICNC 2007, 2007, pp. 646–650. 〈 http://dx.doi.org/10.1109/ICNC.2007.666〉.
-
-
-
Yang, L.1
Wang, L.2
-
16
-
-
0036522403
-
Unsupervised feature selection using feature similarity
-
[16] Mitra, P., Murthy, C.A., Pal, S.K., Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002), 301–312, 10.1109/34.990133.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, pp. 301-312
-
-
Mitra, P.1
Murthy, C.A.2
Pal, S.K.3
-
17
-
-
77958106713
-
Simultaneous feature selection and classification using kernel-penalized support vector machines
-
[17] Maldonado, S., Weber, R., Basak, J., Simultaneous feature selection and classification using kernel-penalized support vector machines. Inf. Sci. 181 (2011), 115–128, 10.1016/j.ins.2010.08.047.
-
(2011)
Inf. Sci.
, vol.181
, pp. 115-128
-
-
Maldonado, S.1
Weber, R.2
Basak, J.3
-
18
-
-
80955181170
-
A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm
-
[18] Uǧuz, H., A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm. Knowl. Based Syst. 24 (2011), 1024–1032, 10.1016/j.knosys.2011.04.014.
-
(2011)
Knowl. Based Syst.
, vol.24
, pp. 1024-1032
-
-
Uǧuz, H.1
-
19
-
-
0242410408
-
Benchmarking attribute selection techniques for discrete class data mining
-
[19] Hall, M., Holmes, G., Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 15 (2003), 1437–1447.
-
(2003)
IEEE Trans. Knowl. Data Eng.
, vol.15
, pp. 1437-1447
-
-
Hall, M.1
Holmes, G.2
-
20
-
-
77956611003
-
Mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
-
[20] Unler, A., Murat, A., Chinnam, R.B., Mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Inf. Sci. 181 (2011), 4625–4641, 10.1016/j.ins.2010.05.037.
-
(2011)
Inf. Sci.
, vol.181
, pp. 4625-4641
-
-
Unler, A.1
Murat, A.2
Chinnam, R.B.3
-
21
-
-
84901644354
-
A hybrid intelligent model of analyzing clinical breast cancer data using clustering techniques with feature selection
-
[21] Chen, C.-H., A hybrid intelligent model of analyzing clinical breast cancer data using clustering techniques with feature selection. Appl. Soft Comput. 20 (2014), 4–14.
-
(2014)
Appl. Soft Comput.
, vol.20
, pp. 4-14
-
-
Chen, C.-H.1
-
22
-
-
84908507721
-
Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits
-
[22] Pohjalainen, J., Räsänen, O., Kadioglu, S., Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits. Comput. Speech Lang. 29 (2015), 145–171.
-
(2015)
Comput. Speech Lang.
, vol.29
, pp. 145-171
-
-
Pohjalainen, J.1
Räsänen, O.2
Kadioglu, S.3
-
23
-
-
84885360807
-
Drug activity prediction using multiple-instance learning via joint instance and feature selection
-
[23] Zhao, Z., Fu, G., Liu, S., Elokely, K.M., Doerksen, R.J., Chen, Y., et al. Drug activity prediction using multiple-instance learning via joint instance and feature selection. BMC Bioinform., 14(Suppl 1), 2013, S16, 10.1186/1471-2105-14-S14-S16.
-
(2013)
BMC Bioinform.
, vol.14
, pp. S16
-
-
Zhao, Z.1
Fu, G.2
Liu, S.3
Elokely, K.M.4
Doerksen, R.J.5
Chen, Y.6
-
24
-
-
84897113235
-
Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
-
[24] Xue, B., Zhang, M., Browne, W.N., Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms. Appl. Soft Comput. 18 (2014), 261–276, 10.1016/j.asoc.2013.09.018.
-
(2014)
Appl. Soft Comput.
, vol.18
, pp. 261-276
-
-
Xue, B.1
Zhang, M.2
Browne, W.N.3
-
25
-
-
74649087307
-
A novel feature selection approach for biomedical data classification
-
[25] Peng, Y., Wu, Z., Jiang, J., A novel feature selection approach for biomedical data classification. J. Biomed. Inform. 43 (2010), 15–23, 10.1016/j.jbi.2009.07.008.
-
(2010)
J. Biomed. Inform.
, vol.43
, pp. 15-23
-
-
Peng, Y.1
Wu, Z.2
Jiang, J.3
-
26
-
-
84885474355
-
Optimal feature selection for classifying a large set of chemicals using metal oxide sensors
-
[26] Nowotny, T., Berna, A.Z., Binions, R., Trowell, S., Optimal feature selection for classifying a large set of chemicals using metal oxide sensors. Sens. Actuators B Chem. 187 (2013), 471–480, 10.1016/j.snb.2013.01.088.
-
(2013)
Sens. Actuators B Chem.
, vol.187
, pp. 471-480
-
-
Nowotny, T.1
Berna, A.Z.2
Binions, R.3
Trowell, S.4
-
27
-
-
77951139898
-
A discrete particle swarm optimization method for feature selection in binary classification problems
-
[27] Unler, A., Murat, A., A discrete particle swarm optimization method for feature selection in binary classification problems. Eur. J. Oper. Res. 206 (2010), 528–539, 10.1016/j.ejor.2010.02.032.
-
(2010)
Eur. J. Oper. Res.
, vol.206
, pp. 528-539
-
-
Unler, A.1
Murat, A.2
-
28
-
-
84871925258
-
A simultaneous feature adaptation and feature selection method for content-based image retrieval systems
-
[28] Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., A simultaneous feature adaptation and feature selection method for content-based image retrieval systems. Knowl. Based Syst. 39 (2013), 85–94, 10.1016/j.knosys.2012.10.011.
-
(2013)
Knowl. Based Syst.
, vol.39
, pp. 85-94
-
-
Rashedi, E.1
Nezamabadi-Pour, H.2
Saryazdi, S.3
-
29
-
-
79952449647
-
A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
-
[29] Chen, H.-L., Yang, B., Liu, J., Liu, D.-Y., A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Syst. Appl. 38 (2011), 9014–9022, 10.1016/j.eswa.2011.01.120.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 9014-9022
-
-
Chen, H.-L.1
Yang, B.2
Liu, J.3
Liu, D.-Y.4
-
30
-
-
84899480198
-
Simultaneous feature selection and Gaussian mixture model estimation for supervised classification problems
-
[30] Kersten, J., Simultaneous feature selection and Gaussian mixture model estimation for supervised classification problems. Pattern Recognit. 47 (2014), 2582–2595.
-
(2014)
Pattern Recognit.
, vol.47
, pp. 2582-2595.
-
-
Kersten, J.1
-
31
-
-
84897053423
-
Embedded local feature selection within mixture of experts
-
[31] Peralta, B., Soto, A., Embedded local feature selection within mixture of experts. Inf. Sci. 269 (2014), 176–187, 10.1016/j.ins.2014.01.008.
-
(2014)
Inf. Sci.
, vol.269
, pp. 176-187
-
-
Peralta, B.1
Soto, A.2
-
32
-
-
79952444436
-
A feature selection method based on improved fisher's discriminant ratio for text sentiment classification
-
[32] Wang, S., Li, D., Song, X., Wei, Y., Li, H., A feature selection method based on improved fisher's discriminant ratio for text sentiment classification. Expert Syst. Appl. 38 (2011), 8696–8702, 10.1016/j.eswa.2011.01.077.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 8696-8702
-
-
Wang, S.1
Li, D.2
Song, X.3
Wei, Y.4
Li, H.5
-
33
-
-
56349089940
-
Support vector machines combined with feature selection for breast cancer diagnosis
-
[33] Akay, M.F., Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst. Appl. 36 (2009), 3240–3247, 10.1016/j.eswa.2008.01.009.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 3240-3247
-
-
Akay, M.F.1
-
34
-
-
84902264031
-
A novel feature selection method based on an integrated data envelopment analysis and entropy model
-
[34] Bamakan, S.M.H., Gholami, P., A novel feature selection method based on an integrated data envelopment analysis and entropy model. Procedia Comput. Sci. 31 (2014), 632–638, 10.1016/j.procs.2014.05.310.
-
(2014)
Procedia Comput. Sci.
, vol.31
, pp. 632-638
-
-
Bamakan, S.M.H.1
Gholami, P.2
-
35
-
-
84897971581
-
Suboptimal branch and bound algorithms for feature subset selection: a comparative study
-
[35] Nakariyakul, S., Suboptimal branch and bound algorithms for feature subset selection: a comparative study. Pattern Recognit. Lett. 45 (2014), 62–70, 10.1016/j.ins.2014.03.072.
-
(2014)
Pattern Recognit. Lett.
, vol.45
, pp. 62-70
-
-
Nakariyakul, S.1
-
36
-
-
79957440082
-
A new feature selection algorithm based on binomial hypothesis testing for spam filtering
-
[36] Yang, J., Liu, Y., Liu, Z., Zhu, X., Zhang, X., A new feature selection algorithm based on binomial hypothesis testing for spam filtering. Knowl. Based Syst. 24 (2011), 904–914, 10.1016/j.knosys.2011.04.006.
-
(2011)
Knowl. Based Syst.
, vol.24
, pp. 904-914
-
-
Yang, J.1
Liu, Y.2
Liu, Z.3
Zhu, X.4
Zhang, X.5
-
37
-
-
47249093354
-
Asymmetric bagging and feature selection for activities prediction of drug molecules
-
[37] Li, G.-Z., Meng, H.-H., Lu, W.-C., Yang, J.Y., Yang, M., Asymmetric bagging and feature selection for activities prediction of drug molecules. BMC Bioinform., 9, 2008, 10.1186/1471-2105-9-S6-S7.
-
(2008)
BMC Bioinform.
, vol.9
-
-
Li, G.-Z.1
Meng, H.-H.2
Lu, W.-C.3
Yang, J.Y.4
Yang, M.5
-
38
-
-
80053173508
-
Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction
-
[38] Shi, P., Ray, S., Zhu, Q., Kon, M.A., Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction. BMC Bioinform., 12, 2011, 375, 10.1186/1471-2105-12-375.
-
(2011)
BMC Bioinform.
, vol.12
, pp. 375
-
-
Shi, P.1
Ray, S.2
Zhu, Q.3
Kon, M.A.4
-
39
-
-
84894384270
-
A novel class dependent feature selection method for cancer biomarker discovery
-
[39] Zhou, W., Dickerson, J.A., A novel class dependent feature selection method for cancer biomarker discovery. Comput. Biol. Med. 47 (2014), 66–75, 10.1016/j.compbiomed.2014.01.014.
-
(2014)
Comput. Biol. Med.
, vol.47
, pp. 66-75
-
-
Zhou, W.1
Dickerson, J.A.2
-
40
-
-
85126491314
-
-
K.Benabdeslem, M.Hindawi, Constrained laplacian score for semi-supervised feature selection, in: Proceedings of the Machine Learning and Knowledge Discovery in Databases, Springer, 2011, pp. 204–218.
-
[40] K.Benabdeslem, M.Hindawi, Constrained laplacian score for semi-supervised feature selection, in: Proceedings of the Machine Learning and Knowledge Discovery in Databases, Springer, 2011, pp. 204–218.
-
-
-
-
41
-
-
84955258625
-
Particle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancer
-
[41] Sheikhpour, R., Sarram, M.A., Sheikhpour, R., Particle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancer. Appl. Soft Comput. 40 (2016), 113–131, 10.1016/j.asoc.2015.10.005.
-
(2016)
Appl. Soft Comput.
, vol.40
, pp. 113-131
-
-
Sheikhpour, R.1
Sarram, M.A.2
Sheikhpour, R.3
-
42
-
-
84990888711
-
Supervised, unsupervised and semi-supervised feature selection: a review on gene selection
-
[42] Chin, A., Mirzal, A., Haron, H., Hamed, H., Supervised, unsupervised and semi-supervised feature selection: a review on gene selection. IEEE/ACM Trans. Comput. Biol. Bioinform., 2015, 10.1109/TCBB.2015.2478454.
-
(2015)
IEEE/ACM Trans. Comput. Biol. Bioinform.
-
-
Chin, A.1
Mirzal, A.2
Haron, H.3
Hamed, H.4
-
43
-
-
84905179334
-
A review of microarray datasets and applied feature selection methods
-
[43] Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A., Benítez, J.M., Herrera, F., A review of microarray datasets and applied feature selection methods. Inf. Sci. 282 (2014), 111–135, 10.1016/j.ins.2014.05.042.
-
(2014)
Inf. Sci.
, vol.282
, pp. 111-135
-
-
Bolón-Canedo, V.1
Sánchez-Maroño, N.2
Alonso-Betanzos, A.3
Benítez, J.M.4
Herrera, F.5
-
44
-
-
84894903349
-
A survey on feature selection methods
-
[44] Chandrashekar, G., Sahin, F., A survey on feature selection methods. Comput. Electr. Eng. 40 (2014), 16–28, 10.1016/j.compeleceng.2013.11.024.
-
(2014)
Comput. Electr. Eng.
, vol.40
, pp. 16-28
-
-
Chandrashekar, G.1
Sahin, F.2
-
45
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
[45] Saeys, Y., Inza, I., Larrañaga, P., A review of feature selection techniques in bioinformatics. Bioinformatics 23 (2007), 2507–2517, 10.1093/bioinformatics/btm344.
-
(2007)
Bioinformatics
, vol.23
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
46
-
-
33745561205
-
An introduction to variable and feature selection
-
[46] Guyon, I., Elisseeff, a., An introduction to variable and feature selection. J. Mach. Learn. Res. 3 (2003), 1157–1182, 10.1162/153244303322753616.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
47
-
-
85007285461
-
-
G.-Z.Yang, X.-P.Hu, Feature Selection, U.S. Pat. Appl. 12/064,993, 2006.
-
[47] G.-Z.Yang, X.-P.Hu, Feature Selection, U.S. Pat. Appl. 12/064,993, 2006.
-
-
-
-
48
-
-
84955732932
-
Semi-supervised feature selection via hierarchical regression for web image classification
-
[48] Song, X., Zhang, J., Han, Y., Jiang, J., Semi-supervised feature selection via hierarchical regression for web image classification. Multimed. Syst., 2014, 10.1007/s00530-014-0390-0.
-
(2014)
Multimed. Syst.
-
-
Song, X.1
Zhang, J.2
Han, Y.3
Jiang, J.4
-
49
-
-
84921514115
-
Semisupervised feature selection via spline regression for video semantic recognition
-
[49] Han, Y., Yang, Y., Yan, Y., Ma, Z., Sebe, N., Member, S., Semisupervised feature selection via spline regression for video semantic recognition. IEEE Trans. Neural Netw. Learn. Syst. 26 (2015), 252–264.
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, pp. 252-264
-
-
Han, Y.1
Yang, Y.2
Yan, Y.3
Ma, Z.4
Sebe, N.5
Member, S.6
-
50
-
-
85007387428
-
-
Semi-supervised Feature Analysis by Mining Correlations among Multipe Tasks, 2014, 11.
-
[50] X. Chang, Y. Yang, Semi-supervised Feature Analysis by Mining Correlations among Multipe Tasks, 2014, 11. 〈 http://arxiv.org/abs/1411.6232〉.
-
-
-
Chang, X.1
Yang, Y.2
-
51
-
-
70449102559
-
-
Z.Zhao, H.Liu, Semi-supervised feature selection via spectral snalysis, in: Proceedings of the 7th SIAM International Conference Data Mining, SIAM, 2007, pp. 641–646.
-
[51] Z.Zhao, H.Liu, Semi-supervised feature selection via spectral snalysis, in: Proceedings of the 7th SIAM International Conference Data Mining, SIAM, 2007, pp. 641–646.
-
-
-
-
52
-
-
84860387759
-
A semi-supervised feature ranking method with ensemble learning
-
[52] Bellal, F., Elghazel, H., Aussem, A., A semi-supervised feature ranking method with ensemble learning. Pattern Recognit. Lett. 33 (2012), 1426–1433, 10.1016/j.patrec.2012.03.001.
-
(2012)
Pattern Recognit. Lett.
, vol.33
, pp. 1426-1433
-
-
Bellal, F.1
Elghazel, H.2
Aussem, A.3
-
53
-
-
44649150219
-
-
J.Ren, Z.Qiu, W.Fan, H.Cheng, P.S.Yu, S.Y.Philip, Forward semi-supervised feature selection, in: Proceedings of the Advances in Knowledge Discovery and Data Mining, Springer, 2008, pp. 970–976.
-
[53] J.Ren, Z.Qiu, W.Fan, H.Cheng, P.S.Yu, S.Y.Philip, Forward semi-supervised feature selection, in: Proceedings of the Advances in Knowledge Discovery and Data Mining, Springer, 2008, pp. 970–976.
-
-
-
-
54
-
-
80053251304
-
Confident wrapper-type semi-supervised feature selection using an ensemble classifier,
-
Proceedings of the 2011 2nd Artificial Intelligence, Management Science and Electronic Commerce, AIMSEC 2011, pp. 4581–4586.
-
[54] Y. Han, K. Park, Y.K. Lee, Confident wrapper-type semi-supervised feature selection using an ensemble classifier, in: Proceedings of the 2011 2nd Artificial Intelligence, Management Science and Electronic Commerce, AIMSEC 2011, pp. 4581–4586. 〈 http://dx.doi.org/10.1109/AIMSEC.2011.6010202〉.
-
-
-
Han, Y.1
Park, K.2
Lee, Y.K.3
-
55
-
-
84857153050
-
Semi-supervised feature importance evaluation with ensemble learning,
-
Proceedings of the International Conference on Data Mining, ICDM 2011, 2011, pp. 31–40.
-
[55] H. Barkia, H. Elghazel, A. Aussem, Semi-supervised feature importance evaluation with ensemble learning, in: Proceedings of the International Conference on Data Mining, ICDM 2011, 2011, pp. 31–40. 〈 http://dx.doi.org/10.1109/icdm.2011.129〉.
-
-
-
Barkia, H.1
Elghazel, H.2
Aussem, A.3
-
56
-
-
84922529615
-
The graph based semi-supervised algorithm with ℓ1-regularizer
-
[56] Zuo, L., Li, L., Chen, C., The graph based semi-supervised algorithm with ℓ1-regularizer. Neurocomputing 149 (2015), 966–974, 10.1016/j.neucom.2014.07.037.
-
(2015)
Neurocomputing
, vol.149
, pp. 966-974
-
-
Zuo, L.1
Li, L.2
Chen, C.3
-
57
-
-
84923874457
-
Scaling up graph-based semisupervised learning via prototype vector machines
-
[57] Zhang, K., Lan, L., Kwok, J.T., Vucetic, S., Parvin, B., Scaling up graph-based semisupervised learning via prototype vector machines. IEEE Trans. Neural Netw. Learn. Syst. 26 (2015), 444–457, 10.1109/TNNLS.2014.2315526.
-
(2015)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.26
, pp. 444-457
-
-
Zhang, K.1
Lan, L.2
Kwok, J.T.3
Vucetic, S.4
Parvin, B.5
-
58
-
-
60349117789
-
-
N.N.Pise, P.Kulkarni, A survey of semi-supervised learning methods, in: Proceedings of the International Conference Computational Intelligence and Security, CIS’08, IEEE, 2008, pp. 30–34.
-
[58] N.N.Pise, P.Kulkarni, A survey of semi-supervised learning methods, in: Proceedings of the International Conference Computational Intelligence and Security, CIS’08, IEEE, 2008, pp. 30–34. 〈 http://dx.doi.org/10.1109/CIS.2008.204〉.
-
-
-
-
59
-
-
33749252873
-
Semi-Supervised Learning
-
MIT Press Cambridge
-
[59] Chapelle, O., Schölkopf, B., Zien, A., Semi-Supervised Learning. 2006, MIT Press, Cambridge.
-
(2006)
-
-
Chapelle, O.1
Schölkopf, B.2
Zien, A.3
-
60
-
-
84899956253
-
Unsupervised manifold learning based on multiple feature spaces
-
[60] Chahooki, M.A.Z., Charkari, N.M., Unsupervised manifold learning based on multiple feature spaces. Mach. Vis. Appl. 25 (2014), 1053–1065, 10.1007/s00138-014-0604-7.
-
(2014)
Mach. Vis. Appl.
, vol.25
, pp. 1053-1065
-
-
Chahooki, M.A.Z.1
Charkari, N.M.2
-
61
-
-
84855921876
-
-
M.A.Z.Chahooki, N.M.Charkari, Improvement of supervised shape retrieval by learning the manifold space, in: Proceedings of the Iranian Conference on Machine Vision and Image Processing, MVIP 2011, IEEE, 2011, pp. 1–4.
-
[61] M.A.Z.Chahooki, N.M.Charkari, Improvement of supervised shape retrieval by learning the manifold space, in: Proceedings of the Iranian Conference on Machine Vision and Image Processing, MVIP 2011, IEEE, 2011, pp. 1–4.
-
-
-
-
62
-
-
84875735212
-
Aggregation pheromone metaphor for semi-supervised classification
-
[62] Halder, A., Ghosh, S., Ghosh, A., Aggregation pheromone metaphor for semi-supervised classification. Pattern Recognit. 46 (2013), 2239–2248, 10.1016/j.patcog.2013.01.002.
-
(2013)
Pattern Recognit.
, vol.46
, pp. 2239-2248
-
-
Halder, A.1
Ghosh, S.2
Ghosh, A.3
-
63
-
-
67650272548
-
-
Introduction to Semi-Supervised Learning, 2009.
-
[63] X. Zhu, A.B. Goldberg, Introduction to Semi-Supervised Learning, 2009. 〈 http://dx.doi.org/10.2200/S00196ED1V01Y200906AIM006〉.
-
-
-
Zhu, X.1
Goldberg, A.B.2
-
64
-
-
85007381977
-
-
Semi-Supervised Learning Literature Survey, 2008.
-
[64] X. Zhu, Semi-Supervised Learning Literature Survey, 2008. 〈 http://dx.doi.org/10.1.1.146.2352〉.
-
-
-
Zhu, X.1
-
66
-
-
44649111202
-
Locality sensitive semi-supervised feature selection
-
[66] Zhao, J., Lu, K., He, X., Locality sensitive semi-supervised feature selection. Neurocomputing 71 (2008), 1842–1849, 10.1016/j.neucom.2007.06.014.
-
(2008)
Neurocomputing
, vol.71
, pp. 1842-1849
-
-
Zhao, J.1
Lu, K.2
He, X.3
-
67
-
-
79957938654
-
-
Graph laplacian for semi-supervised feature selection in regression problems, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2011, pp. 248–255. 〈〉
-
[67] G. Doquire, M. Verleysen, Graph laplacian for semi-supervised feature selection in regression problems, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2011, pp. 248–255. 〈 http://dx.doi.org/10.1007/978-3-642-21501-8_31〉.
-
-
-
Doquire, G.1
Verleysen, M.2
-
68
-
-
84884139371
-
A graph laplacian based approach to semi-supervised feature selection for regression problems
-
[68] Doquire, G., Verleysen, M., A graph laplacian based approach to semi-supervised feature selection for regression problems. Neurocomputing 121 (2013), 5–13, 10.1016/j.neucom.2012.10.028.
-
(2013)
Neurocomputing
, vol.121
, pp. 5-13
-
-
Doquire, G.1
Verleysen, M.2
-
69
-
-
79851501337
-
Graph-based semi-supervised weighted band selection for classification of hyperspectral data,
-
Proceedings of the International Conference on Audio, Language and Image Processing, ICALIP 2010, pp. 1123–1126.
-
[69] L.C.L. Chen, R.H.R. Huang, W.H.W. Huang, Graph-based semi-supervised weighted band selection for classification of hyperspectral data, in: Proceedings of the International Conference on Audio, Language and Image Processing, ICALIP 2010, pp. 1123–1126. 〈 http://dx.doi.org/10.1109/ICALIP.2010.5685086〉.
-
-
-
Chen, L.C.L.1
Huang, R.H.R.2
Huang, W.H.W.3
-
70
-
-
78149334894
-
-
M.Yang, Y.Chen, G.Ji, Semi_fisher score : a semi-supervised method for feature selection, in: Proceedings of the International Conference on Machine Learning and Cybernetics, 2010, pp. 527–532.
-
[70] M.Yang, Y.Chen, G.Ji, Semi_fisher score : a semi-supervised method for feature selection, in: Proceedings of the International Conference on Machine Learning and Cybernetics, 2010, pp. 527–532.
-
-
-
-
71
-
-
84901942488
-
-
S.Lv, H.Jiang, L.Zhao, D.Wang, M.Fan, Manifold based fisher method for semi-supervised feature selection, in: Proceedings of the 10th International Conference on Fuzzy Systems and Knowledge Discovery, 2013, pp. 664–668.
-
[71] S.Lv, H.Jiang, L.Zhao, D.Wang, M.Fan, Manifold based fisher method for semi-supervised feature selection, in: Proceedings of the 10th International Conference on Fuzzy Systems and Knowledge Discovery, 2013, pp. 664–668.
-
-
-
-
72
-
-
83755220453
-
A semi-supervised method for feature selection,
-
Proceedings of the International Conference on Computer and Information Science and Technology, 2011, pp. 329–332.
-
[72] W. Yang, C. Hou, Y. Wu, A semi-supervised method for feature selection, in: Proceedings of the International Conference on Computer and Information Science and Technology, 2011, pp. 329–332. 〈 http://dx.doi.org/10.1109/ICCIS.2011.54〉.
-
-
-
Yang, W.1
Hou, C.2
Wu, Y.3
-
73
-
-
84875384168
-
Efficient semi-supervised feature selection with noise insensitive trace ratio criterion
-
[73] Liu, Y., Nie, F., Wu, J., Chen, L., Efficient semi-supervised feature selection with noise insensitive trace ratio criterion. Neurocomputing 105 (2013), 12–18, 10.1016/j.neucom.2012.05.031.
-
(2013)
Neurocomputing
, vol.105
, pp. 12-18
-
-
Liu, Y.1
Nie, F.2
Wu, J.3
Chen, L.4
-
74
-
-
84863170518
-
-
Y.Liu, F.Nie, J.Wu, L.Chen, Semi-supervised feature selection based on label propagation and subset selection, in: Proceedings of the International Conference on Computer and Information Application, IEEE, 2010, pp. 293–296.
-
[74] Y.Liu, F.Nie, J.Wu, L.Chen, Semi-supervised feature selection based on label propagation and subset selection, in: Proceedings of the International Conference on Computer and Information Application, IEEE, 2010, pp. 293–296.
-
-
-
-
75
-
-
77957935759
-
-
J.Li, Semi-supervised feature selection under logistic I-RELIEF framework, in: Proceedings of the 19th International Conference Pattern Recognition, 2008, pp. 1–4.
-
[75] J.Li, Semi-supervised feature selection under logistic I-RELIEF framework, in: Proceedings of the 19th International Conference Pattern Recognition, 2008, pp. 1–4. 〈 http://dx.doi.org/10.1109/ICPR.2008.4761687〉.
-
-
-
-
76
-
-
84870517183
-
Discriminating joint feature analysis for multimedia data understanding
-
[76] Ma, Z., Nie, F., Yang, Y., Uijlings, J.R.R., Sebe, N., Member, S., et al. Discriminating joint feature analysis for multimedia data understanding. IEEE Trans. Multimed. 14 (2012), 1662–1672.
-
(2012)
IEEE Trans. Multimed.
, vol.14
, pp. 1662-1672
-
-
Ma, Z.1
Nie, F.2
Yang, Y.3
Uijlings, J.R.R.4
Sebe, N.5
Member, S.6
-
77
-
-
84894225938
-
Sparse feature selection based on graph Laplacian for web image annotation
-
[77] Shi, C., Ruan, Q., An, G., Sparse feature selection based on graph Laplacian for web image annotation. Image Vis. Comput. 32 (2014), 189–201, 10.1016/j.imavis.2013.12.013.
-
(2014)
Image Vis. Comput.
, vol.32
, pp. 189-201
-
-
Shi, C.1
Ruan, Q.2
An, G.3
-
78
-
-
84455161745
-
Exploiting the entire feature space with sparsity for automatic image annotation,
-
Proceedings of the 19th ACM Multimedia Conference, MM’11, 2011, p. 283. 〈〉
-
[78] Z. Ma, Y. Yang, F. Nie, J. Uijlings, N. Sebe, Exploiting the entire feature space with sparsity for automatic image annotation, in: Proceedings of the 19th ACM Multimedia Conference, MM’11, 2011, p. 283. 〈 http://dx.doi.org/10.1145/2072298.2072336〉.
-
-
-
Ma, Z.1
Yang, Y.2
Nie, F.3
Uijlings, J.4
Sebe, N.5
-
79
-
-
77954565155
-
Discriminative semi-supervised feature selection via manifold regularization
-
[79] Xu, Z., King, I., Lyu, M.R.T., Jin, R., Discriminative semi-supervised feature selection via manifold regularization. IEEE Trans. Neural Netw. 21 (2010), 1033–1047, 10.1109/TNN.2010.2047114.
-
(2010)
IEEE Trans. Neural Netw.
, vol.21
, pp. 1033-1047
-
-
Xu, Z.1
King, I.2
Lyu, M.R.T.3
Jin, R.4
-
80
-
-
84946422968
-
Semi-supervised SVM-based feature felection for cancer classification using microarray gene expression data
-
[80] Ang, J.C., B, H.H., Nuzly, H., Hamed, A., Haron, H., Hamed, H.N.A., Semi-supervised SVM-based feature felection for cancer classification using microarray gene expression data. Curr. Approaches Appl. Artif. Intell., 2015, 468–477, 10.1007/978-3-319-19066-2.
-
(2015)
Curr. Approaches Appl. Artif. Intell.
, pp. 468-477
-
-
Ang, J.C.1
Bal, H.H.2
Nuzly, H.3
Hamed, A.4
Haron, H.5
Hamed, H.N.A.6
-
81
-
-
84893853199
-
A semisupervised feature selection with support vector machine
-
[81] Dai, K., Yu, H.-Y., Li, Q., A semisupervised feature selection with support vector machine. J. Appl. Math., 2013, 2013.
-
(2013)
J. Appl. Math.
, vol.2013
-
-
Dai, K.1
Yu, H.-Y.2
Li, Q.3
-
82
-
-
0003487601
-
Neural Networks for Pattern Recognition
-
Clarendon Press Oxford
-
[82] Bishop, C.M., Neural Networks for Pattern Recognition. 1995, Clarendon Press, Oxford.
-
(1995)
-
-
Bishop, C.M.1
-
83
-
-
84864039505
-
Laplacian Score for Feature Selection,
-
Proceedings of the Advances in Neural Information Processing Systems, 2005, pp. 507–514. 〈〉
-
[83] X. He, D. Cai, P. Niyogi, Laplacian Score for Feature Selection, in: Proceedings of the Advances in Neural Information Processing Systems, 2005, pp. 507–514. 〈 http://books.nips.cc/papers/files/nips18/NIPS2005_0149.pdf〉.
-
-
-
He, X.1
Cai, D.2
Niyogi, P.3
-
84
-
-
85007398872
-
-
Generalized Fisher Score for Feature Selection, CoRR, abs/1202.3, 2012.
-
[84] Q. Gu, Z. Li, J. Han, Generalized Fisher Score for Feature Selection, CoRR, abs/1202.3, 2012.
-
-
-
Gu, Q.1
Li, Z.2
Han, J.3
-
85
-
-
84947868141
-
Semi-supervised feature selection based on local discriminative information
-
[85] Zeng, Z., Wang, X., Zhang, J., Wu, Q., Semi-supervised feature selection based on local discriminative information. Neurocomputing, 2015, 10.1016/j.neucom.2015.05.119.
-
(2015)
Neurocomputing
-
-
Zeng, Z.1
Wang, X.2
Zhang, J.3
Wu, Q.4
-
86
-
-
84908211928
-
A convex formulation for semi-supervised multi-label feature selection,
-
[86] X. Chang, F. Nie, Y. Yang, H. Huang, A convex formulation for semi-supervised multi-label feature selection, in: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014, pp. 1171–1177.
-
(2014)
Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence
, pp. 1171-1177
-
-
Chang, X.1
Nie, F.2
Yang, Y.3
Huang, H.4
-
87
-
-
62549128663
-
Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0
-
[87] Foucart, S., Lai, M.-J., Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0
-
(2009)
Appl. Comput. Harmon. Anal.
, vol.26
, pp. 395-407
-
-
Foucart, S.1
Lai, M.-J.2
-
88
-
-
85162044296
-
-
D.Krishnan, R.Fergus, Fast image deconvolution using hyper-Laplacian priors, in: Proceedings of the Advances in Neural Information Processing Systems, 2009, pp. 1033–1041.
-
[88] D.Krishnan, R.Fergus, Fast image deconvolution using hyper-Laplacian priors, in: Proceedings of the Advances in Neural Information Processing Systems, 2009, pp. 1033–1041.
-
-
-
-
89
-
-
34548724437
-
Exact reconstruction of sparse signals via nonconvex minimization
-
[89] Chartrand, R., Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14 (2007), 707–710.
-
(2007)
IEEE Signal Process. Lett.
, vol.14
, pp. 707-710
-
-
Chartrand, R.1
-
90
-
-
70449490591
-
-
R.Chartrand, Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data, in: Proceedings of the International Symposium on Biomedical Imaging From Nano to Macro, ISBI’09, 2009, pp. 262–265.
-
[90] R.Chartrand, Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data, in: Proceedings of the International Symposium on Biomedical Imaging From Nano to Macro, ISBI’09, 2009, pp. 262–265.
-
-
-
-
91
-
-
84871085657
-
l1/2 regularization: a thresholding representation theory and a fast solver
-
[91] Zongben, X., Xiangyu, C., Fengmin, X., Hai, Z., l1/2 regularization: a thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. Syst. 23 (2012), 1013–1027.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, pp. 1013-1027
-
-
Zongben, X.1
Xiangyu, C.2
Fengmin, X.3
Hai, Z.4
-
92
-
-
85161967525
-
-
F.Nie, H.Huang, X.Cai, C.H.Ding, Efficient and robust feature selection via joint ℓ2, 1-norms minimization, in: Proceedings of the Advances in Neural Information Processing Systems, 2010, pp. 1813–1821.
-
[92] F.Nie, H.Huang, X.Cai, C.H.Ding, Efficient and robust feature selection via joint ℓ2, 1-norms minimization, in: Proceedings of the Advances in Neural Information Processing Systems, 2010, pp. 1813–1821.
-
-
-
-
93
-
-
77958565426
-
-
Z.Zhao, L.Wang, H.Liu, Efficient spectral feature selection with minimum redundancy, in: Proceedings of the AAAI Conference on Artificial Intelligence, Citeseer, 2010.
-
[93] Z.Zhao, L.Wang, H.Liu, Efficient spectral feature selection with minimum redundancy, in: Proceedings of the AAAI Conference on Artificial Intelligence, Citeseer, 2010.
-
-
-
-
94
-
-
1942484430
-
-
X.Zhu, Z.Ghahramani, J.Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, in: Proceedings of the International Conference on Machine Learning, ICML, 2003, pp. 912–919.
-
[94] X.Zhu, Z.Ghahramani, J.Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, in: Proceedings of the International Conference on Machine Learning, ICML, 2003, pp. 912–919.
-
-
-
-
95
-
-
77953705810
-
Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction
-
[95] Nie, F., Xu, D., Tsang, I.W.-H., Zhang, C., Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction. Image Process. IEEE Trans. 19 (2010), 1921–1932.
-
(2010)
Image Process. IEEE Trans.
, vol.19
, pp. 1921-1932
-
-
Nie, F.1
Xu, D.2
Tsang, I.W.-H.3
Zhang, C.4
-
96
-
-
80155165021
-
-
Y.Ren, G.Zhang, G.Yu, Random subspace based semi-supervised feature selection, in: Proceedings of the 2011 International Conference on Machine Learning and Cybernetics, 2011, pp. 113–118.
-
[96] Y.Ren, G.Zhang, G.Yu, Random subspace based semi-supervised feature selection, in: Proceedings of the 2011 International Conference on Machine Learning and Cybernetics, 2011, pp. 113–118.
-
-
-
|