메뉴 건너뛰기




Volumn 64, Issue , 2017, Pages 141-158

A Survey on semi-supervised feature selection methods

Author keywords

Feature selection; Semi supervised learning; Survey

Indexed keywords

DATA MINING; LEARNING ALGORITHMS; LEARNING SYSTEMS; SUPERVISED LEARNING; SURVEYING; SURVEYS; TAXONOMIES;

EID: 85007404250     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2016.11.003     Document Type: Article
Times cited : (470)

References (96)
  • 1
    • 78751645408 scopus 로고    scopus 로고
    • Constraint scores for semi-supervised feature selection: a comparative study
    • [1] Kalakech, M., Biela, P., Macaire, L., Hamad, D., Constraint scores for semi-supervised feature selection: a comparative study. Pattern Recognit. Lett. 32 (2011), 656–665, 10.1016/j.patrec.2010.12.014.
    • (2011) Pattern Recognit. Lett. , vol.32 , pp. 656-665
    • Kalakech, M.1    Biela, P.2    Macaire, L.3    Hamad, D.4
  • 2
    • 83655161380 scopus 로고    scopus 로고
    • Trace ratio criterion based generalized discriminative learning for semi-supervised dimensionality reduction
    • [2] Zhao, M., Zhang, Z., Chow, T.W.S., Trace ratio criterion based generalized discriminative learning for semi-supervised dimensionality reduction. Pattern Recognit. 45 (2012), 1482–1499, 10.1016/j.patcog.2011.10.008.
    • (2012) Pattern Recognit. , vol.45 , pp. 1482-1499
    • Zhao, M.1    Zhang, Z.2    Chow, T.W.S.3
  • 3
    • 84857166060 scopus 로고    scopus 로고
    • M.Hindawi, K.Allab, K.Benabdeslem, Constraint selection-based semi-supervised feature selection, in: Proceedings of the ICDM, IEEE, 2011, pp. 1080–1085.
    • [3] M.Hindawi, K.Allab, K.Benabdeslem, Constraint selection-based semi-supervised feature selection, in: Proceedings of the ICDM, IEEE, 2011, pp. 1080–1085.
  • 4
    • 36849082989 scopus 로고    scopus 로고
    • Feature selection via sensitivity analysis of SVM probabilistic outputs
    • [4] Shen, K.-Q., Ong, C.-J., Li, X.-P., Wilder-Smith, E.P.V., Feature selection via sensitivity analysis of SVM probabilistic outputs. Mach. Learn. 70 (2008), 1–20, 10.1007/s10994-007-5025-7.
    • (2008) Mach. Learn. , vol.70 , pp. 1-20
    • Shen, K.-Q.1    Ong, C.-J.2    Li, X.-P.3    Wilder-Smith, E.P.V.4
  • 5
    • 84901006505 scopus 로고    scopus 로고
    • Efficient semi-supervised feature selection: constraint, relevance, and redundancy
    • [5] Benabdeslem, K., Hindawi, M., Efficient semi-supervised feature selection: constraint, relevance, and redundancy. IEEE Trans. Knowl. Data Eng. 26 (2014), 1131–1143, 10.1109/TKDE.2013.86.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , pp. 1131-1143
    • Benabdeslem, K.1    Hindawi, M.2
  • 6
    • 38349093039 scopus 로고    scopus 로고
    • Constraint score: a new filter method for feature selection with pairwise constraints
    • [6] Zhang, D., Chen, S., Zhou, Z.-H., Constraint score: a new filter method for feature selection with pairwise constraints. Pattern Recognit. 41 (2008), 1440–1451, 10.1016/j.patcog.2007.10.009.
    • (2008) Pattern Recognit. , vol.41 , pp. 1440-1451
    • Zhang, D.1    Chen, S.2    Zhou, Z.-H.3
  • 7
    • 84891632626 scopus 로고    scopus 로고
    • Efficient feature size reduction via predictive forward selection
    • [7] Reif, M., Shafait, F., Efficient feature size reduction via predictive forward selection. Pattern Recognit. 47 (2014), 1664–1673, 10.1016/j.patcog.2013.10.009.
    • (2014) Pattern Recognit. , vol.47 , pp. 1664-1673
    • Reif, M.1    Shafait, F.2
  • 8
    • 84887799080 scopus 로고    scopus 로고
    • Particle swarm optimization for feature selection in classification: a multi-objective approach
    • [8] Xue, B., Zhang, M., Member, S., Browne, W.N., Particle swarm optimization for feature selection in classification: a multi-objective approach. IEEE Trans. Cybern. 43 (2013), 1656–1671.
    • (2013) IEEE Trans. Cybern. , vol.43 , pp. 1656-1671
    • Xue, B.1    Zhang, M.2    Member, S.3    Browne, W.N.4
  • 9
    • 84922845754 scopus 로고    scopus 로고
    • Embedded feature-selection support vector machine for driving pattern recognition
    • [9] Zhang, X., Wu, G., Dong, Z., Crawford, C., Embedded feature-selection support vector machine for driving pattern recognition. J. Frankl. Inst. 352 (2015), 669–685, 10.1016/j.jfranklin.2014.04.021.
    • (2015) J. Frankl. Inst. , vol.352 , pp. 669-685
    • Zhang, X.1    Wu, G.2    Dong, Z.3    Crawford, C.4
  • 10
    • 84877608131 scopus 로고    scopus 로고
    • Effective search for genetic-based machine learning systems via estimation of distribution algorithms and embedded feature reduction techniques
    • [10] Yang, J.D., Xu, H., Jia, P.F., Effective search for genetic-based machine learning systems via estimation of distribution algorithms and embedded feature reduction techniques. Neurocomputing 113 (2013), 105–121, 10.1016/J.Neucom.2013.01.014.
    • (2013) Neurocomputing , vol.113 , pp. 105-121
    • Yang, J.D.1    Xu, H.2    Jia, P.F.3
  • 11
    • 84055184264 scopus 로고    scopus 로고
    • H.Cheng, W.Deng, C.Fu, Y.Wang, Z.Qin, Graph-based semi-supervised feature selection with application to automatic spam image identification, in: Proceedings of the Computer Science for Environmental Engineering and EcoInformatics, Springer, 2011, pp. 259–264.
    • [11] H.Cheng, W.Deng, C.Fu, Y.Wang, Z.Qin, Graph-based semi-supervised feature selection with application to automatic spam image identification, in: Proceedings of the Computer Science for Environmental Engineering and EcoInformatics, Springer, 2011, pp. 259–264.
  • 12
    • 77958005784 scopus 로고    scopus 로고
    • Semisupervised feature selection for unbalanced sample sets of VHR images
    • [12] Chen, X., Fang, T., Huo, H., Li, D., Semisupervised feature selection for unbalanced sample sets of VHR images. IEEE Geosci. Remote Sens. Lett. 7 (2010), 781–785, 10.1109/LGRS.2010.2048197.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , pp. 781-785
    • Chen, X.1    Fang, T.2    Huo, H.3    Li, D.4
  • 13
    • 84938294283 scopus 로고    scopus 로고
    • Emotion recognition using semi-supervised feature selection with speaker normalization
    • [13] Sun, Y., Wen, G., Emotion recognition using semi-supervised feature selection with speaker normalization. Int. J. Speech Technol., 2015, 1–15, 10.1007/s10772-015-9272-x.
    • (2015) Int. J. Speech Technol. , pp. 1-15
    • Sun, Y.1    Wen, G.2
  • 14
    • 84878314938 scopus 로고    scopus 로고
    • A semi-supervised feature selection method using a non-parametric technique with pairwise instance constraints
    • [14] Chen, C.-H., A semi-supervised feature selection method using a non-parametric technique with pairwise instance constraints. J. Inf. Sci. 39 (2013), 359–371, 10.1177/0165551512456502.
    • (2013) J. Inf. Sci. , vol.39 , pp. 359-371
    • Chen, C.-H.1
  • 15
    • 38049052393 scopus 로고    scopus 로고
    • Simultaneous feature selection and classification via semi-supervised models,
    • Proceedings of the Third International Conference on Natural Computation, ICNC 2007, 2007, pp. 646–650.
    • [15] L. Yang, L. Wang, Simultaneous feature selection and classification via semi-supervised models, in: Proceedings of the Third International Conference on Natural Computation, ICNC 2007, 2007, pp. 646–650. 〈 http://dx.doi.org/10.1109/ICNC.2007.666〉.
    • Yang, L.1    Wang, L.2
  • 16
  • 17
    • 77958106713 scopus 로고    scopus 로고
    • Simultaneous feature selection and classification using kernel-penalized support vector machines
    • [17] Maldonado, S., Weber, R., Basak, J., Simultaneous feature selection and classification using kernel-penalized support vector machines. Inf. Sci. 181 (2011), 115–128, 10.1016/j.ins.2010.08.047.
    • (2011) Inf. Sci. , vol.181 , pp. 115-128
    • Maldonado, S.1    Weber, R.2    Basak, J.3
  • 18
    • 80955181170 scopus 로고    scopus 로고
    • A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm
    • [18] Uǧuz, H., A two-stage feature selection method for text categorization by using information gain, principal component analysis and genetic algorithm. Knowl. Based Syst. 24 (2011), 1024–1032, 10.1016/j.knosys.2011.04.014.
    • (2011) Knowl. Based Syst. , vol.24 , pp. 1024-1032
    • Uǧuz, H.1
  • 19
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • [19] Hall, M., Holmes, G., Benchmarking attribute selection techniques for discrete class data mining. IEEE Trans. Knowl. Data Eng. 15 (2003), 1437–1447.
    • (2003) IEEE Trans. Knowl. Data Eng. , vol.15 , pp. 1437-1447
    • Hall, M.1    Holmes, G.2
  • 20
    • 77956611003 scopus 로고    scopus 로고
    • Mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification
    • [20] Unler, A., Murat, A., Chinnam, R.B., Mr2PSO: a maximum relevance minimum redundancy feature selection method based on swarm intelligence for support vector machine classification. Inf. Sci. 181 (2011), 4625–4641, 10.1016/j.ins.2010.05.037.
    • (2011) Inf. Sci. , vol.181 , pp. 4625-4641
    • Unler, A.1    Murat, A.2    Chinnam, R.B.3
  • 21
    • 84901644354 scopus 로고    scopus 로고
    • A hybrid intelligent model of analyzing clinical breast cancer data using clustering techniques with feature selection
    • [21] Chen, C.-H., A hybrid intelligent model of analyzing clinical breast cancer data using clustering techniques with feature selection. Appl. Soft Comput. 20 (2014), 4–14.
    • (2014) Appl. Soft Comput. , vol.20 , pp. 4-14
    • Chen, C.-H.1
  • 22
    • 84908507721 scopus 로고    scopus 로고
    • Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits
    • [22] Pohjalainen, J., Räsänen, O., Kadioglu, S., Feature selection methods and their combinations in high-dimensional classification of speaker likability, intelligibility and personality traits. Comput. Speech Lang. 29 (2015), 145–171.
    • (2015) Comput. Speech Lang. , vol.29 , pp. 145-171
    • Pohjalainen, J.1    Räsänen, O.2    Kadioglu, S.3
  • 23
    • 84885360807 scopus 로고    scopus 로고
    • Drug activity prediction using multiple-instance learning via joint instance and feature selection
    • [23] Zhao, Z., Fu, G., Liu, S., Elokely, K.M., Doerksen, R.J., Chen, Y., et al. Drug activity prediction using multiple-instance learning via joint instance and feature selection. BMC Bioinform., 14(Suppl 1), 2013, S16, 10.1186/1471-2105-14-S14-S16.
    • (2013) BMC Bioinform. , vol.14 , pp. S16
    • Zhao, Z.1    Fu, G.2    Liu, S.3    Elokely, K.M.4    Doerksen, R.J.5    Chen, Y.6
  • 24
    • 84897113235 scopus 로고    scopus 로고
    • Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
    • [24] Xue, B., Zhang, M., Browne, W.N., Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms. Appl. Soft Comput. 18 (2014), 261–276, 10.1016/j.asoc.2013.09.018.
    • (2014) Appl. Soft Comput. , vol.18 , pp. 261-276
    • Xue, B.1    Zhang, M.2    Browne, W.N.3
  • 25
    • 74649087307 scopus 로고    scopus 로고
    • A novel feature selection approach for biomedical data classification
    • [25] Peng, Y., Wu, Z., Jiang, J., A novel feature selection approach for biomedical data classification. J. Biomed. Inform. 43 (2010), 15–23, 10.1016/j.jbi.2009.07.008.
    • (2010) J. Biomed. Inform. , vol.43 , pp. 15-23
    • Peng, Y.1    Wu, Z.2    Jiang, J.3
  • 26
    • 84885474355 scopus 로고    scopus 로고
    • Optimal feature selection for classifying a large set of chemicals using metal oxide sensors
    • [26] Nowotny, T., Berna, A.Z., Binions, R., Trowell, S., Optimal feature selection for classifying a large set of chemicals using metal oxide sensors. Sens. Actuators B Chem. 187 (2013), 471–480, 10.1016/j.snb.2013.01.088.
    • (2013) Sens. Actuators B Chem. , vol.187 , pp. 471-480
    • Nowotny, T.1    Berna, A.Z.2    Binions, R.3    Trowell, S.4
  • 27
    • 77951139898 scopus 로고    scopus 로고
    • A discrete particle swarm optimization method for feature selection in binary classification problems
    • [27] Unler, A., Murat, A., A discrete particle swarm optimization method for feature selection in binary classification problems. Eur. J. Oper. Res. 206 (2010), 528–539, 10.1016/j.ejor.2010.02.032.
    • (2010) Eur. J. Oper. Res. , vol.206 , pp. 528-539
    • Unler, A.1    Murat, A.2
  • 28
    • 84871925258 scopus 로고    scopus 로고
    • A simultaneous feature adaptation and feature selection method for content-based image retrieval systems
    • [28] Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., A simultaneous feature adaptation and feature selection method for content-based image retrieval systems. Knowl. Based Syst. 39 (2013), 85–94, 10.1016/j.knosys.2012.10.011.
    • (2013) Knowl. Based Syst. , vol.39 , pp. 85-94
    • Rashedi, E.1    Nezamabadi-Pour, H.2    Saryazdi, S.3
  • 29
    • 79952449647 scopus 로고    scopus 로고
    • A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis
    • [29] Chen, H.-L., Yang, B., Liu, J., Liu, D.-Y., A support vector machine classifier with rough set-based feature selection for breast cancer diagnosis. Expert Syst. Appl. 38 (2011), 9014–9022, 10.1016/j.eswa.2011.01.120.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 9014-9022
    • Chen, H.-L.1    Yang, B.2    Liu, J.3    Liu, D.-Y.4
  • 30
    • 84899480198 scopus 로고    scopus 로고
    • Simultaneous feature selection and Gaussian mixture model estimation for supervised classification problems
    • [30] Kersten, J., Simultaneous feature selection and Gaussian mixture model estimation for supervised classification problems. Pattern Recognit. 47 (2014), 2582–2595.
    • (2014) Pattern Recognit. , vol.47 , pp. 2582-2595.
    • Kersten, J.1
  • 31
    • 84897053423 scopus 로고    scopus 로고
    • Embedded local feature selection within mixture of experts
    • [31] Peralta, B., Soto, A., Embedded local feature selection within mixture of experts. Inf. Sci. 269 (2014), 176–187, 10.1016/j.ins.2014.01.008.
    • (2014) Inf. Sci. , vol.269 , pp. 176-187
    • Peralta, B.1    Soto, A.2
  • 32
    • 79952444436 scopus 로고    scopus 로고
    • A feature selection method based on improved fisher's discriminant ratio for text sentiment classification
    • [32] Wang, S., Li, D., Song, X., Wei, Y., Li, H., A feature selection method based on improved fisher's discriminant ratio for text sentiment classification. Expert Syst. Appl. 38 (2011), 8696–8702, 10.1016/j.eswa.2011.01.077.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 8696-8702
    • Wang, S.1    Li, D.2    Song, X.3    Wei, Y.4    Li, H.5
  • 33
    • 56349089940 scopus 로고    scopus 로고
    • Support vector machines combined with feature selection for breast cancer diagnosis
    • [33] Akay, M.F., Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst. Appl. 36 (2009), 3240–3247, 10.1016/j.eswa.2008.01.009.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 3240-3247
    • Akay, M.F.1
  • 34
    • 84902264031 scopus 로고    scopus 로고
    • A novel feature selection method based on an integrated data envelopment analysis and entropy model
    • [34] Bamakan, S.M.H., Gholami, P., A novel feature selection method based on an integrated data envelopment analysis and entropy model. Procedia Comput. Sci. 31 (2014), 632–638, 10.1016/j.procs.2014.05.310.
    • (2014) Procedia Comput. Sci. , vol.31 , pp. 632-638
    • Bamakan, S.M.H.1    Gholami, P.2
  • 35
    • 84897971581 scopus 로고    scopus 로고
    • Suboptimal branch and bound algorithms for feature subset selection: a comparative study
    • [35] Nakariyakul, S., Suboptimal branch and bound algorithms for feature subset selection: a comparative study. Pattern Recognit. Lett. 45 (2014), 62–70, 10.1016/j.ins.2014.03.072.
    • (2014) Pattern Recognit. Lett. , vol.45 , pp. 62-70
    • Nakariyakul, S.1
  • 36
    • 79957440082 scopus 로고    scopus 로고
    • A new feature selection algorithm based on binomial hypothesis testing for spam filtering
    • [36] Yang, J., Liu, Y., Liu, Z., Zhu, X., Zhang, X., A new feature selection algorithm based on binomial hypothesis testing for spam filtering. Knowl. Based Syst. 24 (2011), 904–914, 10.1016/j.knosys.2011.04.006.
    • (2011) Knowl. Based Syst. , vol.24 , pp. 904-914
    • Yang, J.1    Liu, Y.2    Liu, Z.3    Zhu, X.4    Zhang, X.5
  • 37
    • 47249093354 scopus 로고    scopus 로고
    • Asymmetric bagging and feature selection for activities prediction of drug molecules
    • [37] Li, G.-Z., Meng, H.-H., Lu, W.-C., Yang, J.Y., Yang, M., Asymmetric bagging and feature selection for activities prediction of drug molecules. BMC Bioinform., 9, 2008, 10.1186/1471-2105-9-S6-S7.
    • (2008) BMC Bioinform. , vol.9
    • Li, G.-Z.1    Meng, H.-H.2    Lu, W.-C.3    Yang, J.Y.4    Yang, M.5
  • 38
    • 80053173508 scopus 로고    scopus 로고
    • Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction
    • [38] Shi, P., Ray, S., Zhu, Q., Kon, M.A., Top scoring pairs for feature selection in machine learning and applications to cancer outcome prediction. BMC Bioinform., 12, 2011, 375, 10.1186/1471-2105-12-375.
    • (2011) BMC Bioinform. , vol.12 , pp. 375
    • Shi, P.1    Ray, S.2    Zhu, Q.3    Kon, M.A.4
  • 39
    • 84894384270 scopus 로고    scopus 로고
    • A novel class dependent feature selection method for cancer biomarker discovery
    • [39] Zhou, W., Dickerson, J.A., A novel class dependent feature selection method for cancer biomarker discovery. Comput. Biol. Med. 47 (2014), 66–75, 10.1016/j.compbiomed.2014.01.014.
    • (2014) Comput. Biol. Med. , vol.47 , pp. 66-75
    • Zhou, W.1    Dickerson, J.A.2
  • 40
    • 85126491314 scopus 로고    scopus 로고
    • K.Benabdeslem, M.Hindawi, Constrained laplacian score for semi-supervised feature selection, in: Proceedings of the Machine Learning and Knowledge Discovery in Databases, Springer, 2011, pp. 204–218.
    • [40] K.Benabdeslem, M.Hindawi, Constrained laplacian score for semi-supervised feature selection, in: Proceedings of the Machine Learning and Knowledge Discovery in Databases, Springer, 2011, pp. 204–218.
  • 41
    • 84955258625 scopus 로고    scopus 로고
    • Particle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancer
    • [41] Sheikhpour, R., Sarram, M.A., Sheikhpour, R., Particle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancer. Appl. Soft Comput. 40 (2016), 113–131, 10.1016/j.asoc.2015.10.005.
    • (2016) Appl. Soft Comput. , vol.40 , pp. 113-131
    • Sheikhpour, R.1    Sarram, M.A.2    Sheikhpour, R.3
  • 42
    • 84990888711 scopus 로고    scopus 로고
    • Supervised, unsupervised and semi-supervised feature selection: a review on gene selection
    • [42] Chin, A., Mirzal, A., Haron, H., Hamed, H., Supervised, unsupervised and semi-supervised feature selection: a review on gene selection. IEEE/ACM Trans. Comput. Biol. Bioinform., 2015, 10.1109/TCBB.2015.2478454.
    • (2015) IEEE/ACM Trans. Comput. Biol. Bioinform.
    • Chin, A.1    Mirzal, A.2    Haron, H.3    Hamed, H.4
  • 44
    • 84894903349 scopus 로고    scopus 로고
    • A survey on feature selection methods
    • [44] Chandrashekar, G., Sahin, F., A survey on feature selection methods. Comput. Electr. Eng. 40 (2014), 16–28, 10.1016/j.compeleceng.2013.11.024.
    • (2014) Comput. Electr. Eng. , vol.40 , pp. 16-28
    • Chandrashekar, G.1    Sahin, F.2
  • 45
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • [45] Saeys, Y., Inza, I., Larrañaga, P., A review of feature selection techniques in bioinformatics. Bioinformatics 23 (2007), 2507–2517, 10.1093/bioinformatics/btm344.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 46
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • [46] Guyon, I., Elisseeff, a., An introduction to variable and feature selection. J. Mach. Learn. Res. 3 (2003), 1157–1182, 10.1162/153244303322753616.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 47
    • 85007285461 scopus 로고    scopus 로고
    • G.-Z.Yang, X.-P.Hu, Feature Selection, U.S. Pat. Appl. 12/064,993, 2006.
    • [47] G.-Z.Yang, X.-P.Hu, Feature Selection, U.S. Pat. Appl. 12/064,993, 2006.
  • 48
    • 84955732932 scopus 로고    scopus 로고
    • Semi-supervised feature selection via hierarchical regression for web image classification
    • [48] Song, X., Zhang, J., Han, Y., Jiang, J., Semi-supervised feature selection via hierarchical regression for web image classification. Multimed. Syst., 2014, 10.1007/s00530-014-0390-0.
    • (2014) Multimed. Syst.
    • Song, X.1    Zhang, J.2    Han, Y.3    Jiang, J.4
  • 49
    • 84921514115 scopus 로고    scopus 로고
    • Semisupervised feature selection via spline regression for video semantic recognition
    • [49] Han, Y., Yang, Y., Yan, Y., Ma, Z., Sebe, N., Member, S., Semisupervised feature selection via spline regression for video semantic recognition. IEEE Trans. Neural Netw. Learn. Syst. 26 (2015), 252–264.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , pp. 252-264
    • Han, Y.1    Yang, Y.2    Yan, Y.3    Ma, Z.4    Sebe, N.5    Member, S.6
  • 50
    • 85007387428 scopus 로고    scopus 로고
    • Semi-supervised Feature Analysis by Mining Correlations among Multipe Tasks, 2014, 11.
    • [50] X. Chang, Y. Yang, Semi-supervised Feature Analysis by Mining Correlations among Multipe Tasks, 2014, 11. 〈 http://arxiv.org/abs/1411.6232〉.
    • Chang, X.1    Yang, Y.2
  • 51
    • 70449102559 scopus 로고    scopus 로고
    • Z.Zhao, H.Liu, Semi-supervised feature selection via spectral snalysis, in: Proceedings of the 7th SIAM International Conference Data Mining, SIAM, 2007, pp. 641–646.
    • [51] Z.Zhao, H.Liu, Semi-supervised feature selection via spectral snalysis, in: Proceedings of the 7th SIAM International Conference Data Mining, SIAM, 2007, pp. 641–646.
  • 52
    • 84860387759 scopus 로고    scopus 로고
    • A semi-supervised feature ranking method with ensemble learning
    • [52] Bellal, F., Elghazel, H., Aussem, A., A semi-supervised feature ranking method with ensemble learning. Pattern Recognit. Lett. 33 (2012), 1426–1433, 10.1016/j.patrec.2012.03.001.
    • (2012) Pattern Recognit. Lett. , vol.33 , pp. 1426-1433
    • Bellal, F.1    Elghazel, H.2    Aussem, A.3
  • 53
    • 44649150219 scopus 로고    scopus 로고
    • J.Ren, Z.Qiu, W.Fan, H.Cheng, P.S.Yu, S.Y.Philip, Forward semi-supervised feature selection, in: Proceedings of the Advances in Knowledge Discovery and Data Mining, Springer, 2008, pp. 970–976.
    • [53] J.Ren, Z.Qiu, W.Fan, H.Cheng, P.S.Yu, S.Y.Philip, Forward semi-supervised feature selection, in: Proceedings of the Advances in Knowledge Discovery and Data Mining, Springer, 2008, pp. 970–976.
  • 54
    • 80053251304 scopus 로고    scopus 로고
    • Confident wrapper-type semi-supervised feature selection using an ensemble classifier,
    • Proceedings of the 2011 2nd Artificial Intelligence, Management Science and Electronic Commerce, AIMSEC 2011, pp. 4581–4586.
    • [54] Y. Han, K. Park, Y.K. Lee, Confident wrapper-type semi-supervised feature selection using an ensemble classifier, in: Proceedings of the 2011 2nd Artificial Intelligence, Management Science and Electronic Commerce, AIMSEC 2011, pp. 4581–4586. 〈 http://dx.doi.org/10.1109/AIMSEC.2011.6010202〉.
    • Han, Y.1    Park, K.2    Lee, Y.K.3
  • 55
    • 84857153050 scopus 로고    scopus 로고
    • Semi-supervised feature importance evaluation with ensemble learning,
    • Proceedings of the International Conference on Data Mining, ICDM 2011, 2011, pp. 31–40.
    • [55] H. Barkia, H. Elghazel, A. Aussem, Semi-supervised feature importance evaluation with ensemble learning, in: Proceedings of the International Conference on Data Mining, ICDM 2011, 2011, pp. 31–40. 〈 http://dx.doi.org/10.1109/icdm.2011.129〉.
    • Barkia, H.1    Elghazel, H.2    Aussem, A.3
  • 56
    • 84922529615 scopus 로고    scopus 로고
    • The graph based semi-supervised algorithm with ℓ1-regularizer
    • [56] Zuo, L., Li, L., Chen, C., The graph based semi-supervised algorithm with ℓ1-regularizer. Neurocomputing 149 (2015), 966–974, 10.1016/j.neucom.2014.07.037.
    • (2015) Neurocomputing , vol.149 , pp. 966-974
    • Zuo, L.1    Li, L.2    Chen, C.3
  • 57
    • 84923874457 scopus 로고    scopus 로고
    • Scaling up graph-based semisupervised learning via prototype vector machines
    • [57] Zhang, K., Lan, L., Kwok, J.T., Vucetic, S., Parvin, B., Scaling up graph-based semisupervised learning via prototype vector machines. IEEE Trans. Neural Netw. Learn. Syst. 26 (2015), 444–457, 10.1109/TNNLS.2014.2315526.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , pp. 444-457
    • Zhang, K.1    Lan, L.2    Kwok, J.T.3    Vucetic, S.4    Parvin, B.5
  • 58
    • 60349117789 scopus 로고    scopus 로고
    • N.N.Pise, P.Kulkarni, A survey of semi-supervised learning methods, in: Proceedings of the International Conference Computational Intelligence and Security, CIS’08, IEEE, 2008, pp. 30–34.
    • [58] N.N.Pise, P.Kulkarni, A survey of semi-supervised learning methods, in: Proceedings of the International Conference Computational Intelligence and Security, CIS’08, IEEE, 2008, pp. 30–34. 〈 http://dx.doi.org/10.1109/CIS.2008.204〉.
  • 59
    • 33749252873 scopus 로고    scopus 로고
    • Semi-Supervised Learning
    • MIT Press Cambridge
    • [59] Chapelle, O., Schölkopf, B., Zien, A., Semi-Supervised Learning. 2006, MIT Press, Cambridge.
    • (2006)
    • Chapelle, O.1    Schölkopf, B.2    Zien, A.3
  • 60
    • 84899956253 scopus 로고    scopus 로고
    • Unsupervised manifold learning based on multiple feature spaces
    • [60] Chahooki, M.A.Z., Charkari, N.M., Unsupervised manifold learning based on multiple feature spaces. Mach. Vis. Appl. 25 (2014), 1053–1065, 10.1007/s00138-014-0604-7.
    • (2014) Mach. Vis. Appl. , vol.25 , pp. 1053-1065
    • Chahooki, M.A.Z.1    Charkari, N.M.2
  • 61
    • 84855921876 scopus 로고    scopus 로고
    • M.A.Z.Chahooki, N.M.Charkari, Improvement of supervised shape retrieval by learning the manifold space, in: Proceedings of the Iranian Conference on Machine Vision and Image Processing, MVIP 2011, IEEE, 2011, pp. 1–4.
    • [61] M.A.Z.Chahooki, N.M.Charkari, Improvement of supervised shape retrieval by learning the manifold space, in: Proceedings of the Iranian Conference on Machine Vision and Image Processing, MVIP 2011, IEEE, 2011, pp. 1–4.
  • 62
    • 84875735212 scopus 로고    scopus 로고
    • Aggregation pheromone metaphor for semi-supervised classification
    • [62] Halder, A., Ghosh, S., Ghosh, A., Aggregation pheromone metaphor for semi-supervised classification. Pattern Recognit. 46 (2013), 2239–2248, 10.1016/j.patcog.2013.01.002.
    • (2013) Pattern Recognit. , vol.46 , pp. 2239-2248
    • Halder, A.1    Ghosh, S.2    Ghosh, A.3
  • 63
    • 67650272548 scopus 로고    scopus 로고
    • Introduction to Semi-Supervised Learning, 2009.
    • [63] X. Zhu, A.B. Goldberg, Introduction to Semi-Supervised Learning, 2009. 〈 http://dx.doi.org/10.2200/S00196ED1V01Y200906AIM006〉.
    • Zhu, X.1    Goldberg, A.B.2
  • 64
    • 85007381977 scopus 로고    scopus 로고
    • Semi-Supervised Learning Literature Survey, 2008.
    • [64] X. Zhu, Semi-Supervised Learning Literature Survey, 2008. 〈 http://dx.doi.org/10.1.1.146.2352〉.
    • Zhu, X.1
  • 66
    • 44649111202 scopus 로고    scopus 로고
    • Locality sensitive semi-supervised feature selection
    • [66] Zhao, J., Lu, K., He, X., Locality sensitive semi-supervised feature selection. Neurocomputing 71 (2008), 1842–1849, 10.1016/j.neucom.2007.06.014.
    • (2008) Neurocomputing , vol.71 , pp. 1842-1849
    • Zhao, J.1    Lu, K.2    He, X.3
  • 67
    • 79957938654 scopus 로고    scopus 로고
    • Graph laplacian for semi-supervised feature selection in regression problems, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2011, pp. 248–255. 〈〉
    • [67] G. Doquire, M. Verleysen, Graph laplacian for semi-supervised feature selection in regression problems, Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 2011, pp. 248–255. 〈 http://dx.doi.org/10.1007/978-3-642-21501-8_31〉.
    • Doquire, G.1    Verleysen, M.2
  • 68
    • 84884139371 scopus 로고    scopus 로고
    • A graph laplacian based approach to semi-supervised feature selection for regression problems
    • [68] Doquire, G., Verleysen, M., A graph laplacian based approach to semi-supervised feature selection for regression problems. Neurocomputing 121 (2013), 5–13, 10.1016/j.neucom.2012.10.028.
    • (2013) Neurocomputing , vol.121 , pp. 5-13
    • Doquire, G.1    Verleysen, M.2
  • 69
    • 79851501337 scopus 로고    scopus 로고
    • Graph-based semi-supervised weighted band selection for classification of hyperspectral data,
    • Proceedings of the International Conference on Audio, Language and Image Processing, ICALIP 2010, pp. 1123–1126.
    • [69] L.C.L. Chen, R.H.R. Huang, W.H.W. Huang, Graph-based semi-supervised weighted band selection for classification of hyperspectral data, in: Proceedings of the International Conference on Audio, Language and Image Processing, ICALIP 2010, pp. 1123–1126. 〈 http://dx.doi.org/10.1109/ICALIP.2010.5685086〉.
    • Chen, L.C.L.1    Huang, R.H.R.2    Huang, W.H.W.3
  • 70
    • 78149334894 scopus 로고    scopus 로고
    • M.Yang, Y.Chen, G.Ji, Semi_fisher score : a semi-supervised method for feature selection, in: Proceedings of the International Conference on Machine Learning and Cybernetics, 2010, pp. 527–532.
    • [70] M.Yang, Y.Chen, G.Ji, Semi_fisher score : a semi-supervised method for feature selection, in: Proceedings of the International Conference on Machine Learning and Cybernetics, 2010, pp. 527–532.
  • 71
    • 84901942488 scopus 로고    scopus 로고
    • S.Lv, H.Jiang, L.Zhao, D.Wang, M.Fan, Manifold based fisher method for semi-supervised feature selection, in: Proceedings of the 10th International Conference on Fuzzy Systems and Knowledge Discovery, 2013, pp. 664–668.
    • [71] S.Lv, H.Jiang, L.Zhao, D.Wang, M.Fan, Manifold based fisher method for semi-supervised feature selection, in: Proceedings of the 10th International Conference on Fuzzy Systems and Knowledge Discovery, 2013, pp. 664–668.
  • 72
    • 83755220453 scopus 로고    scopus 로고
    • A semi-supervised method for feature selection,
    • Proceedings of the International Conference on Computer and Information Science and Technology, 2011, pp. 329–332.
    • [72] W. Yang, C. Hou, Y. Wu, A semi-supervised method for feature selection, in: Proceedings of the International Conference on Computer and Information Science and Technology, 2011, pp. 329–332. 〈 http://dx.doi.org/10.1109/ICCIS.2011.54〉.
    • Yang, W.1    Hou, C.2    Wu, Y.3
  • 73
    • 84875384168 scopus 로고    scopus 로고
    • Efficient semi-supervised feature selection with noise insensitive trace ratio criterion
    • [73] Liu, Y., Nie, F., Wu, J., Chen, L., Efficient semi-supervised feature selection with noise insensitive trace ratio criterion. Neurocomputing 105 (2013), 12–18, 10.1016/j.neucom.2012.05.031.
    • (2013) Neurocomputing , vol.105 , pp. 12-18
    • Liu, Y.1    Nie, F.2    Wu, J.3    Chen, L.4
  • 74
    • 84863170518 scopus 로고    scopus 로고
    • Y.Liu, F.Nie, J.Wu, L.Chen, Semi-supervised feature selection based on label propagation and subset selection, in: Proceedings of the International Conference on Computer and Information Application, IEEE, 2010, pp. 293–296.
    • [74] Y.Liu, F.Nie, J.Wu, L.Chen, Semi-supervised feature selection based on label propagation and subset selection, in: Proceedings of the International Conference on Computer and Information Application, IEEE, 2010, pp. 293–296.
  • 75
    • 77957935759 scopus 로고    scopus 로고
    • J.Li, Semi-supervised feature selection under logistic I-RELIEF framework, in: Proceedings of the 19th International Conference Pattern Recognition, 2008, pp. 1–4.
    • [75] J.Li, Semi-supervised feature selection under logistic I-RELIEF framework, in: Proceedings of the 19th International Conference Pattern Recognition, 2008, pp. 1–4. 〈 http://dx.doi.org/10.1109/ICPR.2008.4761687〉.
  • 76
    • 84870517183 scopus 로고    scopus 로고
    • Discriminating joint feature analysis for multimedia data understanding
    • [76] Ma, Z., Nie, F., Yang, Y., Uijlings, J.R.R., Sebe, N., Member, S., et al. Discriminating joint feature analysis for multimedia data understanding. IEEE Trans. Multimed. 14 (2012), 1662–1672.
    • (2012) IEEE Trans. Multimed. , vol.14 , pp. 1662-1672
    • Ma, Z.1    Nie, F.2    Yang, Y.3    Uijlings, J.R.R.4    Sebe, N.5    Member, S.6
  • 77
    • 84894225938 scopus 로고    scopus 로고
    • Sparse feature selection based on graph Laplacian for web image annotation
    • [77] Shi, C., Ruan, Q., An, G., Sparse feature selection based on graph Laplacian for web image annotation. Image Vis. Comput. 32 (2014), 189–201, 10.1016/j.imavis.2013.12.013.
    • (2014) Image Vis. Comput. , vol.32 , pp. 189-201
    • Shi, C.1    Ruan, Q.2    An, G.3
  • 78
    • 84455161745 scopus 로고    scopus 로고
    • Exploiting the entire feature space with sparsity for automatic image annotation,
    • Proceedings of the 19th ACM Multimedia Conference, MM’11, 2011, p. 283. 〈〉
    • [78] Z. Ma, Y. Yang, F. Nie, J. Uijlings, N. Sebe, Exploiting the entire feature space with sparsity for automatic image annotation, in: Proceedings of the 19th ACM Multimedia Conference, MM’11, 2011, p. 283. 〈 http://dx.doi.org/10.1145/2072298.2072336〉.
    • Ma, Z.1    Yang, Y.2    Nie, F.3    Uijlings, J.4    Sebe, N.5
  • 79
    • 77954565155 scopus 로고    scopus 로고
    • Discriminative semi-supervised feature selection via manifold regularization
    • [79] Xu, Z., King, I., Lyu, M.R.T., Jin, R., Discriminative semi-supervised feature selection via manifold regularization. IEEE Trans. Neural Netw. 21 (2010), 1033–1047, 10.1109/TNN.2010.2047114.
    • (2010) IEEE Trans. Neural Netw. , vol.21 , pp. 1033-1047
    • Xu, Z.1    King, I.2    Lyu, M.R.T.3    Jin, R.4
  • 80
    • 84946422968 scopus 로고    scopus 로고
    • Semi-supervised SVM-based feature felection for cancer classification using microarray gene expression data
    • [80] Ang, J.C., B, H.H., Nuzly, H., Hamed, A., Haron, H., Hamed, H.N.A., Semi-supervised SVM-based feature felection for cancer classification using microarray gene expression data. Curr. Approaches Appl. Artif. Intell., 2015, 468–477, 10.1007/978-3-319-19066-2.
    • (2015) Curr. Approaches Appl. Artif. Intell. , pp. 468-477
    • Ang, J.C.1    Bal, H.H.2    Nuzly, H.3    Hamed, A.4    Haron, H.5    Hamed, H.N.A.6
  • 81
    • 84893853199 scopus 로고    scopus 로고
    • A semisupervised feature selection with support vector machine
    • [81] Dai, K., Yu, H.-Y., Li, Q., A semisupervised feature selection with support vector machine. J. Appl. Math., 2013, 2013.
    • (2013) J. Appl. Math. , vol.2013
    • Dai, K.1    Yu, H.-Y.2    Li, Q.3
  • 82
    • 0003487601 scopus 로고
    • Neural Networks for Pattern Recognition
    • Clarendon Press Oxford
    • [82] Bishop, C.M., Neural Networks for Pattern Recognition. 1995, Clarendon Press, Oxford.
    • (1995)
    • Bishop, C.M.1
  • 83
    • 84864039505 scopus 로고    scopus 로고
    • Laplacian Score for Feature Selection,
    • Proceedings of the Advances in Neural Information Processing Systems, 2005, pp. 507–514. 〈〉
    • [83] X. He, D. Cai, P. Niyogi, Laplacian Score for Feature Selection, in: Proceedings of the Advances in Neural Information Processing Systems, 2005, pp. 507–514. 〈 http://books.nips.cc/papers/files/nips18/NIPS2005_0149.pdf〉.
    • He, X.1    Cai, D.2    Niyogi, P.3
  • 84
    • 85007398872 scopus 로고    scopus 로고
    • Generalized Fisher Score for Feature Selection, CoRR, abs/1202.3, 2012.
    • [84] Q. Gu, Z. Li, J. Han, Generalized Fisher Score for Feature Selection, CoRR, abs/1202.3, 2012.
    • Gu, Q.1    Li, Z.2    Han, J.3
  • 85
    • 84947868141 scopus 로고    scopus 로고
    • Semi-supervised feature selection based on local discriminative information
    • [85] Zeng, Z., Wang, X., Zhang, J., Wu, Q., Semi-supervised feature selection based on local discriminative information. Neurocomputing, 2015, 10.1016/j.neucom.2015.05.119.
    • (2015) Neurocomputing
    • Zeng, Z.1    Wang, X.2    Zhang, J.3    Wu, Q.4
  • 87
    • 62549128663 scopus 로고    scopus 로고
    • Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0
    • [87] Foucart, S., Lai, M.-J., Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0
    • (2009) Appl. Comput. Harmon. Anal. , vol.26 , pp. 395-407
    • Foucart, S.1    Lai, M.-J.2
  • 88
    • 85162044296 scopus 로고    scopus 로고
    • D.Krishnan, R.Fergus, Fast image deconvolution using hyper-Laplacian priors, in: Proceedings of the Advances in Neural Information Processing Systems, 2009, pp. 1033–1041.
    • [88] D.Krishnan, R.Fergus, Fast image deconvolution using hyper-Laplacian priors, in: Proceedings of the Advances in Neural Information Processing Systems, 2009, pp. 1033–1041.
  • 89
    • 34548724437 scopus 로고    scopus 로고
    • Exact reconstruction of sparse signals via nonconvex minimization
    • [89] Chartrand, R., Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 14 (2007), 707–710.
    • (2007) IEEE Signal Process. Lett. , vol.14 , pp. 707-710
    • Chartrand, R.1
  • 90
    • 70449490591 scopus 로고    scopus 로고
    • R.Chartrand, Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data, in: Proceedings of the International Symposium on Biomedical Imaging From Nano to Macro, ISBI’09, 2009, pp. 262–265.
    • [90] R.Chartrand, Fast algorithms for nonconvex compressive sensing: MRI reconstruction from very few data, in: Proceedings of the International Symposium on Biomedical Imaging From Nano to Macro, ISBI’09, 2009, pp. 262–265.
  • 91
    • 84871085657 scopus 로고    scopus 로고
    • l1/2 regularization: a thresholding representation theory and a fast solver
    • [91] Zongben, X., Xiangyu, C., Fengmin, X., Hai, Z., l1/2 regularization: a thresholding representation theory and a fast solver. IEEE Trans. Neural Netw. Learn. Syst. 23 (2012), 1013–1027.
    • (2012) IEEE Trans. Neural Netw. Learn. Syst. , vol.23 , pp. 1013-1027
    • Zongben, X.1    Xiangyu, C.2    Fengmin, X.3    Hai, Z.4
  • 92
    • 85161967525 scopus 로고    scopus 로고
    • F.Nie, H.Huang, X.Cai, C.H.Ding, Efficient and robust feature selection via joint ℓ2, 1-norms minimization, in: Proceedings of the Advances in Neural Information Processing Systems, 2010, pp. 1813–1821.
    • [92] F.Nie, H.Huang, X.Cai, C.H.Ding, Efficient and robust feature selection via joint ℓ2, 1-norms minimization, in: Proceedings of the Advances in Neural Information Processing Systems, 2010, pp. 1813–1821.
  • 93
    • 77958565426 scopus 로고    scopus 로고
    • Z.Zhao, L.Wang, H.Liu, Efficient spectral feature selection with minimum redundancy, in: Proceedings of the AAAI Conference on Artificial Intelligence, Citeseer, 2010.
    • [93] Z.Zhao, L.Wang, H.Liu, Efficient spectral feature selection with minimum redundancy, in: Proceedings of the AAAI Conference on Artificial Intelligence, Citeseer, 2010.
  • 94
    • 1942484430 scopus 로고    scopus 로고
    • X.Zhu, Z.Ghahramani, J.Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, in: Proceedings of the International Conference on Machine Learning, ICML, 2003, pp. 912–919.
    • [94] X.Zhu, Z.Ghahramani, J.Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, in: Proceedings of the International Conference on Machine Learning, ICML, 2003, pp. 912–919.
  • 95
    • 77953705810 scopus 로고    scopus 로고
    • Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction
    • [95] Nie, F., Xu, D., Tsang, I.W.-H., Zhang, C., Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction. Image Process. IEEE Trans. 19 (2010), 1921–1932.
    • (2010) Image Process. IEEE Trans. , vol.19 , pp. 1921-1932
    • Nie, F.1    Xu, D.2    Tsang, I.W.-H.3    Zhang, C.4
  • 96
    • 80155165021 scopus 로고    scopus 로고
    • Y.Ren, G.Zhang, G.Yu, Random subspace based semi-supervised feature selection, in: Proceedings of the 2011 International Conference on Machine Learning and Cybernetics, 2011, pp. 113–118.
    • [96] Y.Ren, G.Zhang, G.Yu, Random subspace based semi-supervised feature selection, in: Proceedings of the 2011 International Conference on Machine Learning and Cybernetics, 2011, pp. 113–118.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.